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Resumo

Luan da Fonseca Santos. Análise de esquemas de volumes finitos para advecção
em esferas cubadas e uma alternativa precisa para ventos divergentes. Tese

(Doutorado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2024.

O núcleo dinâmico de volumes finitos do GFDL-NOAA-EUA, originalmente projetado para grades de

latitude e longitude, foi adaptado à esfera cubada para melhorar a escalabilidade em supercomputadores

massivamente paralelos, resultando na criação do núcelo dinâmico FV3. O FV3 serve como núcleo dinâmico

para muitos modelos globais e, em 2019, foi selecionado como o núcleo dinâmico oficial para o novo Sistema

Global de Previsão do Serviço Nacional de Meteorologia dos EUA, substituindo o modelo espectral. A

abordagem de volume finitos do FV3 para resolver a dinâmica horizontal consiste na aplicação de fluxos

de advecção para diversas variáveis; assim, o esquema de advecção desempenha um papel fundamental no

modelo. Portanto, nesta tese, propomos investigar os detalhes do esquema de advecção do FV3. Conseguimos

sugerir modificações no esquema de advecção do FV3 que melhoraram significativamente a advecção para

ventos divergentes com apenas um pequeno esforço computacional adicional e pequenas mudanças no

código existente do FV3. Realizamos várias simulações numéricas usando as equações de advecção e águas

rasas. Como o esquema de advecção do FV3 consiste na combinação de operadores de fluxo de volume

finitos 1D, nossas melhorias foram obtidas ao melhorar o cálculo do ponto de partida para os operadores

de fluxo 1D e modificar a forma como o termo métrico da esfera cubada é tratado ao calcular os fluxos 1D.

Através de simulações, demonstramos que o esquema de advecção atual do FV3 é apenas de primeira ordem

para ventos divergentes, enquanto nosso esquema é de segunda ordem. Para ventos livres de divergência,

ambos os esquemas são de segunda ordem, sendo o nosso esquema ligeiramente mais preciso. Uma grande

dificuldade em trabalhar na esfera cubada é lidar com a descontinuidade das coordenadas ao longo das faces

do cubo, o que pode levar a erros maiores nessas regiões. No entanto, demonstramos através de simulações

numéricas que o esquema de advecção proposto apresenta uma sensibilidade ligeiramente reduzida aos

cantos do cubo. Em resumo, esta tese oferece uma análise abrangente da discretização do FV3 da dinâmica

horizontal, fornecendo uma valiosa compreensão para aprimorar a precisão do núcleo dinâmico do FV3,

especialmente para ventos divergentes.

Palavras-chave: Núcleo dinâmico da atmosfera, esfera cubada, volumes finitos, dimension splitting, ponto

de partida, corretor de massa, equação de advecção, equação de águas rasas.





Abstract

Luan da Fonseca Santos. Analysis of finite-volume advection schemes on cubed-
sphere grids and an accurate alternative for divergent winds. Thesis (Doctorate).

Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2024.

The finite-volume dynamical core developed by GFDL-NOAA-USA, originally designed for latitude-

longitude grids, was adapted to the cubed-sphere to enhance scalability on massively parallel supercomputers,

resulting in the creation of the FV3 dynamical core. FV3 serves as the dynamical core for many models

worldwide, and in 2019, it was officially designated as the dynamical core for the new Global Forecast System

of the National Weather Service in the USA, replacing the spectral model. The finite-volume approach

employed by FV3 to solve horizontal dynamics involves applying advection fluxes for different variables;

thus, the advection scheme plays a key role in the model. Therefore, in this thesis, we propose to investigate

the details of the advection scheme of FV3. We were able to suggest modifications to the FV3 advection

scheme that significantly improved advection for divergent winds with only a small extra computational

effort and of simple implementation in the existing codes. We conducted several numerical simulations using

the advection and shallow-water equations. Since the FV3 advection scheme utilizes a splitting strategy,

combining 1D finite-volume flux operators, our improvements were obtained by improving the departure

point computation for the 1D flux operators and modifying the way the metric term of the cubed-sphere is

treated when computing the 1D fluxes. Through simulations, we demonstrate that the current FV3 advection

scheme is only first-order accurate for divergent winds, while our scheme is second-order accurate. For

divergence-free winds, both schemes are second-order, with our scheme being slightly more accurate.

One major difficulty in working on the cubed-sphere is handling coordinate discontinuity along the cube

faces, which may lead to larger errors in these regions. However, we demonstrate through numerical

simulations that the proposed advection scheme exhibits slightly reduced sensitivity to the cube corners. In

conclusion, this thesis offers a comprehensive examination of the FV3 discretization of horizontal dynamics,

providing valuable insights into enhancing the accuracy of the FV3 dynamical core, particularly for divergent

winds.

Keywords: Dynamical core, cubed-sphere, finite-volume, dimension splitting, departure point, mass fixer,

advection equation, shallow-water equations.
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Chapter 1

Introduction

1.1 Historical background

Weather and climate predictions are recognized as a good for mankind, due to the
information they yield for diverse activities. For instance, short-range forecasts are useful
for public use, while medium-range forecasts are helpful for industrial activities and
agriculture. Seasonal forecasts (one up to three months) are important to energy planning
and agriculture. At last, longer-range forecasts (one century, for instance) are useful for
climate change projections that are important for government planning.

The first global Numerical Weather Prediction models emerged in the 1950s under the
Joint Numerical Weather Prediction Unit (JNWPU), a joint project by the U.S. Air Force,
Navy, and Weather Bureau, with applications to weather, seasonal, and climate forecasts
(Harper et al., 2007). All these applications are essentially based on the same set of Partial
Differential Equations (PDEs) but with distinct time scales (Staniforth & Wood, 2008).
These PDEs are defined on the sphere and model the evolution of the atmospheric fluid
given the initial conditions. One important component of global models is the dynamical
core (dycore), which is responsible for solving the PDEs that govern the atmosphere
dynamics on grid-scale (Williamson, 2007). The development of numerical methods for
dynamical cores has been an active research area since the 1950s.

Global models use the sphere as the computational domain and therefore they require
a discretization of the sphere. The first global models used the latitude-longitude grid
(Figure 1.1a), which is very suitable for finite-differences schemes due to its orthogonality
(Williamson, 2007). The major drawback of the latitude-longitude grid is the clustering of
points at the poles, known as the “pole problem”, which leads to extremely small time steps
for explicit-in-time schemes due to the Courant-Friedrichs-Lewy (CFL) condition, making
these schemes computationally very expensive (Randall, 2022). The latitude-longitude
grid is highly non-isotropic due to the pole problem, with a much higher resolution at the
poles than elsewhere (Figure 1.1a). Additionally, polar filters may be required by explicit
schemes to stabilize short waves that tend to be over-resolved at high latitudes, which
may degrade the solution accuracy (Williamson, 2007).

The most successful method adopted in global atmospheric dynamical cores on latitude-
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longitude grids that overcomes the CFL restriction is the Semi-Implicit Semi-Lagrangian
(SI-SL) scheme (Randall et al., 2018), which emerged in the 1980s and consists of the
Lagrangian advection scheme applied at each time-step and the solution of fast gravity
waves implicitly, allowing very large time steps despite the pole problem. The SI-SL
approach combined with finite differences is still used nowadays, for instance in the UK
Met Office global model ENDGame (Wood et al., 2014). The expensive part of the SI-SL
approach is to solve an elliptic equation at each time step, that comes from the semi-
implicit discretization, which requires global data communication, being inefficient to run
in massive parallel supercomputers. Besides that, traditional Semi-Lagrangian schemes are
inherently non-conservatives for mass, which is critical for climate forecasts (Williamson,
2007).

(a) Latitude-longitude grid (b) Cubed-sphere (c) Icosahedral grid

(d) Pentagonal/Hexagonal grid (e) Octahedral grid

Figure 1.1: Examples of spherical grids: latitude-longitude grid (a) and grids based on Platonic solids
(b)-(d).

The emergence of the Fast Fourier Transform (FFT) in the 1960s with the work from
Cooley and Tukey (1965) allowed the computation of discrete Fourier transforms with
𝑁 log(𝑁 ) complexity. The viability of the usage of FFTs for solving atmospheric flows
was shown by Orszag (1970), using the barotropic vorticity equation on the sphere, and
by Eliasen et al. (1970), using the primitive equations. The spectral transform method
expresses latitude-longitude grid values, that represent some scalar field, using truncated
spherical harmonics expansions, which consists of Fourier expansions in latitude circles
and Legendre functions expansions in longitude circles. The coefficients in the spectral
expansions are known as spectral coefficients and are usually thought to live in the so-called
spectral space. Given the grid values, the spectral coefficients are obtained by performing
a FFT followed by a Legendre Transform (LT). Conversely, given the spectral coefficients,
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the grid values are obtained by performing an inverse LT followed by an inverse FFT. The
main idea of the spectral method is to apply the spectral transform, in order to go the
spectral space, and evaluate spatial derivatives in the spectral space, which consists of
multiplying the spectral coefficients by constants. Then, the method performs the inverse
spectral transform in order to get back to grid space, and the nonlinear terms are treated
on the grid space (Krishnamurti et al., 2006).

The spectral transform makes the use of SI-SL methods computationally cheap, since
the solution to elliptic problems becomes easy, once the spherical harmonics are eigen-
functions of the Laplacian operator on the sphere. Therefore, the spectral transform
method gets faster when combined with the SI-SL approach due to the larger times-
steps allowed in this case. Due to these enhancements, the spectral transform domi-
nated global atmospheric modeling (Randall et al., 2018) since the 1980s. Indeed, the
spectral method is still used in many current operational Weather Forecasting mod-
els such as the Integrated Forecast System (IFS) from European Centre for Medium-
Range Weather Forecasts (ECMWF), and the Brazilian Global Atmospheric Model (BAM)
(Figueroa et al., 2016) from Center for Weather Forecasting and Climate Research [Cen-
tro de Previsão de Tempo e Estudos Climáticos (CPTEC)]. The Global Forecast System
(GFS) from the National Centers for Environmental Prediction (NCEP) employed the
spectral method until June 2019 when it was replaced by the Finite Volume Cubed-
Sphere dynamical core (FV3) from the Geophysical Fluid Dynamics Laboratory (GFDL)
and the National Oceanic and Atmospheric Administration (NOAA) in June 2019 (https:
//www.noaa.gov/media-release/noaa-upgrades-us-global-weather-forecast-model, last
accessed on March 19th, 2024).

With the beginning of the multicore era in the 1990s, the global atmospheric mod-
els started to move towards parallel efficiency aiming to run at very high resolutions.
Even though the spectral transform expansions have a global data dependency, some
parallelization is feasible among all the computations of FFTs, LTs and their inverses
(Barros et al., 1995). However, the parallelization of the spectral method requires data
transpositions in order to compute FFTs and LTs in parallel. These transpositions demand
a lot of global communication using, for instance, the Message Passing Interface (MPI)
(Zheng & Marguinaud, 2018). Indeed, the spectral transform becomes the most expensive
component of global spectral models when the resolution is increased due to the amount
of MPI communications (Müller et al., 2019).

The adiabatic and frictionless continuous equations that govern the atmospheric flow
have conserved quantities. Among them, some of the most important are mass, total
energy, angular momentum and potential vorticity (Thuburn, 2011). Numerical schemes
that are known for having discrete analogous of these conservative properties are known
as mimetic schemes. As we pointed out, classical Semi-Lagrangian schemes lack mass
conservation. Nevertheless, these schemes have been employed in dynamical cores for
better computational performance. However, dynamical cores should have discrete analo-
gous of the continuous conserved quantities, especially concerning for longer simulation
runs.

Aiming for better performance in massively parallel computers and better conservation
properties, new dynamical cores have been developed since the beginning of the 2000s.

https://www.noaa.gov/media-release/noaa-upgrades-us-global-weather-forecast-model
https://www.noaa.gov/media-release/noaa-upgrades-us-global-weather-forecast-model
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Novel spherical grids have been proposed, in order to avoid the pole problem. A popular
choice are grids based on Platonic solids (Staniforth & Thuburn, 2012). The construction
of these grids relies on a Platonic circumscribed on the sphere and the projection of its
faces onto the sphere, which leads to quasi-uniform and more isotropic spherical grids.
Some examples of spherical grids based on Platonic solids employed in the new generation
of dynamical cores are the cubed-sphere (Figure 1.1b), icosahedral grid (Figure 1.1c), the
pentagonal/hexagonal or Voronoi grid (Figure 1.1d) and octahedral grid (Figure 1.1e),
which are based on the cube, icosahedron, dodecahedron and octahedron, respectively
(Ullrich et al., 2017).

1.2 Motivations and the FV3 dynamical core
The cubed-sphere became a popular quasi-uniform grid for the new generation of dy-

namical cores. It was originally proposed by Sadourny (1972) and it was revisited by Ronchi
et al. (1996). Some of the cubed-sphere advantages are: uniformity; quadrilateral structure,
making the grid indexing trivial; no overlappings; it is cheap to generate. However, the
major drawbacks of the cubed-sphere are: non-orthogonal coordinate system, which leads
to metric terms on the differential operators; discontinuity of the coordinate system at
the cube edges, which may generate numerical noise and demands special treatment of
discrete operators at the cube edges.

Despite of its drawbacks, the cubed-sphere has been adopted in some of the new
generation dynamical cores. For instance, the cubed-sphere is used in the Community
Atmosphere Model (CAM-SE) from the NCAR using spectral elements (Dennis et al., 2012)
and in the Nonhydrostatic Unified Model of the Atmosphere (NUMA) from the US Navy
using Discontinuous Galerkin methods (Giraldo et al., 2013). The cubed-sphere was also
chosen to be used in the next UK Met Office global model using mixed finite elements
(Kent et al., 2023). At last, the Finite Volume Cubed-Sphere dynamical core (FV3) from the
Geophysical Fluid Dynamics Laboratory (GFDL) at the National Oceanic and Atmospheric
Administration (NOAA) (Harris & Lin, 2013; Putman & Lin, 2007) is another example of
new generation dynamical core based on the cubed-sphere.

The FV3 dycore is an extension of the Finite-Volume dycore (FVcore) from latitude-
longitude grids to the cubed-sphere. The numerical methods from FVcore started to be
developed with the advection scheme from the work Lin et al. (1994), which is based on
the piecewise linear scheme from Van Leer (1977). This scheme was later improved, using
the Piecewise Parabolic Method (PPM) (Carpenter et al., 1990; Colella & Woodward, 1984)
using dimension splitting techniques that guarantee monotonicity and mass conservation,
for the advection equation (Lin & Rood, 1996) and the shallow-water equations (Lin &
Rood, 1997). An important feature is that the FVcore combines the Arakawa C- and D-grids
(Arakawa & Lamb, 1977), where the C-grid values are computed in and intermediate time
step. The full global model was then presented by Lin (2004).

A disadvantage of the FVcore is its Semi-Lagrangian formulation, which introduces
parallelization difficulties. Indeed, as noted by Putman and Lin (2007), it creates a load
balancing problem, primarily due to a larger halo region needed in the zonal direction
near the poles. Then, the FVcore was then adapted to the cubed-sphere grid (Putman, 2007;
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Putman & Lin, 2007), to reach better performance in parallel computers, leading to the
FV3 dycore. Later, the FV3 also was improved to allow locally refinement grids through
grid-nesting or grid-stretching (Harris & Lin, 2013). More recently, FV3 introduced two-
way multiple same-level and telescoping grid nesting capabilities, as detailed by Mouallem
et al. (2022).

Currently, the FV3 dycore is capable of performing both hydrostatic and non-
hydrostatic atmospheric simulations. It was chosen as the new US GFS dynamical core,
indeed replacing the spectral transform GFS in 2019, as mentioned before. Additionally,
the FV3 dynamical core is employed in the GEOS Chem model (Martin et al., 2022) from
Harvard University, in NASA’s next-generation Mars Climate Model (Wilson et al., 2022),
and also in the System for High-resolution prediction on Earth-to-Local Domain (SHiELD)
model from GFDL (Harris et al., 2020).

However, a well-known problem that occurs on cubed-sphere models is the grid
imprinting visible due to the coordinate system discontinuity, especially at larger scales,
leading to the emergence of a wavenumber 4 pattern. This was reported in the paper
of Rančić et al. (2017), where the authors employ a finite-difference numerical scheme
on the Uniform Jacobian cubed-sphere using a Arakawa B-grid. The unpublished report
from Whitaker (2015) shows grid imprinting in other models, including the FV3. More
recently, Mouallem et al. (2023) has shown some idealized simulations using FV3 where
grid imprinting appears in many simulations. Generally speaking, grid imprinting refers to
the presence of artificial behaviors in the numerical solution that are associated with the
grid used. It is important to emphasize that other quasi-uniform grids may also experience
grid imprinting, such as hexagonal grids (Peixoto, 2016; Peixoto & Barros, 2013; Weller
et al., 2012).

Despite being chosen as the new US global weather prediction model, there is a lack of
numerical studies on the FV3 discretizations in the literature. Numerical results for the
advection equation on the cubed-sphere using the FV3 dynamical core were presented in
Putman and Lin (2007). However, they utilized extrapolations near the cube edges instead
of the duo-grid approach from Mouallem et al. (2023), which affects the convergence of
this method. The current solver of FV3 solves the shallow-water equation on the so-called
Lagrangian surfaces. This shallow-water solver, based on Lin and Rood (1997), utilizes the
advection solver from Putman and Lin (2007) to update the pressure, vorticity, and kinetic
energy fluxes. Therefore, advection is a key aspect of the FV3 dynamical core, deserving
better understanding. In this thesis, we propose to thoroughly examine all the minor
details of the scheme from Putman and Lin (2007) and suggest potential improvements,
thereby addressing gaps in the existing literature.

1.3 Outline and contributions
This thesis is outlined as follows.

• Chapter 2 is dedicated to reviewing the Piecewise Parabolic Method (PPM) for
the one-dimensional advection equation. In this Chapter, we demonstrate how the
temporal component of PPM can be expressed as a departure point calculation.
Subsequently, we enhance the departure point calculation from first-order (which is
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utilized in FV3) to second-order. This enhancement results in a significant improve-
ment, particularly in non-constant wind simulations. Its benefits are also observed
when using the monotonic version of PPM used in FV3 and proposed by Lin (2004).
The additional cost is only due to linear interpolation, which has little impact on the
overall performance.

• Chapter 3 reviews the dimension splitting method, which allows us to use one-
dimensional methods, such as the PPM, to solve the two-dimensional advection
equation. We review the current 2D advection scheme of FV3 on the plane proposed
by Putman and Lin (2007). The main feature of this scheme is that it preserves a
constant scalar field when the wind is divergence-free. We show through some
numerical simulations that this scheme is second-order accurate only for divergence-
free winds. When the wind is not divergence-free, we show that this scheme is
only first-order accurate. On the other hand, we propose a small modification of the
Putman and Lin (2007) scheme using the second-order departure point computation
presented in Chapter 2, which allows us to achieve second-order accuracy and
smaller errors for both divergent and divergence-free winds. Despite this scheme not
preserving a constant scalar for divergence-free winds, it still exhibits second-order
error in this case as well. Furthermore, when the monotonic scheme is used in the
1D solver, this scheme also has smaller errors compared to the Putman and Lin (2007)
scheme.

• In Chapter 4, we introduce the cubed-sphere grid utilized in FV3, which includes
the equi-edge (X. Chen, 2021) and equiangular grids (Ronchi et al., 1996), and we
investigate their geometrical properties. Next, we present all the tools necessary
to extend the advection schemes on the plane from Chapter 3 to the sphere. We
review the contravariant/covariant wind formulation induced by the cubed-sphere
mappings. Additionally, we demonstrate how stencils can be computed near the
cube-edges through the duo-grid technique to generate the ghost cells required for
utilizing 1D Lagrange interpolation to fill these ghost cells.

• Chapter 5 extends the ideas of Chapter 3 to the cubed-sphere grid using the tools
from Chapter 4. The dimension-splitting method on each cubed-sphere panel works
as in the plane, with the addition of metric terms due to the non-orthogonality of
the grid and interpolation between panels to obtain ghost cell values needed for
stencil computations. We show that the scheme from Putman and Lin (2007) uses a
less accurate formulation of the metric term to preserve the constant scalar for a
divergence-free wind, while our new scheme may use a more accurate formulation
of the metric term, as it does not have this preservation constraint. The results are
essentially the same as those from Chapter 3, showing that our scheme successfully
extends from the plane to the cubed-sphere and is more accurate. We also demon-
strate that our new scheme has smaller errors at the corners compared to the scheme
from Putman and Lin (2007).

• In Chapter 6, we present in detail the shallow-water solver of FV3 based on the
extension of the solver by Lin and Rood (1997) to the cubed-sphere. This solver
uses finite-volume advection fluxes to compute all operators. Then, we may use
our advection scheme introduced in Chapter 5 to compute the fluxes and compare
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the results with the scheme by Putman and Lin (2007). We show that our scheme
may help to slightly reduce the maximum errors for the geostrophic balanced case.
Additionally, we analyze the runtimes and show that our scheme adds a very small
extra computational cost.

In summary, the main contribution of this thesis is a modified version of the two-
dimensional scheme proposed by Putman and Lin (2007), which exhibits significantly
improved accuracy, especially for divergent flows, requiring minor extra computational
cost and only minor modifications to the current FV3 code. For divergent free flows, our
scheme is slightly better. We give some final thoughts and future work perspectives in
Chapter 7.
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Chapter 2

One-dimensional finite-volume
methods

The aim of this Chapter is to provide a detailed description of one-dimensional (1D)
finite-volume (FV) schemes within a Semi-Lagrangian (SL) framework, specifically applied
to the 1D advection equation. These schemes are also known as flux-form Semi-Lagrangian
schemes, and they allow for time steps beyond the Courant-Friedrichs-Lewy (CFL) condi-
tion while preserving the total mass. FV-SL schemes have been explored in the literature
since the work of LeVeque (1985), which extended the finite-volume schemes from Godunov
(1959) to accommodate larger time steps. This approach has been further investigated
in the literature (cf. e.g. Leonard et al. (1996) and Lin and Rood (1996)). We are going to
focus on the linear advection equation because in FV3 the horizontal dynamics are solved
using flux advection operators to compute the fluid density, absolute vorticity, and the
kinetic energy (Harris & Lin, 2013; Harris et al., 2021; Lin & Rood, 1997; Putman, 2007).
The boundary conditions are assumed to be periodic for simplicity.

To introduce the FV-SL schemes, we begin by discretizing the spatial and temporal
domains into uniform grids. Subsequently, the FV-SL schemes involve three steps. The first
step involves computing the departure points of the spatial grid edges. The second step,
known as reconstruction, utilizes the grid cell average values to determine a piecewise
function within each cell. This piecewise function approximates the values of the advected
quantity and ensures the preservation of its local mass within each grid cell. The third step
involves updating the fluxes at the grid edges by integrating the reconstruction function
over a domain that extends from the departure point of the grid edge to the grid edge
itself.

The first step of FV-SL schemes can be accomplished by integrating an ordinary
differential equation (ODE) backward in time. The second step is performed using the
Piecewise-Parabolic Method (PPM) proposed by Colella and Woodward (1984). As the
name suggests, PPM employs piecewise-parabolic functions. The third and final step is
computed easily, as the reconstruction functions consist of parabolas that preserve the
local mass.

It is worth noting that the reconstruction function can be constructed using functions
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other than parabolas. In fact, PPM can be seen as an extension of the Piecewise-Linear
method proposed by Van Leer (1977), which, in turn, was inspired by the Piecewise-
Constant method introduced by Godunov (1959). Additionally, other schemes inspired
by PPM have been proposed in the literature utilizing higher-order polynomials, such
as quartic polynomials (White & Adcroft, 2008). For a comprehensive review of general
piecewise-polynomial reconstruction, we recommend referring to the technical report by
Engwirda and Kelley (2016), Lauritzen et al. (2011), and the references therein.

The PPM approach has become popular in the literature for gas dynamics simulations,
astrophysical phenomena modeling (Woodward, 1986), and later on atmospheric simula-
tions (Carpenter et al., 1990). Indeed, PPM has been implemented in the FV3 dynamical
core on its latitude-longitude grid (Lin, 2004) and cubed-sphere (Putman & Lin, 2007)
versions. Although many other shapes for the basis functions and higher-order schemes
are available in the literature, Harris et al. (2021) points out that the PPM scheme suits the
needs of FV3 well. It is a flexible method that can be modified to ensure low diffusivity or
shape preservation, for example. Additionally, a finite-volume numerical method usually
requires monotonicity constraints, which, according to Godunov’s order barrier theorem
(Wesseling, 2001), limits the order of convergence to at most 1. Therefore, a higher-order
scheme needs to strike a well-balanced trade-off between increasing computational cost
and potential benefits.

This Chapter begins with a basic review of one-dimensional advection equation in
the integral form in Section 2.1. In Section 2.2, we establish the framework for general
one-dimensional finite-volume Semi-Lagrangian schemes. Section 2.3 presents methods for
computing the departure point. The PPM reconstruction is described in Section 2.4, while
Subsection 2.4.2 introduces a different approach to ensure the monotonicity of parabolas.
Section 2.5 focuses on the description and investigation of the PPM flux computation.
Section 2.6 presents numerical results using the PPM scheme for the advection equation.
Finally, Section 2.7 presents some concluding remarks. The application of PPM to solve
two-dimensional problems will be addressed in Chapter 3.

2.1 One-dimensional advection equation in the
integral form

2.1.1 Notation

Before introducing the FV-SL schemes, let us establish some notation by introducing
the concepts of a Δ𝑥-grid, a Δ𝑡-temporal grid, and the (Δ𝑥, Δ𝑡, 𝜆)-discretization, as well as
the concept of grid function/winds. In this Chapter, we will use the notation Ω = [𝑎, 𝑏]
to represent the interval under consideration, and 𝜈 to represent a non-negative integer
indicating the number of ghost cell layers in each boundary. We also use the notations
ℝ𝑁
𝜈 ∶= ℝ𝑁+2𝜈 and ℝ𝑁+1

𝜈 ∶= ℝ𝑁+1+2𝜈.

Definition 2.1 (Δ𝑥-grid). For a given interval Ω and a positive real number Δ𝑥 such that
Δ𝑥 = (𝑏 − 𝑎)/𝑁 for some positive integer 𝑁 , we say that ΩΔ𝑥 = {𝑋𝑖}𝑁+𝜈

𝑖=−𝜈+1 is a Δ𝑥-grid for Ω
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if

𝑋𝑖 = [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] = [𝑎 + (𝑖 − 1)Δ𝑥, 𝑎 + 𝑖Δ𝑥],

and Δ𝑥 = 𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2
. Each 𝑋𝑖 is referred to as a control volume or cell, and 𝑥𝑖− 1

2
and 𝑥𝑖+ 1

2
are

the edges of the control volume 𝑋𝑖. The cell centroid is defined by

𝑥𝑖 =
1
2
(𝑥𝑖+ 1

2
+ 𝑥𝑖− 1

2
), ∀𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈,

and Δ𝑥 is the cell length.

Remark 2.1. If 1 ≤ 𝑖 ≤ 𝑁 , we refer to 𝑖 as an interior index; otherwise, 𝑖 is considered a ghost
cell index and we say the 𝑋𝑖 is a ghost cell.

x1 x2 x3 x4

= a = b
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2
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2
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x−2+ 1
2

x6+ 1
2
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2

Figure 2.1: Illustration of a Δ𝑥-grid with 𝑁 = 4 cells in its interior (in black) and 𝜈 = 2 ghost cell
layers (in gray). The edges are denoted by squares and the cell centroids are denoted using circles.

Definition 2.2 (Δ𝑡-temporal grid). For a given interval [0, 𝑇 ] and a positive real number Δ𝑡
such that Δ𝑡 = 𝑇/𝑁𝑇 for some positive integer 𝑁𝑇 , we say that 𝑇Δ𝑇 = {𝑇𝑛}𝑁𝑇𝑛=0 a Δ𝑡-temporal
grid for [0, 𝑇 ] if

𝑇𝑛 = [𝑡𝑛, 𝑡𝑛+1], 𝑡𝑛 = 𝑛Δ𝑡, Δ𝑡 =
𝑇
𝑁𝑇

, ∀𝑛 = 0, … , 𝑁𝑇 .

In this context, we also define 𝑡𝑛+ 1
2 = 𝑡𝑛+𝑡𝑛+1

2 .

Definition 2.3 ((Δ𝑥, Δ𝑡, 𝜆)-discretization). Given Ω × [0, 𝑇 ] and positive real numbers Δ𝑥
and Δ𝑡, we say that (ΩΔ𝑥 , 𝑇Δ𝑡) is a (Δ𝑥, Δ𝑡, 𝜆)-discretization of Ω × [0, 𝑇 ] if ΩΔ𝑥 is a Δ𝑥-grid
for Ω, 𝑇Δ𝑡 is a Δ𝑡-temporal grid for [0, 𝑇 ], and Δ𝑡

Δ𝑥 = 𝜆.

Remark 2.2. Whenever we refer to a Δ𝑥-grid, a Δ𝑡-temporal grid, or a (Δ𝑥, Δ𝑡, 𝜆)-
discretization, 𝑋𝑖, 𝑁 , 𝑡𝑛, and 𝑁𝑇 are assumed to be implicitly defined.

Next, we introduce the definitions of grid functions at cell centroids and edges.

Definition 2.4 (Δ𝑥-grid function). For a Δ𝑥-grid, we say that 𝑄 is a Δ𝑥-grid function if
𝑄 = (𝑄−𝜈+1, … , 𝑄𝑁+𝜈) ∈ ℝ𝑁

𝜈 .

Definition 2.5 (Δ𝑥-grid wind). For a Δ𝑥-grid, we say that 𝑢 is a Δ𝑥-grid wind if 𝑢 =
(𝑢−𝜈+ 1

2
, … , 𝑢𝑁+𝜈+ 1

2
) ∈ ℝ𝑁+1

𝜈 .

The definition of a Δ𝑥-grid wind is based on the Arakawa grids (Arakawa & Lamb,
1977). Considering functions 𝑞, 𝑢 ∶ Ω × [0, 𝑇 ] → ℝ and a (Δ𝑥, Δ𝑡, 𝜆)-discretization of
Ω × [0, 𝑇 ], we introduce the grid functions 𝑞𝑛 ∈ ℝ𝑁

𝜈 and 𝑢𝑛 ∈ ℝ𝑁+1
𝜈 . Here, 𝑞𝑛𝑖 = 𝑞(𝑥𝑖, 𝑡𝑛) and

𝑢𝑛𝑖+ 1
2
= 𝑢(𝑥𝑖+ 1

2
, 𝑡𝑛). These grid functions represent the discrete values of 𝑞 and 𝑢 at the cell

centroids and edges, respectively, for each time level 𝑡𝑛 (Figure 2.2).
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In this Chapter, our focus lies on periodic grid functions. We define a Δ𝑥-grid function
𝑄 as periodic if it satisfies the following conditions:

𝑄𝑖 = 𝑄𝑁+𝑖, 𝑖 = −𝜈 + 1,… , 0,
𝑄𝑖 = 𝑄𝑖−𝑁 , 𝑖 = 𝑁 + 1,… , 𝑁 + 𝜈.

Similarly, we define a Δ𝑥-grid wind as periodic if it meets the following requirements:

𝑢𝑖− 1
2
= 𝑢𝑁+𝑖+ 1

2
, 𝑖 = −𝜈, … , −1,

𝑢𝑖+ 1
2
= 𝑢𝑖+ 1

2−𝑁
, 𝑖 = 𝑁 + 1,… , 𝑁 + 𝜈.

We use the notation ℙ𝑁𝜈 and ℙ𝑁+1
𝜈 to represent the spaces of periodic Δ𝑥-grid functions

and winds, respectively.
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Figure 2.2: Illustration of Δ𝑥-grid function 𝑄 (black circles) and a Δ𝑥-grid wind 𝑢 (blue squares) and
its ghost cell values (in gray) assuming periodicity.

Given 𝑄 ∈ ℙ𝑁𝜈 , we define the 𝑝-norm as

‖𝑄‖𝑝,Δ𝑥 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(∑𝑁
𝑖=1 |𝑄𝑖|𝑝)

1
𝑝

if 1 ≤ 𝑝 < ∞,

max𝑖=1,…,𝑁 |𝑄𝑖| if 𝑝 = ∞,
(2.1)

which is indeed a norm for periodic grid functions. Using a similar notation as in Engwirda
and Kelley (2016), we define the stencil and a grid function evaluated on a stencil as
follows.

Definition 2.6 (Stencil). For a Δ𝑥-grid, and each 𝑖 = 0, … , 𝑁 , we define a stencil as a set of
the form 𝑖+ 1

2
= {𝑖 − 𝑟 + 1, … , 𝑖 − 1, 𝑖, 𝑖 + 1, … , 𝑖 + 𝑠} ⊂ {−𝜈 + 1,… , 𝑁 + 𝜈}.

Definition 2.7 (Grid function restricted to a stencil). For a Δ𝑥-grid, a stencil 𝑖+ 1
2
, and a

Δ𝑥-grid function 𝑄, we define 𝑄(𝑖+ 1
2
) = (𝑄𝑘)𝑘∈𝑖+ 1

2
.

These definitions provide the necessary notation for describing grid functions and
their evaluations on stencils. To achieve a more compact notation in some situations, we
introduce the centered difference notation:

𝛿𝑥𝑔(𝑥𝑖, 𝑡) = 𝑔(𝑥𝑖+ 1
2
, 𝑡) − 𝑔(𝑥𝑖− 1

2
, 𝑡), (2.2)

for any function 𝑔 ∶ Ω × [0, 𝑇 ] → ℝ. Additionally, we introduce the average value of 𝑞 in
the 𝑖-th control volume at time 𝑡, denoted as 𝑄𝑖(𝑡), defined by:

𝑄𝑖(𝑡) =
1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑞(𝑥, 𝑡) 𝑑𝑥. (2.3)

Moreover, we define the Δ𝑥-grid function of average values as 𝑄(𝑡) = (𝑄𝑖(𝑡))𝑁+𝜈
𝑖=−𝜈+1. Here,
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𝑄𝑖(𝑡) represents the average value of 𝑞 in the 𝑖-th control volume at time 𝑡.

For the consideration of periodic boundary conditions, we can define spaces of periodic
functions over the interval Ω as follows:

𝑃(Ω) = {𝑞 ∶ ℝ × [0, +∞[→ ℝ ∶ 𝑞(𝑥 + 𝑏 − 𝑎, 𝑡) = 𝑞(𝑥, 𝑡), ∀𝑥 ∈ ℝ, 𝑡 ≥ 0}.

Similarly, the space of 𝑘-times periodically differentiable functions 𝑘
𝑃(Ω) can be defined

as:

𝑘
𝑃(Ω) = 𝑃(Ω) ∩ 𝑘(ℝ × [0,∞[),

where 𝑘(ℝ×[0, +∞[) denotes the space of functions that are 𝑘 times continuously differen-
tiable in both the spatial and temporal variables. In summary, 𝑃(Ω) represents the space
of periodic functions, and 𝑘

𝑃(Ω) represents the space of 𝑘-times periodically differentiable
functions over the interval Ω subject to periodic boundary conditions.

2.1.2 The 1D advection equation

In this Section, we will derive the integral form of the 1D advection equation with
periodic boundary conditions over the interval Ω. What is going to be presented here
follows LeVeque (1990, 2002) closely. The conservative advection equation with periodic
boundary conditions is given by the following PDE:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

[𝜕𝑡𝑞 + 𝜕𝑥(𝑢𝑞)](𝑥, 𝑡) = 0, ∀(𝑥, 𝑡) ∈ ℝ×]0, +∞[,
𝑞(𝑎, 𝑡) = 𝑞(𝑏, 𝑡), ∀𝑡 ≥ 0,
𝑞0(𝑥) = 𝑞(𝑥, 0), ∀𝑥 ∈ Ω.

(2.4)

Here, 𝑞 ∈ 1
𝑃(Ω) represents the advected quantity density (Zerroukat et al., 2006), and

𝑢 ∈ 1
𝑃(Ω) represents the velocity or wind. We will focus on Equation (2.4) over the domain

𝐷 = Ω × [0, 𝑇 ], where 𝑇 > 0 is a finite time. A strong or classical solution to the advection
equation is defined as a function 𝑞 ∈ 1

𝑃(Ω) and satisfies Equation (2.4). In order to deduce
the integral form of Equation (2.4), we consider [𝑥1, 𝑥2] × [𝑡1, 𝑡2] ⊂ 𝐷. Integrating Equation
(2.4) over [𝑥1, 𝑥2], we obtain:

𝑑
𝑑𝑡 ∫

𝑥2

𝑥1
𝑞(𝑥, 𝑡) 𝑑𝑥 = −((𝑢𝑞)(𝑥2, 𝑡) − (𝑢𝑞)(𝑥1, 𝑡)), (2.5)

and integrating Equation (2.5) over [𝑡1, 𝑡2], we get

∫
𝑥2

𝑥1
𝑞(𝑥, 𝑡2) 𝑑𝑥 = ∫

𝑥2

𝑥1
𝑞(𝑥, 𝑡1) − (∫

𝑡2

𝑡1
(𝑢𝑞)(𝑥2, 𝑡) 𝑑𝑡 − ∫

𝑡2

𝑡1
(𝑢𝑞)(𝑥1, 𝑡) 𝑑𝑡). (2.6)

The presented problem, Problem 2.1, aims to find a solution, called weak solution, to the
advection equation in its integral form, considering the given initial condition (IC) 𝑞0 and
velocity function 𝑢.

Problem 2.1. Given an IC 𝑞0 and a velocity function 𝑢 we would like to find a weak solution
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𝑞 of the advection equation in the integral form:

∫
𝑥2

𝑥1
𝑞(𝑥, 𝑡2) 𝑑𝑥 = ∫

𝑥2

𝑥1
𝑞(𝑥, 𝑡1) 𝑑𝑥 + ∫

𝑡2

𝑡1
(𝑢𝑞)(𝑥1, 𝑡) 𝑑𝑡 − ∫

𝑡2

𝑡1
(𝑢𝑞)(𝑥2, 𝑡) 𝑑𝑡,

∀[𝑥1, 𝑥2] × [𝑡1, 𝑡2] ⊂ Ω × [0, 𝑇 ], and 𝑞(𝑥, 0) = 𝑞0(𝑥), ∀𝑥 ∈ Ω, 𝑞(𝑎, 𝑡) = 𝑞(𝑏, 𝑡), ∀𝑡 ∈ [0, 𝑇 ].

We point out that, for Problem 2.1, the total mass in Ω at time 𝑡 defined by:

𝑀[𝑎,𝑏](𝑡) = ∫
𝑏

𝑎
𝑞(𝑥, 𝑡) 𝑑𝑥,

remains constant over time, i.e.,

𝑀[𝑎,𝑏](𝑡) = 𝑀[𝑎,𝑏](0), ∀𝑡 ∈ [0, 𝑇 ],

since we are assuming periodic boundary conditions. This conservation of total mass prop-
erty is highly desirable for numerical schemes aiming to approximate general conservation
law solutions accurately.

Applying the steps from Equation (2.4) to Equation (2.6) in reverse order, one can
verify that if 𝑞 is a weak solution and 𝑞 ∈ 1

𝑃(Ω), then it satisfies Equation (2.4). Therefore,
Equation (2.4) and Problem (2.1) are equivalent when 𝑞 ∈ 1

𝑃(Ω). However, Problem (2.1)
can be formulated for functions that are not 1 and have discontinuities. In fact, Problem
(2.1) only requires that 𝑞 and 𝑢𝑞 are locally integrable.

It is worth noting that Equation (2.6) holds for all 𝑥1, 𝑥2, 𝑡1, and 𝑡2 such that [𝑥1, 𝑥2] ×
[𝑡1, 𝑡2] ⊂ 𝐷. Therefore, let us consider a (Δ𝑥, Δ𝑡, 𝜆)-discretization of 𝐷 and rewrite Equation
(2.6) in terms of this discretization. By replacing 𝑡1, 𝑡2, 𝑥1, and 𝑥2 with 𝑡𝑛, 𝑡𝑛+1, 𝑥𝑖− 1

2
, and 𝑥𝑖+ 1

2
,

respectively, in Equation (2.6), we obtain:

𝑄𝑖(𝑡𝑛+1) = 𝑄𝑖(𝑡𝑛) −
1
Δ𝑥(∫

𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖+ 1

2
, 𝑡) 𝑑𝑡 − ∫

𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖− 1

2
, 𝑡) 𝑑𝑡),

∀𝑖 = 1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 − 1,
(2.7)

where
𝑄𝑖(𝑡) =

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑞(𝑥, 𝑡) 𝑑𝑥. (2.8)

To achieve a more compact notation, we use the centered difference notation and then
Equation (2.7) can be rewritten as:

𝑄𝑖(𝑡𝑛+1) = 𝑄𝑖(𝑡𝑛) −
1
Δ𝑥

𝛿𝑥(∫
𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖, 𝑡) 𝑑𝑡), ∀𝑖 = 1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 −1. (2.9)

Now we can define a discretized version of Problem 2.1 as Problem 2.2.

Problem 2.2. Let us consider the framework of Problem 2.1 and a (Δ𝑥, Δ𝑡, 𝜆)-discretization
of Ω × [0, 𝑇 ]. Since we are operating within the framework of Problem 2.1, the following
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relationship holds:

𝑄𝑖(𝑡𝑛+1) = 𝑄𝑖(𝑡𝑛) − 𝜆𝛿𝑥(
1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖, 𝑡) 𝑑𝑡), ∀𝑖 = 1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 − 1,

(2.10)
where 𝑄𝑖(𝑡) = 1

Δ𝑥 ∫
𝑥𝑖+ 1

2
𝑥𝑖− 1

2

𝑞(𝑥, 𝑡) 𝑑𝑥 . Our objective now is to determine the values 𝑄𝑖(𝑡𝑛), ∀𝑖 =

1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 − 1, given the initial values 𝑄𝑖(0), ∀𝑖 = 1, …𝑁 . In other words, we aim
to find the average values of 𝑞 in each control volume 𝑋𝑖 at the specified time instances.

It is important to note that no approximations have been made in problems (2.1) and
(2.2). In Equation (2.10), we divided and multiplied by Δ𝑡 to interpret 1

Δ𝑡 ∫
𝑡𝑛+1

𝑡𝑛 (𝑢𝑞)(𝑥𝑖± 1
2
, 𝑡) 𝑑𝑡

as a time-averaged flux. This interpretation is useful for deriving finite-volume
schemes.

In Problem 2.2, we need to approximate the time-averaged flux at the cell edges 𝑥𝑖± 1
2

to
derive a finite-volume scheme. This flux, in principle, requires knowledge of 𝑞 over the
entire interval [𝑡𝑛, 𝑡𝑛+1]. To overcome this, we can express the temporal integral as a spatial
integral at time 𝑡𝑛. This approach avoids the need for information about 𝑞 throughout the
entire interval [𝑡𝑛, 𝑡𝑛+1]. Furthermore, this spatial integral domain is closely related to the
definition of the departure point.

To introduce the definition of departure point, for each 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1], we consider the
following Cauchy problem backward in time:

{
𝜕𝑡𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠) = 𝑢(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠), 𝑡), 𝑡 ∈ [𝑡𝑛, 𝑠]

𝑥𝑑𝑖+ 1
2
(𝑠, 𝑠) = 𝑥𝑖+ 1

2
.

(2.11)

The point 𝑥𝑑𝑖+ 1
2
(𝑡𝑛, 𝑠) is called departure point at time 𝑡𝑛 of the point 𝑥𝑖+ 1

2
at time 𝑠. In Figure

2.3 we illustrate the departure point idea.

xi−1
2

xi+1
2

xi+3
2

tn

xi−1
2

xi+1
2

xi+3
2

tn+1

xd
i+1

2
(tn, tn+1) xd

i+3
2
(tn, tn+1)

Figure 2.3: Illustration of the departure point of the cell edges from time 𝑡𝑛+1 to 𝑡𝑛.
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Integrating Equation (2.11) over the interval [𝑡, 𝑠], we get:

𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠) = 𝑥𝑖+ 1

2
− ∫

𝑠

𝑡
𝑢(𝑥𝑑𝑖+ 1

2
(𝜃, 𝑠), 𝜃) 𝑑𝜃. (2.12)

In the following Proposition, we show how the time-averaged flux is related to a spatial
integral over a interval depending on departure points.

Proposition 2.1. Assume the framework of Problem 2.2. If 𝑞 and 𝑢 are 1 functions, then:

∫
𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖+ 1

2
, 𝑠) 𝑑𝑠 = ∫

𝑥𝑖+ 1
2

𝑥𝑑
𝑖+ 1

2
(𝑡𝑛,𝑡𝑛+1)

𝑞(𝑥, 𝑡𝑛) 𝑑𝑥. (2.13)

Proof. Using the Leibniz rule for integration (Theorem A.3 with 𝑓 (𝑠, 𝜃) = 𝑢(𝑥𝑑𝑖+ 1
2
(𝜃, 𝑠), 𝜃)),

in Equation (2.12), it follows that:

𝜕𝑠𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠) = −(𝑢(𝑥𝑖+

1
2
, 𝑠) + ∫

𝑠

𝑡
𝜕𝑠𝑢(𝑥𝑑𝑖+ 1

2
(𝜃, 𝑠), 𝜃) 𝑑𝜃)

= −𝑢(𝑥𝑖+ 1
2
, 𝑠) − ∫

𝑠

𝑡
𝜕𝑥𝑢(𝑥𝑑𝑖+ 1

2
(𝜃, 𝑠), 𝜃)𝜕𝑠𝑥𝑑𝑖+ 1

2
(𝜃, 𝑠) 𝑑𝜃.

(2.14)

Taking the derivative with respect to 𝑡 of Equation (2.14), we have:

𝜕𝑡𝜕𝑠𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠) = 𝜕𝑥𝑢(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠), 𝑡)𝜕𝑠𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠). (2.15)

Using standard ODE’s techniques, we get that 𝑥𝑑𝑖+ 1
2

that solves Equations (2.14) and (2.15)
is given by:

𝜕𝑠𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠) = − exp(∫

𝑠

𝑡
𝜕𝑥𝑢(𝑥𝑑𝑖+ 1

2
(𝜃, 𝑠), 𝜃) 𝑑𝜃)𝑢(𝑥𝑖+

1
2
, 𝑠). (2.16)

Computing 𝑞 on the trajectory given by 𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠) and taking its time derivative, we obtain:

𝑑
𝑑𝑡
𝑞(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠), 𝑡) = 𝜕𝑡𝑞(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠), 𝑡) + (𝑢𝜕𝑥𝑞)(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠), 𝑡)

= −𝜕𝑥𝑢(𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠), 𝑡)𝑞(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠), 𝑡),

(2.17)

where we used that 𝑞 satisfies the linear advection equation on its differential (2.4) form
and that 𝑥𝑑𝑖+ 1

2
(𝑡, 𝑠) solves Equation (2.11). Using again standard ODE techniques, we get

that 𝑞 that solves Equation (2.17) is given by:

𝑞(𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠), 𝑡) = exp( − ∫

𝑠

𝑡
𝜕𝑥𝑢(𝑥𝑑𝑖+ 1

2
(𝜃, 𝑠), 𝜃) 𝑑𝜃)𝑞(𝑥𝑖+

1
2
, 𝑠). (2.18)

Notice that if 𝑢 does not depend on 𝑥 , then 𝑞 is constant along the trajectory 𝑥𝑑𝑖+ 1
2
(𝑡, 𝑠).

Let us consider the mapping 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1] → 𝑥𝑑𝑖+ 1
2
(𝑡𝑛, 𝑠). Integrating 𝑞 over all departure
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points at time 𝑡𝑛 from 𝑥𝑖+ 1
2

at time 𝑠, we have

∫
𝑥𝑑
𝑖+ 1

2
(𝑡𝑛,𝑡𝑛+1)

𝑥𝑑
𝑖+ 1

2
(𝑡𝑛,𝑡𝑛)=𝑥𝑖+ 1

2

𝑞(𝑥, 𝑡𝑛) 𝑑𝑥 = ∫
𝑡𝑛+1

𝑡𝑛
𝑞(𝑥𝑑𝑖+ 1

2
(𝑡𝑛, 𝑠), 𝑡𝑛)𝜕𝑠𝑥𝑑𝑖+ 1

2
(𝑡𝑛, 𝑠) 𝑑𝑠, (2.19)

where we are just using the variable change integration formula. Then, it follows from
Equations (2.16) and (2.18) with 𝑡 = 𝑡𝑛 that:

∫
𝑥𝑑
𝑖+ 1

2
(𝑡𝑛,𝑡𝑛+1)

𝑥𝑖+ 1
2

𝑞(𝑥, 𝑡𝑛) 𝑑𝑥 = −∫
𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖+ 1

2
, 𝑠) 𝑑𝑠, (2.20)

which is the desired formula.

With the aid of Proposition 2.1, we can rewrite Problem 2.2 in terms of the departure
point, avoiding the need for knowledge about 𝑞 over the entire interval [𝑡𝑛, 𝑡𝑛+1]. This is
described in Problem 2.3:

Problem 2.3. Assume the framework of Problem 2.2. It follows from Proposition 2.1 that:

𝑄𝑖(𝑡𝑛+1) = 𝑄𝑖(𝑡𝑛) − 𝜆(
1
Δ𝑡 ∫

𝑥𝑖+ 1
2

𝑥𝑑
𝑖+ 1

2
(𝑡𝑛,𝑡𝑛+1)

𝑞(𝑥, 𝑡𝑛) 𝑑𝑥 −
1
Δ𝑡 ∫

𝑥𝑖− 1
2

𝑥𝑑
𝑖− 1

2
(𝑡𝑛,𝑡𝑛+1)

𝑞(𝑥, 𝑡𝑛) 𝑑𝑥),

∀𝑖 = 1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 − 1,
(2.21)

where 𝑄𝑖(𝑡) = 1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑞(𝑥, 𝑡) 𝑑𝑥 . Our problem now consists of finding the values 𝑄𝑖(𝑡𝑛),

∀𝑖 = 1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 − 1, given the initial values 𝑄𝑖(0), ∀𝑖 = 1, …𝑁 . In other words,
we would like to find the average values of 𝑞 in each control volume 𝑋𝑖 at the considered time
instants.

At each time step 𝑡𝑛, we compute the values of 𝑄𝑖(𝑡𝑛+1) based on 𝑄𝑖(𝑡𝑛) and the integrals
of 𝑞(𝑥, 𝑡𝑛) over specific intervals. These intervals are defined by the departure points
𝑥𝑑𝑖+ 1

2
(𝑡𝑛, 𝑡𝑛+1) and 𝑥𝑑𝑖− 1

2
(𝑡𝑛, 𝑡𝑛+1). To perform the computations, we need to determine the

departure points from the edges of all control volumes and calculate the required integrals.
This idea serves as the motivation for defining finite-volume Semi-Lagrangian schemes.
These schemes involve estimating the departure points and reconstructing the function
𝑞 at time 𝑡𝑛 using its average values 𝑄𝑖(𝑡𝑛), which enables us to compute the necessary
integrals.

2.2 The finite-volume Semi-Lagrangian approach

Finally, we define the 1D FV-SL scheme problem as follows in Problem 2.3.

Problem 2.4 (1D FV-SL scheme). Assume the framework defined in Problem 2.3. The finite-
volume Semi-Lagrangian approach of Problem 2.3 consists of finding a scheme of the form:

𝑄𝑛+1
𝑖 = 𝑄𝑛

𝑖 − 𝜆(𝐹 𝑛𝑖+ 1
2
− 𝐹 𝑛𝑖− 1

2
), ∀𝑖 = 1, … , 𝑁 , ∀𝑛 = 0,… , 𝑁𝑇 − 1, (2.22)
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where 𝑄𝑛 ∈ ℙ𝑁𝜈 is intended to be an approximation of 𝑄(𝑡𝑛) ∈ ℙ𝑁𝜈 in some sense. We define
𝑄0
𝑖 = 𝑄𝑖(0) or 𝑄0

𝑖 = 𝑞0𝑖 . The terms 𝐹 𝑛𝑖± 1
2

are known as numerical flux and are given by

𝐹 𝑛𝑖± 1
2
=

1
Δ𝑡 ∫

𝑥𝑖± 1
2

𝑥̃𝑛
𝑖± 1

2

𝑞̃(𝑥; 𝑄𝑛) 𝑑𝑥, (2.23)

where 𝑥̃𝑛𝑖± 1
2

is an estimate of the departure point 𝑥𝑑𝑖− 1
2
(𝑡𝑛, 𝑡𝑛+1), and 𝑞̃ is a reconstruction function

for 𝑞 built with the values 𝑄𝑛. Thus, 𝐹 𝑛𝑖± 1
2

approximates 1
Δ𝑡 ∫

𝑥𝑖± 1
2

𝑥𝑑
𝑖± 1

2
(𝑡𝑛,𝑡𝑛+1) 𝑞(𝑥, 𝑡

𝑛) 𝑑𝑥 .

For a 1D FV-SL the discrete total mass at the time-step 𝑛 is given by

𝑀𝑛 = Δ𝑥
𝑁

∑
𝑖=1

𝑄𝑛
𝑖 . (2.24)

Therefore, the discrete total mass is constant for a 1D-FV scheme, which follows from a
straightforward computation:

𝑀𝑛+1 = Δ𝑥
𝑁

∑
𝑖=1

𝑄𝑛+1
𝑖 = 𝑀𝑛 − Δ𝑡

𝑁

∑
𝑖=1

(𝐹 𝑛𝑖+ 1
2
− 𝐹 𝑛𝑖− 1

2
) = 𝑀𝑛 − Δ𝑡(𝐹 𝑛𝑁+ 1

2
− 𝐹 𝑛1

2
) = 𝑀𝑛,

where we are using that 𝐹 𝑛𝑁+ 1
2
= 𝐹 𝑛1

2
, since we are assuming periodic boundary condi-

tions.

We would like to highlight an important relationship between the average values of
𝑞 and its values at the cell centroids. In Problem 2.4, we mentioned that the IC can be
represented as 𝑞0𝑖 instead of 𝑄𝑖(0). Moreover, when analyzing the convergence of a FV-SL
scheme, it is useful to compare 𝑄𝑛

𝑖 with 𝑞𝑛𝑖 since computing 𝑄𝑖(𝑡𝑛) requires evaluating
an analytical integral, which can be challenging in certain cases. In Proposition 2.2, we
provide a simple proof that 𝑞𝑛𝑖 approximates 𝑄𝑖(𝑡𝑛) with second-order error when 𝑞 is twice
continuously differentiable.

Proposition 2.2. If 𝑞 ∈ 2
𝑃(Ω), then 𝑄𝑖(𝑡𝑛) − 𝑞𝑛𝑖 = 𝐶1Δ𝑥2, where 𝐶1 = 1

24
𝜕2𝑞
𝜕𝑥2 (𝜂, 𝑡

𝑛), 𝜂 ∈ 𝑋𝑖.

Proof. Just apply Theorem A.4 for the function 𝑞(𝑥, 𝑡𝑛).

Hence, 1D FV-SL schemes may be conceptualized as schemes that update the centroid
values. The Problem of the convergence of 1D FV-SL schemes is addressed in Section
A.3. Now we are going to address the problem of the departure point estimation and the
reconstruction problem.

2.3 Departure point computation

Before presenting estimates for the departure point, let us recall the definition of the
CFL number.
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Definition 2.8. For Problem 2.4, the CFL number at an edge 𝑥𝑖+ 1
2

and at a time level 𝑡𝑛 is
defined by

𝑐𝑛𝑖+ 1
2
=

Δ𝑡
Δ𝑥

𝑢𝑛𝑖+ 1
2
. (2.25)

The CFL number is the maximum of the values 𝑐𝑛𝑖+ 1
2
. The CFL number at edges and at

time levels 𝑛 + 1
2 is defined in the same manner. The problem of estimating the departure

point is very common in Semi-Lagrangian schemes, which are quite popular in atmospheric
modeling. For a review of departure point calculation methods, we refer to Tumolo (2011,
Chapter 3) and the references therein. There are different approaches to compute the
departure point, such as integrating the ODE from Equation (2.1) using different time
integrators (Durran, 2011) backward in time. The Runge-Kutta methods are a possible
choice to compute the departure point (cf. e.g. Guo et al. (2014), Lu et al. (2022)).

Equation (2.12) enables us to compute or estimate the departure point. For instance, if
𝑢 is constant, the departure point at time 𝑡𝑛 for the point 𝑥𝑖+ 1

2
at time 𝑡𝑛+1 is given by:

𝑥𝑑𝑖+ 1
2
(𝑡𝑛, 𝑡𝑛+1) = 𝑥𝑖+ 1

2
− 𝑢Δ𝑡. (2.26)

In general, the estimated departure point, denoted by 𝑥̃𝑛𝑖+ 1
2
, takes the form:

𝑥̃𝑛𝑖+ 1
2
= 𝑥𝑖+ 1

2
− 𝑢̃𝑛𝑖+ 1

2
Δ𝑡, (2.27)

where 𝑢̃𝑛𝑖+ 1
2

represents the time-averaged wind and approximates:

1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛
𝑢(𝑥𝑑𝑖+ 1

2
(𝜃, 𝑡𝑛+1), 𝜃) 𝑑𝜃. (2.28)

The departure point 𝑥̃𝑛𝑖+ 1
2

is said to be 𝑝-order accurate if:

𝑥𝑑𝑖+ 1
2
(𝑡𝑛, 𝑡𝑛+1) − 𝑥̃𝑛𝑖+ 1

2
= (Δ𝑡𝑝). (2.29)

2.3.1 DP1 scheme
One possible way of estimating the time-averaged wind is by using:

𝑢̃𝑛𝑖+ 1
2
= 𝑢𝑛+

1
2

𝑖+ 1
2
, (2.30)

as in FV3 papers (Lin & Rood, 1996; Putman & Lin, 2007). The idea behind DP1 is illustrated
in Figure 2.4.

In this case, the time-averaged CFL is given by:

𝑐𝑛𝑖+ 1
2
= 𝑐𝑛+

1
2

𝑖+ 1
2
. (2.31)

For simplicity, in this Chapter, we shall assume that the wind is known for all time instants
needed. This scheme will be referred to as DP1. In FV3, the wind is at time level 𝑛 + 1

2 is
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Figure 2.4: Illustration of the scheme DP1 for computing the departure point at time level 𝑛 emanating
from 𝑥𝑖+ 1

2
(blue square) at time level 𝑛 + 1, assuming 𝑢𝑛+

1
2

𝑖+ 1
2
> 0. The winds used are denoted by blue

circles. The estimated departure point 𝑥̃𝑛𝑖+ 1
2

is illustrated by a red circle.

obtained by solving the horizontal dynamics on a C-grid as an intermediate step (Lin, 2004;
Lin & Rood, 1997). Our objective now is to determine the value of 𝑝 in Equation (2.29) in
the following proposition. It is useful to introduce the concept of a material derivative
beforehand:

𝐷ℎ
𝐷𝑡

=
𝜕ℎ
𝜕𝑡

+ 𝑢
𝜕ℎ
𝜕𝑥
,

where ℎ is a function belonging to 1.

Proposition 2.3. If 𝑢 ∈ 1 and the time-averaged wind is computed using Equation (2.30),
then the departure point from Equation (2.27) satisfies:

𝑥𝑑𝑖+ 1
2
(𝑡𝑛, 𝑡𝑛+1) − 𝑥̃𝑛𝑖+ 1

2
= (Δ𝑡2). (2.32)

Proof. Using the midpoint rule (Theorem A.4) for the function 𝑓 (𝑡) = 𝑢(𝑥𝑑𝑖+ 1
2
(𝑡, 𝑡𝑛+1), 𝑡) in

Equation (2.12), we obtain:

𝑥𝑑𝑖+ 1
2
(𝑡𝑛, 𝑡𝑛+1) = 𝑥𝑖+ 1

2
− 𝑢(𝑥𝑑𝑖+ 1

2
(𝑡𝑛+

1
2 , 𝑡𝑛+1), 𝑡𝑛+

1
2 )Δ𝑡 −

1
24
𝐷2𝑢
𝐷𝑡2 (

𝑥𝑑𝑖+ 1
2
(𝜃1, 𝑡𝑛+1), 𝜃1)Δ𝑡2, (2.33)

for 𝜃1 ∈ [𝑡𝑛, 𝑡𝑛+1]. Now observe that, from the intermediate value theorem for integrals and
Equation (2.12), we have

𝑥𝑑𝑖+ 1
2
(𝑡𝑛+

1
2 , 𝑡𝑛+1) = 𝑥𝑖+ 1

2
−
Δ𝑡
2
𝑢(𝑥𝑑𝑖+ 1

2
(𝜃2, 𝑡𝑛+1), 𝜃2)

for 𝜃2 ∈ [𝑡𝑛+ 1
2 , 𝑡𝑛+1]. Combining this with a Taylor’s expansion of 𝑢(𝑥𝑑𝑖+ 1

2
(𝑡, 𝑡𝑛+1), 𝑡𝑛+ 1

2 ) for
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𝑡 = 𝑡𝑛+ 1
2 , we have:

𝑢(𝑥𝑑𝑖+ 1
2
(𝑡𝑛+

1
2 , 𝑡𝑛+1), 𝑡𝑛+

1
2 ) = 𝑢𝑛+

1
2

𝑖+ 1
2
− (𝑢

𝜕𝑢
𝜕𝑥)(

𝑥𝑖+ 1
2
(𝜃3, 𝑡𝑛+1), 𝑡𝑛+

1
2 ))𝑢(𝑥𝑑𝑖+ 1

2
(𝜃2, 𝑡𝑛+1), 𝜃2)

Δ𝑡2

2
,

(2.34)
for 𝜃3 ∈ [𝑡𝑛, 𝑡𝑛+1]. Substituting Equation (2.34) into Equation (2.33), we obtain the desired
estimate.

2.3.2 DP2 scheme

In this work, we shall consider a second-order Runge-Kutta method to compute the
departure point, which we express in terms of 𝑢̃𝑛𝑖+ 1

2
using the following equations (Durran,

2010):

𝑥̃𝑛+
1
2

𝑖+ 1
2
= 𝑥𝑖+ 1

2
− 𝑢𝑛𝑖+ 1

2

Δ𝑡
2

= 𝑥𝑖+ 1
2
− 𝑐𝑛𝑖+ 1

2

Δ𝑥
2
,

𝑢̃𝑛𝑖+ 1
2
= 𝑢(𝑥̃

𝑛+ 1
2

𝑖+ 1
2
, 𝑡𝑛 +

Δ𝑡
2 ). (2.35)

Notice that this scheme requires values of 𝑢 at points that are not grid points, both in
space and time. We overcome this using linear interpolation in space:

𝑢̃𝑛𝑖+ 1
2
=
⎧⎪⎪
⎨⎪⎪⎩

(1 − 𝛼𝑛𝑖+ 1
2
)𝑢

𝑛+ 1
2

𝑖+ 1
2−𝑘

+ 𝛼𝑛𝑖+ 1
2
𝑢𝑛+

1
2

𝑖− 1
2−𝑘

if 𝑢𝑛𝑖+ 1
2
≥ 0,

−𝛼𝑛𝑖+ 1
2
𝑢𝑛+

1
2

𝑖+ 3
2−𝑘

+ (1 + 𝛼𝑛𝑖+ 1
2
)𝑢

𝑛+ 1
2

𝑖+ 1
2−𝑘

if 𝑢𝑛𝑖+ 1
2
< 0,

(2.36)

where
𝑐𝑛
𝑖+ 1

2
2 = 𝛼𝑛𝑖+ 1

2
+ 𝑘, 𝑘 = ⌊

𝑐𝑛
𝑖+ 1

2
2 ⌋, 𝛼𝑛𝑖+ 1

2
∈ [0, 1[, and ⌊⋅⌋ is the floor function. This scheme

leads to a third-order error in the departure point estimate (cf. e.g. Durran (2010, Section
7.1.2)). This scheme shall be referred to as DP2 and the idea behind this scheme is depicted
in Figure 2.5.

As we mention in scheme DP1, we use the exact values of the wind needed at the time
step 𝑛+ 1

2 and cell edge indexes 𝑖 + 1
2 . Notice that for this scheme, we need ghost values for

the velocity, depending on how large the CFL number is. In particular, if the CFL number
is less than 2, then 𝑘 = 0 and we need the ghost values 𝑢𝑛−1+ 1

2
and 𝑢𝑛𝑁+ 3

2
. If we consider

large CFL numbers, more ghost cells are needed. In this case, it useful to work with the
time-averaged CFL number:

𝑐𝑛𝑖+ 1
2
=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

(1 −
𝑐𝑛
𝑖+ 1

2
2 )𝑐

𝑛+ 1
2

𝑖+ 1
2
+

𝑐𝑛
𝑖+ 1

2
2 𝑐𝑛+

1
2

𝑖− 1
2

if 𝑐𝑛𝑖+ 1
2
≥ 0,

𝑐𝑛
𝑖+ 1

2
2 𝑐𝑛+

1
2

𝑖+ 3
2
+ (1 −

𝑐𝑛
𝑖+ 1

2
2 )𝑐

𝑛+ 1
2

𝑖+ 1
2

if 𝑐𝑛𝑖+ 1
2
< 0.

(2.37)
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(a) Intermediate departure point 𝑥̃𝑛+
1
2

𝑖+ 1
2

(orange circle). The winds
used are depicted by blue circles.
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(b) Final departure point 𝑥̃𝑛𝑖+ 1
2

(red circle) using the wind 𝑢̃𝑛𝑖+ 1
2

(or-
ange circle) obtained using linear interpolation using the winds at
time level 𝑛 + 1

2 (blue circles).

Figure 2.5: Illustration of the scheme DP2 for computing the departure point at time level 𝑛 emanating
from 𝑥𝑖+ 1

2
(blue square) at time level 𝑛 + 1, assuming 𝑢𝑛𝑖+ 1

2
> 0. The estimated departure point 𝑥̃𝑛𝑖+ 1

2
is

illustrated by a red circle.

2.4 Reconstruction: the Piecewise-Parabolic
Method

In this Section, we will review the Piecewise-Parabolic Method (PPM). The analysis
of its accuracy will be presented in Section A.6. PPM was originally proposed by Colella
and Woodward (1984) for gas dynamic simulations, and its applicability to atmospheric
simulations has been demonstrated by Carpenter et al. (1990). This method is based on
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utilizing parabolas to reconstruct the function using its average values, ensuring both
mass conservation and monotonicity. PPM is an extension of the Piecewise-Linear Method
introduced by Van Leer (1977), and it is implemented in the FV3 dycore using the dimension
splitting method developed by Lin and Rood (1996).

Let’s consider a function 𝑞 defined in Ω = [𝑎, 𝑏] and a Δ𝑥-grid covering Ω. We assume
that we are given the average values 𝑄𝑖 = 1

Δ𝑥 ∫
𝑥𝑖+ 1

2
𝑥𝑖− 1

2

𝑞(𝑥) 𝑑𝑥 for each control volume 𝑋𝑖,

where 𝑖 = 1, … , 𝑁 . In this context, it is convenient to define the Δ𝑥-grid function 𝑄 ∈ ℙ𝑁𝜈
with the entries given by𝑄𝑖. To facilitate the discussion, we introduce the indicator function
𝜒𝑖(𝑥) for each control volume 𝑋𝑖, defined as:

𝜒𝑖(𝑥) =

{
1 if 𝑥 ∈ 𝑋𝑖,
0 otherwise.

Drawing inspiration from Stoer and Bulirsch (2002, Chapter 1), we consider a family of
functions Φ(𝜉; 𝜇) defined for 𝜉 ∈ [0, 1], depending on a parameter 𝜇 = (𝜇0, 𝜇1, … , 𝜇𝑑) ∈ ℝ𝑑+1.
The reconstruction problem involves finding a piecewise function:

𝑞̃(𝑥; 𝑄) =
𝑁

∑
𝑖=1

𝜒𝑖(𝑥)𝑞𝑖(𝑥; 𝑄), (2.38)

where 𝑞𝑖(𝑥; 𝑄) = Φ(
𝑥−𝑥𝑖− 1

2
Δ𝑥 ; 𝛼𝑖) and 𝛼𝑖 = (𝛼𝑖0, 𝛼𝑖1, … 𝛼𝑖𝑑) ∈ ℝ𝑑+1. It is required that:

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑞̃(𝑥; 𝑄) 𝑑𝑥 =
1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑞𝑖(𝑥; 𝑄) 𝑑𝑥 = ∫
1

0
Φ(𝜉; 𝛼𝑖) 𝑑𝜉 = 𝑄𝑖,

which means that 𝑞𝑖(𝑥; 𝑄) preserves the mass within each control volume 𝑋𝑖.

Notice that, given 𝑞𝑖(𝑥; 𝑄) = Φ(
𝑥−𝑥𝑖− 1

2
Δ𝑥 ; 𝛼𝑖), it is reasonable to expect that Φ(0; 𝛼𝑖) ap-

proximates 𝑞𝑖(𝑥𝑖− 1
2
) and Φ(1; 𝛼𝑖) approximates 𝑞𝑖(𝑥𝑖+ 1

2
). Additionally, if both 𝑞 and Φ are

sufficiently differentiable,Φ(𝑙)(0; 𝛼𝑖) should approximate (Δ𝑥)𝑙𝑞(𝑙)(𝑥𝑖− 1
2
) andΦ(𝑙)(1; 𝛼𝑖) should

approximate (Δ𝑥)𝑙𝑞(𝑙)(𝑥𝑖+ 1
2
), provided these derivatives exist.

One approach to estimating these values at the edges 𝑥𝑖+ 1
2

using the average values
𝑄 is by employing a reconstruction method based on primitive functions (LeVeque, 2002,
Chapter 17). It is worth noting that if we define:

𝑄(𝑥) = ∫
𝑥

𝑎
𝑞(𝜉) 𝑑𝜉, (2.39)

we have 𝑄(𝑙)(𝑥) = 𝑞(𝑙−1)(𝑥). Specifically, 𝑄(𝑙)(𝑥𝑖+ 1
2
) = 𝑞(𝑙−1)(𝑥𝑖+ 1

2
) and 𝑄(𝑥𝑖+ 1

2
) = Δ𝑥 ∑𝑖

𝑘=1 𝑄𝑘,
for all 𝑖 = 0, … , 𝑁 . Therefore, we can employ finite-difference schemes to estimate
𝑞(𝑙−1)(𝑥𝑖+ 1

2
) using the Δ𝑥-grid function 𝑄, given that it is assumed to be known.

Let us assume that the 𝑙-th derivative of 𝑄 at 𝑥𝑖+ 1
2

is approximated using a stencil  (𝑙)
𝑖+ 1

2

and weights 𝛽(𝑙)
𝑘,𝑖 , where 𝑘 ∈  (𝑙)

𝑖+ 1
2
. When 𝑑 is odd, we can seek a parameter 𝛼𝑖 ∈ ℝ𝑑+1 that

ensures mass conservation and approximates 𝑞 and its derivatives at the edges by solving
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the following system:

{
∫ 1
0 Φ(𝜉; 𝛼𝑖) 𝑑𝜉 = 𝑄𝑖,
Φ(𝑙)(0; 𝛼𝑖) = (Δ𝑥)𝑙 ∑𝑘∈ (𝑙)

𝑖− 1
2

𝛽(𝑙)
𝑘,𝑖𝑄𝑘, for 𝑙 = 0, … , 𝑑 − 1. (2.40)

If 𝑑 is even, similarly we look for a parameter 𝛼𝑖 ∈ ℝ𝑑+1 that solves:

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

∫ 1
0 Φ(𝜉; 𝛼𝑖) 𝑑𝜉 = 𝑄𝑖,
Φ(𝑙)(0; 𝛼𝑖) = (Δ𝑥)𝑙 ∑𝑘∈ (𝑙)

𝑖− 1
2

𝛽(𝑙)
𝑘,𝑖𝑄𝑘, for 𝑙 = 0, … , 𝑑2 − 1,

Φ(𝑙)(1; 𝛼𝑖) = (Δ𝑥)𝑙 ∑𝑘∈ (𝑙)
𝑖+ 1

2

𝛽(𝑙)
𝑘,𝑖𝑄𝑘, for 𝑙 = 0, … , 𝑑2 − 1.

(2.41)

The reconstruction problem becomes linear when Φ(𝜉; 𝜇) can be expressed as:

Φ(𝜉; 𝜇) =
𝑑

∑
𝑘=0

𝜇𝑘Φ𝑘(𝜉),

where Φ𝑘 are functions defined on [0, 1]. In this case, Equation (2.40) and Equation (2.41)
form (𝑑 + 1) × (𝑑 + 1) linear systems. It is common to assume that the Φ𝑘’s are linearly inde-
pendent. Therefore, we have described a method that allows us to reconstruct a function
from its average values, preserving its mass in each control volume, and approximating 𝑞 at
the edges. This method works for functions Φ𝑘 as long as they are sufficiently differentiable.
For example, choosing 𝑑 = 0 and Φ0(𝜉) = 1 gives us piecewise constant functions, as used
in Godunov (1959). If we choose 𝑑 = 1, Φ0(𝜉) = 1, and Φ1(𝜉) = 𝜉 , we obtain a piecewise
linear reconstruction, similar to Van Leer (1977). For polynomial reconstruction schemes,
we refer to Engwirda and Kelley (2016) and the references therein.

Hereafter, we are going the focus on the piecewise parabolic method from Colella and
Woodward (1984) that uses 𝑑 = 2, Φ0(𝜉) = 1, Φ1(𝜉) = 𝜉 , Φ1(𝜉) = (1− 𝜉)𝜉 . In order to follow
the notation from Colella and Woodward (1984), we write 𝛼0𝑖 = 𝑞𝐿,𝑖, 𝛼1𝑖 = Δ𝑞𝑖 and 𝛼2𝑖 = 𝑞6,𝑖.
Therefore, each 𝑞𝑖 may be expressed as:

𝑞𝑖(𝑥; 𝑄) = 𝑞𝐿,𝑖 + Δ𝑞𝑖𝑧𝑖(𝑥) + 𝑞6,𝑖𝑧𝑖(𝑥)(1 − 𝑧𝑖(𝑥)), where 𝑧𝑖(𝑥) =
𝑥 − 𝑥𝑖− 1

2

Δ𝑥
, 𝑥 ∈ 𝑋𝑖, (2.42)

where the values 𝑞𝐿,𝑖, Δ𝑞𝑖 and 𝑞6,𝑖 will be specified latter. Note that each 𝑧𝑖 is just a normal-
ization function that maps 𝑋𝑖 onto [0, 1]. It is easy to see that lim𝑥→𝑥+

𝑖− 1
2
𝑞𝑖(𝑥; 𝑄) = 𝑞𝐿,𝑖. If we

define 𝑞𝑅,𝑖 = lim𝑥→𝑥−
𝑖+ 1

2
𝑞𝑖(𝑥; 𝑄), then we have:

Δ𝑞𝑖 = 𝑞𝑅,𝑖 − 𝑞𝐿,𝑖. (2.43)

The average value of 𝑞𝑖 is given by:

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑞𝑖(𝑥; 𝑄) 𝑑𝑥 =
(𝑞𝐿,𝑖 + 𝑞𝑅,𝑖)

2
+
𝑞6,𝑖
6
. (2.44)
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Under the hypothesis of mass conservation, we have:

𝑞6,𝑖 = 6(𝑄𝑖 −
(𝑞𝐿,𝑖 + 𝑞𝑅,𝑖)

2 ). (2.45)

Therefore, we have found the parameters Δ𝑞𝑖 and 𝑞6,𝑖 as functions of the parameters 𝑞𝐿,𝑖
and 𝑞𝑅,𝑖, such that the parabola 𝑞𝑖 from (2.38) guarantees mass conservation. To completely
determine the parabola 𝑞𝑖, we need to set the values 𝑞𝐿,𝑖 and 𝑞𝑅,𝑖, which, as we have seen,
represent the limits of 𝑞𝑖 when 𝑥 tends to the left and right boundaries of 𝑋𝑖, respectively.
Hence, it is natural to seek for 𝑞𝐿,𝑖 as an approximation of 𝑞(𝑥𝑖− 1

2
) and 𝑞𝑅,𝑖 as an approx-

imation of 𝑞(𝑥𝑖+ 1
2
). As we mentioned before in after introducing Equation (2.39), this is

achieved using finite-differences.

2.4.1 Unlimited PPM reconstruction

This Subsection is dedicated to present the unlimited approximation of 𝑞(𝑥𝑖− 1
2
) pre-

sented in Colella and Woodward (1984). An explicit expression for the approximation of
𝑞(𝑥𝑖− 1

2
), denoted by 𝑞𝑖+ 1

2
, is given by (Colella & Woodward, 1984):

𝑞𝑖+ 1
2
=

1
2(

𝑄𝑖+1 + 𝑄𝑖) −
1
6(

𝛿𝑄𝑖+1 − 𝛿𝑄𝑖), (2.46)

where 𝛿𝑄𝑖 is the average slope in the 𝑖-th control-volume:

𝛿𝑄𝑖 =
1
2(

𝑄𝑖+1 − 𝑄𝑖−1). (2.47)

We notice that Formula (2.47) may be rewritten more explicitly as:

𝑞𝑖+ 1
2
=

7
12(

𝑄𝑖+1 + 𝑄𝑖) −
1
12(

𝑄𝑖+2 + 𝑄𝑖−1). (2.48)

The Formula (2.48) is fourth-order accurate if 𝑞 is at least 4 (Colella & Woodward, 1984).
Indeed, we prove this later in Proposition A.1. The expression for the values of 𝑞𝑅,𝑖 and 𝑞𝐿,𝑖
are given by:

𝑞𝑅,𝑖 = 𝑞𝑖+ 1
2

(2.49)

𝑞𝐿,𝑖 = 𝑞𝑖− 1
2
. (2.50)

During this work, we refer to this PPM scheme as UNLIM. In FV3, the 1D advection
solver input is named “hord” (horizontal advection method). We note that UNLIM is not
implemented in FV3, but we implemented it because, since it has no limiter, it is suitable
for checking order of accuracy for the schemes investigated in this work. For a list of
reconstruction schemes available in FV3, refer to Harris et al. (2021). One may see that
the scheme hord=5 in FV3 is the closest to UNLIM, as hord=5 only applies a filter on the
UNLIM flux to remove 2Δ𝑥 numerical noise.
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2.4.2 Monotonic PPM reconstruction

This Subsection is dedicated to presenting a possible way of avoiding the creation of
new extrema values in the PPM reconstruction. We are going to present an alternative
scheme from Lin (2004), which was an attempt to reduce the diffusion of the original
scheme Colella and Woodward (1984) and is currently employed in the FV3 dynamical
core (Harris et al., 2021).

Similarly to Colella and Woodward (1984), Lin (2004) reduces numerical oscillations in
the parabolas by defining the average slope as

𝛿𝑚𝑄𝑖 = max(|𝛿𝑄𝑖|, 2𝛿𝑄min,𝑖, 2𝛿𝑄max,𝑖) ⋅ sgn(𝛿𝑄𝑖) (2.51)

where 𝛿𝑄𝑖 = 𝑄𝑖+1−𝑄𝑖−1
2 , 𝛿𝑄min,𝑖 = 𝑄𝑖 − min(𝑄𝑖+1, 𝑄𝑖, 𝑄𝑖−1) 𝛿𝑄max,𝑖 = max(𝑄𝑖+1, 𝑄𝑖, 𝑄𝑖−1) − 𝑄𝑖.

We then initially compute an analogous version of Equation (2.46) as:

𝑞𝑖+ 1
2
=

1
2(

𝑄𝑖+1 + 𝑄𝑖) −
1
6(

𝛿𝑚𝑄𝑖+1 − 𝛿𝑚𝑄𝑖). (2.52)

The values 𝑞𝑅,𝑖 and 𝑞𝐿,𝑖 are then computed using Equations (2.49) and (2.50), respectively.
The monotonicity is achieved by the following scheme:

𝑞𝐿,𝑖 ← 𝑄𝑖 − max(|𝛿𝑚𝑄𝑖|, |𝑞𝐿,𝑖 − 𝑄𝑖|) ⋅ sgn(𝛿𝑚𝑄𝑖), (2.53)
𝑞𝑅,𝑖 ← 𝑄𝑖 − max(|𝛿𝑚𝑄𝑖|, |𝑞𝑅,𝑖 − 𝑄𝑖|) ⋅ sgn(𝛿𝑚𝑄𝑖). (2.54)

This scheme may be further improved to reduce the diffusion even more, as described by
Lin (2004), but we are not going to assess this approach here. This scheme is referred to
as MONO. In FV3, the paramenter “hord” is set equal to 8 to use this scheme. At last, we
point out again that many other PPM reconstruction schemes are available in the literature
and in FV3 (Harris et al., 2021; Lin et al., 2017), but for simplicity, we are just going to
consider the schemes UNLIM and MONO.

To conclude this section, we illustrate the difference between the UNLIM and MONO
reconstructions using a numerical experiment. Following the approach in Trefethen (2000),
we consider the periodic Gaussian profile defined as:

𝑞(𝑥) = 0.1 + 0.9 exp( − 10 sin2
(
𝜋𝑥
𝐿 )), 𝑥 ∈ [ −

𝐿
2
,
𝐿
2]
, (2.55)

where 𝐿 = 𝜋
2𝑅, and 𝑅 = 6.371 × 106 meters is the Earth’s radius. Figure 2.6 depicts the

periodic Gaussian hill along with its average values (Figure 2.6a) for𝑁 = 8 control volumes,
with unlimited (Figure 2.6b) and monotonic (Figure 2.6c) reconstructions. It is clear that
the unlimited reconstruction (Figure 2.6b) creates new extrema, which are not observed in
the monotonic reconstruction (Figure 2.6c).
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(a) Periodic Gaussian hill (blue dashed line)
and its average values (blue horizontal lines
and blue circles).

(b) Unlimited PPM reconstruction of the pe-
riodic Gaussian hill (yellow curve).

(c) Monotonic PPM reconstruction of the pe-
riodic Gaussian hill (red curve).

Figure 2.6: Illustration of the periodic Gaussian hill from Equation (2.55) and its average values (a).
The unlimited and monotonic PPM reconstructions are depicted in (b) and (c). We are considering
𝑁 = 8 control volumes, whose boundaries are illustrated using vertical dashed lines.

2.5 Flux

Let us consider the framework outlined in Problem 2.4. Assuming that 𝑄𝑛 ∈ ℙ𝑁𝜈 is
known, our objective is to compute the values 𝑄𝑛+1. To accomplish this, we utilize a
scheme similar to the one presented in Problem 2.4, taking into account the presence of a
reconstruction function 𝑞̃(𝑥; 𝑄𝑛) as discussed in Section 2.4, and an initial departure point
estimation 𝑥̃𝑛𝑖+ 1

2
= 𝑥𝑖+ 1

2
− 𝑢̃𝑛𝑖+ 1

2
Δ𝑡 for a time-averaged wind 𝑢̃𝑛𝑖+ 1

2
as explained in Section 2.3.

The numerical flux function 𝐹 𝑛𝑖+ 1
2

is then suggested in Problem 2.4:

𝐹 𝑛𝑖+ 1
2
[𝑄𝑛, 𝑢̃𝑛] =

1
Δ𝑡 ∫

𝑥𝑖+ 1
2

𝑥𝑖+ 1
2
−𝑢̃𝑛

𝑖+ 1
2
Δ𝑡
𝑞̃(𝑥; 𝑄𝑛) 𝑑𝑥. (2.56)

Notice that if we define the averaged CFL number,

𝑐𝑛𝑖+ 1
2
= 𝑢̃𝑛𝑖+ 1

2

Δ𝑡
Δ𝑥

,
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where 𝑐𝑛𝑖+ 1
2
= 𝑘+𝛼𝑛𝑖+ 1

2
, 𝑘 = ⌊𝑐𝑛𝑖+ 1

2
⌋, 𝛼𝑛𝑖+ 1

2
∈ [0, 1[, we can express the numerical flux as (Y. Chen

et al., 2017; Lin & Rood, 1996):

𝐹 𝑛𝑖+ 1
2
[𝑄𝑛, 𝑢̃𝑛] =

1
Δ𝑡

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

Δ𝑥 ∑𝑘−1
𝑙=0 𝑄𝑖−𝑙 + ∫

𝑥𝑖−𝑘+ 1
2

𝑥𝑖−𝑘+ 1
2
−𝛼𝑛

𝑖+ 1
2
Δ𝑥 𝑞̃(𝑥; 𝑄𝑛) 𝑑𝑥, if 𝑢̃𝑛𝑖+ 1

2
≥ 0,

Δ𝑥 ∑𝑘−1
𝑙=0 𝑄𝑖−𝑙 − ∫

𝑥𝑖−𝑘+ 1
2
−𝛼𝑛

𝑖+ 1
2
Δ𝑥

𝑥𝑖−𝑘+ 1
2

𝑞̃(𝑥; 𝑄𝑛) 𝑑𝑥, if 𝑢̃𝑛𝑖+ 1
2
< 0,

(2.57)

where we used that 𝑞̃ preserves the local mass.

We will provide explicit expressions for the integrals in Equation (2.57) when using the
PPM method. For each control volume edge, denoted by 𝑖 = 0, … , 𝑁 , and 𝑦 > 0, we define
the following averages of the Piecewise-Parabolic approximation, as defined in Equation
(2.38) for 𝑄𝑛 (Colella & Woodward, 1984):

𝐹𝐿,𝑖+ 1
2
[𝑄𝑛, 𝑦] =

1
𝑦 ∫

𝑥𝑖+ 1
2

𝑥𝑖+ 1
2
−𝑦
𝑞̃(𝑥; 𝑄𝑛) 𝑑𝑥, (2.58)

and
𝐹𝑅,𝑖+ 1

2
[𝑄𝑛, 𝑦] =

1
𝑦 ∫

𝑥𝑖+ 1
2 +𝑦

𝑥𝑖+ 1
2

𝑞̃(𝑥; 𝑄𝑛) 𝑑𝑥. (2.59)

If 𝑦 ≤ Δ𝑥 , then both of the above integral domains are constrained to a single control vol-
ume. Thus, it follows from a straightforward computation using Equation (2.42) that:

𝐹𝐿,𝑖+ 1
2
[𝑄𝑛, 𝑦] =

1
𝑦 ∫

𝑥𝑖+ 1
2

𝑥𝑖+ 1
2
−𝑦
𝑞𝑖(𝑥; 𝑄𝑛) 𝑑𝑥 = 𝑞𝑅,𝑖 +

(𝑞6,𝑖 − Δ𝑞𝑖)
2Δ𝑥

𝑦 −
𝑞6,𝑖
3Δ𝑥2

𝑦2, (2.60)

and

𝐹𝑅,𝑖+ 1
2
[𝑄𝑛, 𝑦] =

1
𝑦 ∫

𝑥𝑖+ 1
2
+𝑦

𝑥𝑖+ 1
2

𝑞𝑖+1(𝑥; 𝑄𝑛) 𝑑𝑥 = 𝑞𝐿,𝑖+1 +
(𝑞6,𝑖+1 + Δ𝑞𝑖+1)

2Δ𝑥
𝑦 −

𝑞6,𝑖+1
3Δ𝑥2

𝑦2. (2.61)

The numerical flux function for PPM is then defined by:

F𝑃𝑃𝑀𝑖+ 1
2
[𝑄𝑛, 𝑢̃𝑛] =

{
𝐹𝐿,𝑖+ 1

2
[𝑄𝑛, 𝛼𝑛𝑖+ 1

2
Δ𝑥] if 𝑢̃𝑛𝑖+ 1

2
≥ 0,

𝐹𝑅,𝑖+ 1
2
[𝑄𝑛, −𝛼𝑛𝑖+ 1

2
Δ𝑥] if 𝑢̃𝑛𝑖+ 1

2
< 0,

(2.62)

and

𝐹 𝑛𝑖+ 1
2
[𝑄𝑛, 𝑢̃𝑛] =

1
Δ𝑡(

Δ𝑥
𝑘−1

∑
𝑙=0

𝑄𝑖−𝑙 + Δ𝑥𝛼𝑛𝑖+ 1
2
F𝑃𝑃𝑀𝑖+ 1

2
[𝑄𝑛, 𝑢̃𝑛]). (2.63)

In particular, if the CFL number is less than one, then:

F𝑃𝑃𝑀𝑖+ 1
2
[𝑄𝑛, 𝑐𝑛] =

{
𝑞𝑅,𝑖 + (

𝑞6,𝑖−Δ𝑞𝑖
2 )𝑐𝑛𝑖+ 1

2
− 𝑞6,𝑖

3 (𝑐
𝑛
𝑖+ 1

2
)2, if 𝑐𝑛𝑖+ 1

2
≥ 0,

𝑞𝐿,𝑖+1 + (
𝑞6,𝑖+1+Δ𝑞𝑖+1

2 )𝑐𝑛𝑖+ 1
2
− 𝑞6,𝑖+1

3 (𝑐𝑛𝑖+ 1
2
)2, if 𝑐𝑛𝑖+ 1

2
< 0,

(2.64)

and
𝐹 𝑛𝑖+ 1

2
[𝑄𝑛, 𝑐𝑛] = 𝑢̃𝑛𝑖+ 1

2
F𝑃𝑃𝑀𝑖+ 1

2
[𝑄𝑛, 𝑐𝑛], (2.65)
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where we are expressing the flux in terms of the time-averaged CFL number 𝑐𝑛. Notice
that this flux is upwind based, that is, it always computes the flux using the parabola in
the upwind direction. Finally, for both unlimited PPM and monotonic PPM schemes, 𝐹 𝑛𝑖+ 1

2

uses the stencil 𝑖+ 1
2
= {𝑖 − 3, 𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3}, and therefore we need 𝜈 = 3

layers of ghost cells.

In FV3, the 1D flux is computed based on the perturbation values (Harris et al., 2021)
given by:

𝑏𝐿,𝑖 = 𝑞𝐿,𝑖 − 𝑄𝑛
𝑖 , (2.66)

𝑏𝑅,𝑖 = 𝑞𝑅,𝑖 − 𝑄𝑛
𝑖 . (2.67)

Then, Equation (2.64) becomes:

F𝑃𝑃𝑀𝑖+ 1
2
[𝑄𝑛, 𝑐𝑛] =

{
𝑄𝑛
𝑖 + (1 − 𝑐𝑛𝑖+ 1

2
)(𝑏𝑅,𝑖 − 𝑐𝑛𝑖+ 1

2
(𝑏𝐿,𝑖 + 𝑏𝑅,𝑖)), if 𝑐𝑛𝑖+ 1

2
≥ 0,

𝑄𝑛
𝑖+1 + (1 + 𝑐𝑛𝑖+ 1

2
)(𝑏𝐿,𝑖+1 + 𝑐𝑛𝑖+ 1

2
(𝑏𝐿,𝑖+1 + 𝑏𝑅,𝑖+1)), if 𝑐𝑛𝑖+ 1

2
< 0,

(2.68)

which is the formula implemented in FV3. Finally, the average value update is implemented
in FV3 as

𝑄𝑛+1
𝑖 = 𝑄𝑛

𝑖 − (𝑐𝑛𝑖+ 1
2
F𝑃𝑃𝑀𝑖+ 1

2
[𝑄𝑛, 𝑐𝑛] − 𝑐𝑛𝑖− 1

2
F𝑃𝑃𝑀𝑖− 1

2
[𝑄𝑛, 𝑐𝑛]), (2.69)

for 𝑖 = 1, ⋯ , 𝑁 . Thefore, at each time-step, we need to:

1. Compute 𝑐𝑛𝑖+ 1
2

(for 𝑖 = 0, ⋯ , 𝑁 ) using the schemes DP1 or DP2;

2. Compute 𝑞𝐿,𝑖 and 𝑞𝑅,𝑖 (for 𝑖 = 1, ⋯ , 𝑁 ) using UNLIM or MONO;

3. Evalute the pertubation values (for 𝑖 = 1, ⋯ , 𝑁 ) using Equations (2.66) and (2.67);

4. Evaluate the fluxes F𝑃𝑃𝑀𝑖+ 1
2

(for 𝑖 = 0, ⋯ , 𝑁 ) using Equation (2.68);

5. Update the average values 𝑄𝑛+1 using Equation (2.69).

2.6 Numerical experiments
This Section is dedicated to presenting the numerical results of the PPM and its

variations discussed here. We will consider the reconstruction schemes unlimited PPM
(Subsection 2.4.1) and monotonic PPM (Subsection 2.4.2), as well as the departure point
schemes DP1 (Subsection 2.3.1) and DP2 (Subsection 2.3.2). The code used in this Section
can be found in Appendix B.

For all the simulations presented here, we will consider the spatial domain [−𝐿
2 ,

𝐿
2 ], and

the time interval [0, 𝑇 ], where 𝐿 = 𝜋
2𝑅, 𝑅 = 6.371 × 106 meters is the Earth’s radius and

𝑇 = 1036800 seconds, equivalent to 12 days. The spatial domain spans approximately 104
kilometers, which corresponds to approximately the length of a cubed-sphere panel, as
shall be seen in Chapter 4. The relative change at time step 𝑛 in the mass is computed
as:

|𝑀𝑛 − 𝑀0|
|𝑀0|

,
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where 𝑀𝑛 is given by Equation (2.24). For all the simulations, the mass is preserved with
machine precision. Furthermore, we compute the initial average values 𝑄𝑖(0) using the
initial values of 𝑞0𝑖 at the control volume centroids for all simulations, which is second-order
accurate by Proposition 2.2. In the error calculation, only when 𝑞0 is given by Equation
(2.55), we replace 𝑄𝑖(𝑡𝑛) by its centroid value 𝑞𝑖(𝑡𝑛), which again gives a second-order
approximation by Proposition 2.2.

2.6.1 Square wave with constant wind advection

As a first numerical experiment, we consider a discontinuous IC given by:

𝑞0(𝑥) =

{
1 if 𝑥 ∈ [−0.1𝐿, 0.1𝐿],
0.1 otherwise.

(2.70)

for the linear advection equation with constant velocity, which we adopt as 𝑢 = 𝐿
𝑇 .

Figure 2.7: Linear advection experiment using the IC given by Equation (2.70) (black curve) with
constant velocity. These figures show the advected profile after 12 days (one time period). Reconstruction
schemes employed: unlimited PPM (UNLIM - blue curve) and monotonic PPM (MONO - orange curve).

It is easy to check that the exact solution of Problem 2.1 is given by 𝑞0(𝑥 − 𝑢𝑡) and that
the solution returns to its initial position after 12 days. We will employ a time step of 14400
seconds and set 𝑁 = 48 (therefore Δ𝑥 ≈ 208 km) resulting in a CFL number approximately
equal to 0.67. The departure schemes DP1 and DP2 compute the departure point exactly
in this case, so we will only use the DP1 scheme.

In Figure 2.7, we present the obtained results. It is evident that the monotonic PPM
exhibit a significant advantage. This scheme effectively prevent the strong oscillations
observed in the unlimited PPM scheme, as well as the generation of new extrema, which
aligns with our expectations.
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2.6.2 Flow deformation with divergent wind
As a second experiment, we shall investigate how the PPM schemes behave when the

velocity is variable. This cases is useful to assess the departure point schemes, which shall
not be exact as in the previous test. We are going to consider the velocity

𝑢(𝑥, 𝑡) = 𝑢0 cos(
𝜋𝑡
𝑇 ) cos2 (𝜋(

𝑥
𝐿
−
𝑡
𝑇 ))

+ 𝑢1. (2.71)

We adopt the parameters 𝑇 = 12 days and 𝑢0 = 𝑢1 = 𝐿
𝑇 . We set the periodic Gaussian

profile defined in Equation (2.55) as the initial condition. The velocity function given by
Equation (2.71) is based on the deformational flow test case in Nair and Lauritzen (2010),
where we add a constant wind 𝑢1 to prevent error cancellations. As the velocity is variable,
we utilize the departure point schemes DP1 and DP2. In this case, the solution exhibits a
period of 12 days, meaning that the profile deforms and returns to its initial shape and
position after 12 days, allowing us to compute the error. Indeed, in Figure 2.8, we show
how the solution behaves using a high-resolution (𝑁 = 768), the MONO scheme and the
DP1 departure point scheme.

To investigate the error convergence, we employ (Δ𝑥(𝑘), Δ𝑡(𝑘), 𝜆)-discretizations with
Δ𝑥(𝑘) = 𝐿

𝑁 (𝑘) , 𝑁 (𝑘) = 48 × 2𝑘, Δ𝑡(𝑘) = 7200
2𝑘 , for 𝑘 = 0,… , 4. To measure the accuracy, we

consider the relative error in the 𝑝-norm as follows:

𝐸𝑘 =
‖𝑄𝑁𝑇 − 𝑄0‖𝑝,Δ𝑥

‖𝑄0‖𝑝,Δ𝑥
.

We are going to consider 𝑝 = 1 and 𝑝 = ∞. The convergence rate is defined by

𝐶𝑅𝑘 =
ln(

𝐸𝑘
𝐸𝑘−1)

ln 2
, for 𝑘 = 1,… 4.

The difference between the DP1 and DP2 schemes becomes clear when observing the
relative error in Figure 2.9. In the 𝐿∞ norm (Figure 2.9a), for the unlimited PPM, the DP1
scheme results in a first-order error in the departure point, which dominates the total error.
This observation is in agreement with the discussion in Section 2.3. On the other hand,
when employing the DP2 scheme, we can achieve third-order accuracy for the unlimited
PPM. For the monotonic PPM, the DP2 slightly reduces the 𝐿∞ error.

However, in the 𝐿1 norm, as shown in Figure 2.9b, for both unlimited PPM and mono-
tonic PPM, we observe that DP1 results in a 1st order accuracy, while DP2 results in
schemes with an order greater than 2. This experiment illustrates the impact of departure
point calculation errors on the overall error and the benefit of using DP2.

2.7 Concluding remarks

In this Chapter, we provided a general overview of 1D FV-SL schemes for the advection
equation. We discussed the three essential tasks involved in these schemes. The first task
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(a) 𝑡 = 0. (b) 𝑡 = 2 days. (c) 𝑡 = 4 days.

(d) 𝑡 = 6 days. (e) 𝑡 = 8 days. (f) 𝑡 = 10 days.

(g) 𝑡 = 12 days.

Figure 2.8: Linear advection experiment using the velocity from Equation (2.55), a CFL number equal
to 0.67, 𝑁 = 768 cells, and the IC is given by Equation (2.55). These figures show the advected profile
at day 0 (2.8a) and after 2 (2.8b), 4 (2.8c), 6 (2.8d), 8 (2.8e), 10 (2.8f), and 12 (2.8g) days. We are using
the monotonic PPM scheme with the DP1 departure point scheme.

is the reconstruction of a function from its average values. We employed the PPM method
introduced by Colella and Woodward (1984) without limiter and its monotonic variant
such as the one from Lin (2004). The second task involves computing the departure point
of the control volume edges. For this purpose, we utilized the first-order departure point
calculation using a time-centered wind in an approach known as DP1. Additionally, we
explored a second-order approach by employing a two-stages Runge-Kutta scheme to
integrate the departure point ODE. Lastly, the third task entails computing the flux, which
involves integrating the reconstructed function over a domain determined by the departure
point.

The difference between the departure point schemes became apparent when we per-
formed a test with variable velocity. The simulation using the DP1 scheme with the
unlimited PPM resulted in a final first-order error, despite the scheme having third-order
accuracy in space. However, the DP2 scheme with the unlimited PPM preserved third-order
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(a) 𝐿∞ error. (b) 𝐿1 error.

Figure 2.9: Relative error for the unlimited PPM (UNLIM -red lines) and monotonic PPM (MONO -
green lines) schemes in 𝐿∞ (Figure 2.9a) and 𝐿1 norms (Figure 2.9b). Results using DP1 scheme uses
solid lines and DP2 results uses dashed lines. The IC given by Equation (2.55) and the variable velocity
given by Equation (2.71).

accuracy despite being only second-order accurate. We expect that, in general, combining
PPM with the DP2 scheme should result in at least second-order accuracy. The DP2 scheme
also showed to lead to a more accurate result when combined with monotonic PPM, espe-
cially in the 𝐿1 norm. Clearly, the DP2 scheme is more computationally expensive since it
requires linear interpolation of the velocity field, but this additional cost is minimal.
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Chapter 3

Two-dimensional finite-volume
methods

In Chapter 2, we addressed the problem of solving the one-dimensional linear advec-
tion equation using the finite-volume method based on PPM. In this Chapter, our focus
shifts to solving the two-dimensional linear advection equation using the finite-volume
method. This step is crucial in our work since, as we will explore in Chapter 5, solving the
linear advection equation on the cubed-sphere relies on solving two-dimensional linear
advection equations at each cube face, with interpolation between adjacent panels, which
are described in Chapter 4.

A natural approach to develop a finite-volume method for the two-dimensional linear
advection equation would involve extending PPM to two dimensions. Indeed, Rančić (1992)
proposed a piecewise bi-parabolic extension of PPM using a semi-Lagrangian temporal
discretization. Further, this type of method can be extended to the cubed-sphere (Lauritzen
et al., 2010). However, this method suffers from a significant drawback—its computationally
expensive nature. As a popular alternative, dimension-splitting methods are often used,
which replace the two-dimensional problem with a sequence of one-dimensional problems.
For example, we can solve the two-dimensional linear advection equation by solving a series
of one-dimensional linear advection equations using the PPM from Chapter 2. Moreover,
in principle, we can employ any numerical method that solves the one-dimensional linear
advection equation.

A comparison between two-dimensional and dimension-splitting semi-Lagrangian
schemes on a plane was investigated by Y. Chen et al. (2017), utilizing the PPM as the
one-dimensional solver and distorted two-dimensional grids. Their main conclusion was
that dimension-splitting schemes are more sensitive to grid distortions, but they are
computationally cheaper and more accurate than two-dimensional methods, particularly
when dealing with large CFL numbers.

The primary objective of this Chapter is to provide a comprehensive explanation of the
dimension splitting method proposed by Lin and Rood (1996). This method is currently
utilized in the FV3 dynamical core and is applied to the two-dimensional linear advection
equation using the one-dimensional finite-volume schemes described in Chapter 2. To
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begin, similar to Chapter 2, we start this Chapter with a review of the integral form of
the two-dimensional advection equation in Section 3.1. Following this, in Section 3.2, we
establish the framework for general two-dimensional finite-volume schemes. Subsequently,
the dimension splitting method is presented in Section 3.3, where we delve into its intrica-
cies. Finally, we showcase numerical experiments in Section 3.4 to illustrate the practical
application of the dimension splitting approach. Final thoughts are presented in Section
3.5.

3.1 Two-dimensional advection equation in the
integral form

3.1.1 Notation
This Section is dedicated to extending the notation of Section 2.1.1. Based on definitions

2.1 and 2.3, we introduce the concepts of a (Δ𝑥, Δ𝑦)-grid and (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆) discretization.
Throughout this Chapter, we will use the notation Ω = [𝑎, 𝑏] × [𝑐, 𝑑] and 𝜈 to represent a
non-negative integer indicating the number of ghost cell layers in each boundary. We also
use the notations ℝ𝑁×𝑀

𝜈 ∶= ℝ(𝑁+2𝜈)×(𝑀+2𝜈) and ℝ(𝑁+1)×𝑀
𝜈 ∶= ℝ(𝑁+1+2𝜈)×(𝑀+2𝜈), ℝ𝑁×(𝑀+1)

𝜈 ∶=
ℝ(𝑁+2𝜈)×(𝑀+1+2𝜈).

Definition 3.1 ((Δ𝑥, Δ𝑦)-grid). Given Ω and positive real numbers Δ𝑥 and Δ𝑦 such that
Δ𝑥 = (𝑏 − 𝑎)/𝑁 , Δ𝑦 = (𝑑 − 𝑐)/𝑀 , for positive integers 𝑁 and 𝑀 , we say that ΩΔ𝑥,Δ𝑦 =
(Ω𝑖𝑗)𝑗=−𝜈+1,…,𝑀+𝜈

𝑖=−𝜈+1,…,𝑁+𝜈 is a (Δ𝑥, Δ𝑦)-grid for Ω if

Ω𝑖𝑗 = [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] × [𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
] = [𝑎 + (𝑖 − 1)Δ𝑥, 𝑎 + 𝑖Δ𝑥] × [𝑐 + (𝑗 − 1)Δ𝑥, 𝑐 + 𝑗Δ𝑥],

Δ𝑥 = 𝑥𝑖+ 1
2
−𝑥𝑖− 1

2
, Δ𝑦 = 𝑦𝑗+ 1

2
−𝑦𝑗− 1

2
. Each Ω𝑖𝑗 is called control volume or cell. The cell centroids

(𝑥𝑖, 𝑦𝑗) are defined by

𝑥𝑖 =
1
2
(𝑥𝑖+ 1

2
+ 𝑥𝑖− 1

2
), 𝑦𝑗 =

1
2
(𝑦𝑗+ 1

2
+ 𝑦𝑗− 1

2
).

Remark 3.1. If 1 ≤ 𝑖 ≤ 𝑁 ,1 ≤ 𝑗 ≤ 𝑀 , we refer to (𝑖, 𝑗) as an interior index; otherwise, (𝑖, 𝑗)
is considered a ghost cell index and we say the Ω𝑖𝑗 is a ghost cell.

Definition 3.2 ((Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)-discretization). Given Ω × [0, 𝑇 ], and positive real numbers
Δ𝑥 Δ𝑦 and Δ𝑡, we say that (ΩΔ𝑥,Δ𝑦 , 𝑇Δ𝑡) is a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)−discretization of Ω × [0, 𝑇 ] if
ΩΔ𝑥,Δ𝑦 is a (Δ𝑥, Δ𝑦) grid for Ω and 𝑇Δ𝑡 is a Δ𝑡-temporal grid for [0, 𝑇 ], Δ𝑡

Δ𝑥 = 𝜆 and Δ𝑡
Δ𝑦 = 𝜆.

Remark 3.2. Whenever we mention a (Δ𝑥, Δ𝑦)−grid, or a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)-discretization,
then Ω𝑖𝑗 , 𝑁 and 𝑀 are implicitly defined.

Next, we introduce the definitions of grid functions at cell centroids and C-grid func-
tions.

Definition 3.3 ((Δ𝑥, Δ𝑦)-grid function). For a (Δ𝑥, Δ𝑦)-grid, we say that 𝑄 =
(𝑄𝑖𝑗)𝑗=−𝜈+1,…,𝑀+𝜈

𝑖=−𝜈+1,…,𝑁+𝜈 ∈ ℝ𝑁×𝑀
𝜈 is a (Δ𝑥, Δ𝑦)-grid function.
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Definition 3.4 ((Δ𝑥, Δ𝑦)-C grid wind). For a (Δ𝑥, Δ𝑦)-grid, we say that (𝑢, 𝑣) is a (Δ𝑥, Δ𝑦)-C
grid wind if 𝑢 = (𝑢𝑖+ 1

2 ,𝑗
)𝑗=−𝜈+1,…,𝑀+𝜈
𝑖=−𝜈,…,𝑁+𝜈 ∈ ℝ(𝑁+1)×𝑀

𝜈 , 𝑣 = (𝑣𝑖,𝑗+ 1
2
)𝑗=−𝜈,…,𝑀+𝜈
𝑖=−𝜈+1,…,𝑁+𝜈 ∈ ℝ𝑁×(𝑀+1)

𝜈 .

Considering a function 𝑞 ∶ Ω × [0, 𝑇 ] → ℝ, a vector field 𝒖 ∶ Ω × [0, 𝑇 ] → ℝ,
𝒖 = (𝑢, 𝑣), a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)-discretization of Ω × [0, 𝑇 ], we introduce the grid functions
𝑞𝑛 ∈ ℝ𝑁×𝑀

𝜈 , 𝑢𝑛 ∈ ℝ(𝑁+1)×𝑀
𝜈 , 𝑣𝑛 ∈ ℝ𝑁×(𝑀+1)

𝜈 . Here, 𝑞𝑛𝑖𝑗 = 𝑞(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛), 𝑢𝑛𝑖+ 1
2 ,𝑗

= 𝑢(𝑥𝑖+ 1
2
, 𝑦𝑗 , 𝑡𝑛),

𝑣𝑛𝑖,𝑗+ 1
2
= 𝑢(𝑥𝑖, 𝑦𝑗+ 1

2
, 𝑡𝑛). These grid functions represent the discrete values of 𝑞 and 𝒖 at the

cell centroids and edges, respectively, for each time level 𝑡𝑛 (Figure 2.2). We shall also use
the notations 𝑞𝑛𝑖+ 1

2 ,𝑗
= 𝑞(𝑥𝑖+ 1

2
, 𝑦𝑗 , 𝑡𝑛) and 𝑞𝑛𝑖,𝑗+ 1

2
= 𝑞(𝑥𝑖, 𝑦𝑗+ 1

2
, 𝑡𝑛).
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Figure 3.1: Illustration of (Δ𝑥, Δ𝑦)-grid function 𝑄 (black circles) and a (Δ𝑥Δ𝑦)-C grid wind 𝑢 (blue
squares) and 𝑣 (red squares) and its ghost cell values (in gray) assuming biperiodicity.

We denote by ∇ ⋅ (𝑞𝒖) the divergence operator:

∇ ⋅ (𝑞𝒖)(𝑥, 𝑦, 𝑡) = [𝜕𝑥(𝑢𝑞) + 𝜕𝑦(𝑣𝑞)](𝑥, 𝑦, 𝑡). (3.1)

We recall that we say the 𝒖 is non-divergent or divergent free if ∇ ⋅ 𝒖 = 0. We define the
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(Δ𝑥, Δ𝑦)-grid function D𝑛 as the exact divergence of 𝑞𝒖 at the cell centers, namely

D𝑛
𝑖𝑗 = ∇ ⋅ (𝒖𝑞)(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛). (3.2)

In this Chapter, our focus also lies on periodic grid functions. We define a (Δ𝑥, Δ𝑦)-grid
function 𝑄 as periodic if it satisfies the following conditions:

𝑄𝑖,𝑗 = 𝑄𝑁+𝑖,𝑗 , 𝑖 = −𝜈 + 1,… , 0, 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈,
𝑄𝑖,𝑗 = 𝑄𝑖−𝑁 ,𝑗 , 𝑖 = 𝑁 + 1,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈,
𝑄𝑖,𝑗 = 𝑄𝑖,𝑀+𝑗 , 𝑗 = −𝜈 + 1,… , 0, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈,
𝑄𝑖,𝑗 = 𝑄𝑖,𝑗−𝑀 , 𝑗 = 𝑀 + 1,… ,𝑀 + 𝜈, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈.

We use the notation ℙ𝑁×𝑀
𝜈 represent the spaces of periodic (Δ𝑥, Δ𝑦)-grid functions. Simi-

larly, we define a (Δ𝑥, Δ𝑦)-grid wind (𝑢, 𝑣) as periodic if it meets the following require-
ments:

𝑢𝑖− 1
2 ,𝑗

= 𝑢𝑁+𝑖+ 1
2 ,𝑗
, 𝑖 = −𝜈, … , −1, 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈,

𝑢𝑖+ 1
2 ,𝑗

= 𝑢𝑖+ 1
2−𝑁 ,𝑗

, 𝑖 = 𝑁 + 1,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈,

𝑢𝑖+ 1
2 ,𝑗

= 𝑢𝑖+ 1
2 ,𝑀+𝑗 , 𝑖 = −𝜈, … , 𝑁 + 1 + 𝜈, 𝑗 = −𝜈 + 1,… , 0,

𝑢𝑖+ 1
2 ,𝑗

= 𝑢𝑖+ 1
2 ,𝑗−𝑀

, 𝑖 = −𝜈, … , 𝑁 + 1 + 𝜈, 𝑗 = 𝑀 + 1,… ,𝑀 + 𝜈,

𝑣𝑖,𝑗− 1
2
= 𝑣𝑖,𝑀+𝑗+ 1

2
, 𝑗 = −𝜈, … , −1, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈,

𝑣𝑖,𝑗+ 1
2
= 𝑣𝑖,𝑗+ 1

2−𝑀
, 𝑗 = 𝑀 + 1,… ,𝑀 + 𝜈, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈,

𝑣𝑖,𝑗+ 1
2
= 𝑣𝑁+𝑖,𝑗+ 1

2
, 𝑗 = −𝜈, … ,𝑀 + 1 + 𝜈, 𝑖 = −𝜈 + 1,… , 0,

𝑣𝑖,𝑗+ 1
2
= 𝑐𝑖−𝑁 ,𝑗+ 1

2
, 𝑗 = −𝜈, … , 𝑁 + 1 + 𝜈, 𝑖 = 𝑁 + 1,… , 𝑁 + 𝜈.

In this case, we use the notation 𝑢 ∈ ℙ(𝑁+1)×𝑀
𝜈 , 𝑣 ∈ ℙ𝑁×(𝑀+1)

𝜈 .

For a grid function 𝑄 we also use the notations:

𝑄×,𝑗 ∶= (𝑄−𝜈+1,𝑗 , … , 𝑄𝑁+𝜈,𝑗) ∈ ℝ𝑁
𝜈 ,

𝑄𝑖,× ∶= (𝑄𝑖,−𝜈+1, … , 𝑄𝑖,𝑀+𝜈) ∈ ℝ𝑀
𝜈 .

Given 𝑄 = (𝑄𝑖𝑗) ∈ ℙ𝑁×𝑀
𝜈,𝑃 , we define the 𝑝-norm by

‖𝑄‖𝑝,Δ𝑥×Δ𝑦 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(∑𝑁
𝑖=1 ∑

𝑀
𝑗=1 |𝑄𝑖𝑗 |𝑝)

1
𝑝

if 1 ≤ 𝑝 < ∞,

max𝑖=1,…,𝑁 ,𝑗=1,…,𝑀 |𝑄𝑖𝑗 | if 𝑝 = ∞.
(3.3)

We also introduce the centered difference notation:

𝛿𝑥ℎ(𝑥𝑖, 𝑦, 𝑡) = ℎ(𝑥𝑖+ 1
2
, 𝑦, 𝑡) − ℎ(𝑥𝑖− 1

2
, 𝑦, 𝑡), (3.4)

𝛿𝑦ℎ(𝑥, 𝑦𝑗 , 𝑡) = ℎ(𝑥, 𝑦𝑗+ 1
2
, 𝑡) − ℎ(𝑥, 𝑦𝑗− 1

2
, 𝑡), (3.5)
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for any function ℎ ∶ Ω × [0, 𝑇 ] → ℝ. Additionally, we introduce the average value of 𝑞 in
the control volume Ω𝑖𝑗 at time 𝑡, denoted as 𝑄𝑖𝑗(𝑡), defined by:

𝑄𝑖𝑗(𝑡) =
1

Δ𝑥Δ𝑦 ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑞(𝑥, 𝑦, 𝑡) 𝑑𝑥. (3.6)

Moreover, we define the (Δ𝑥, Δ𝑦)-grid function of average values as 𝑄(𝑡) =
(𝑄𝑖𝑗(𝑡))𝑗=−𝜈+1,…,𝑀+𝜈

𝑖=−𝜈+1,…,𝑁+𝜈 .

For the consideration of periodic boundary conditions, we can define spaces of periodic
functions over the interval Ω as follows:

𝑃(Ω) = {𝑞 ∶ ℝ2 × [0, +∞[→ ℝ ∶ 𝑞(𝑥 + 𝑏 − 𝑎, 𝑦 + 𝑑 − 𝑐, 𝑡) = 𝑞(𝑥, 𝑦, 𝑡), ∀𝑥, 𝑦 ∈ ℝ, 𝑡 ≥ 0}.

Similarly, the space of 𝑘-times periodically differentiable functions 𝑘
𝑃(Ω) can be defined

as:

𝑘
𝑃(Ω) = 𝑃(Ω) ∩ 𝑘(ℝ2 × [0,∞[),

where 𝑘(ℝ2 × [0, +∞[) denotes the space of functions that are 𝑘 times continuously
differentiable in both the spatial and temporal variables. In summary, 𝑃(Ω) represents
the space of periodic functions, and 𝑘

𝑃(Ω) represents the space of 𝑘-times periodically
differentiable functions over Ω subject to periodic boundary conditions.

3.1.2 The 2D advection equation

Let us consider a velocity field given by 𝒖 = (𝑢, 𝑣), where 𝑢 is the velocity in 𝑥-direction
and 𝑣 is the velocity in 𝑥 and 𝑦 direction and 𝑢, 𝑣 ∈ 1

𝑃(Ω). The two-dimensional advection
equation in its differential form in a domain Ω associated to the velocity field or wind 𝒖
and assuming biperiodic boundary conditions is given by:

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

[𝜕𝑡𝑞 + 𝜕𝑥(𝑢𝑞) + 𝜕𝑦(𝑣𝑞)](𝑥, 𝑦, 𝑡) = 0, ∀(𝑥, 𝑦, 𝑡) ∈ ℝ2×]0, +∞[,
𝑞(𝑎, 𝑦, 𝑡) = 𝑞(𝑏, 𝑦, 𝑡), ∀𝑦 ∈ [𝑐, 𝑑], ∀𝑡 ≥ 0,
𝑞(𝑥, 𝑐, 𝑡) = 𝑞(𝑥, 𝑑, 𝑡), ∀𝑥 ∈ [𝑎, 𝑏], ∀𝑡 ≥ 0,
𝑞0(𝑥) = 𝑞(𝑥, 𝑦, 0), ∀(𝑥, 𝑦) ∈ Ω.

(3.7)

A classical or strong solution to the two-dimensional advection equation is a 1
𝑃(Ω) function

𝑞 satisfying Equation (3.7). As we did in Section 2.1, our goal is to deduce an integral form of
Equation (3.7). Thus, let us consider [𝑥1, 𝑥2] × [𝑦1, 𝑦2] ⊂ Ω and [𝑡1, 𝑡2] ⊂ [0, +∞[. Integrating
Equation (3.7) over [𝑥1, 𝑥2] × [𝑦1, 𝑦2] yields:

𝑑
𝑑𝑡( ∫

𝑥2

𝑥1
∫

𝑦2

𝑦1
𝑞(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦) = − ∫

𝑦2

𝑦1 ((𝑢𝑞)(𝑥2, 𝑦, 𝑡) − (𝑢𝑞)(𝑥1, 𝑦, 𝑡)) 𝑑𝑦 (3.8)

− ∫
𝑥2

𝑥1 ((𝑣𝑞)(𝑥, 𝑦2, 𝑡) − (𝑣𝑞)(𝑥, 𝑦1, 𝑡)) 𝑑𝑥.
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Integrating Equation (3.8) over the time interval [𝑡1, 𝑡2], we have:

∫
𝑥2

𝑥1
∫

𝑦2

𝑦1
𝑞(𝑥, 𝑦, 𝑡𝑛+1) 𝑑𝑥 𝑑𝑦 =∫

𝑥2

𝑥1
∫

𝑦2

𝑦1
𝑞(𝑥, 𝑦, 𝑡𝑛) 𝑑𝑥 𝑑𝑦 (3.9)

− ∫
𝑡2

𝑡1
∫

𝑦2

𝑦1 ((𝑢𝑞)(𝑥2, 𝑦, 𝑡) − (𝑢𝑞)(𝑥1, 𝑦, 𝑡)) 𝑑𝑦 𝑑𝑡

− ∫
𝑡2

𝑡1
∫

𝑥2

𝑥1 ((𝑣𝑞)(𝑥, 𝑦2, 𝑡) − (𝑣𝑞)(𝑥, 𝑦1, 𝑡)) 𝑑𝑥 𝑑𝑡.

Equation (3.9) is the integral form of Equation (3.7). We say that 𝑞 is a weak solution to the
advection equation (3.7) if 𝑞 satisfies the integral form (3.9), ∀[𝑥1, 𝑥2] × [𝑦1, 𝑦2] ⊂ Ωo and
∀[𝑡1, 𝑡2] ⊂ [0, +∞[. We summarize the weak version of Equation (3.7) in Problem (3.1).

Problem 3.1. Given an initial condition 𝑞0 and a velocity function 𝒖 = (𝑢, 𝑣) we would like
to find a weak solution 𝑞 of the two-dimensional advection equation in its integral form:

∫
𝑥2

𝑥1
∫

𝑦2

𝑦1
𝑞(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 =∫

𝑥2

𝑥1
∫

𝑦2

𝑦1
𝑞(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦

− ∫
𝑡2

𝑡1
∫

𝑦2

𝑦1 ((𝑢𝑞)(𝑥2, 𝑦, 𝑡) − (𝑢𝑞)(𝑥1, 𝑦, 𝑡)) 𝑑𝑦 𝑑𝑡

− ∫
𝑡2

𝑡1
∫

𝑥2

𝑥1 ((𝑣𝑞)(𝑥, 𝑦2, 𝑡) − (𝑣𝑞)(𝑥, 𝑦1, 𝑡)) 𝑑𝑥 𝑑𝑡.

∀[𝑥1, 𝑥2] × [𝑦1, 𝑦2] × [𝑡1, 𝑡2] ⊂ Ω × [0, 𝑇 ], and 𝑞(𝑥, 𝑦, 0) = 𝑞0(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Ω, 𝑞(𝑎, 𝑦, 𝑡) =
𝑞(𝑏, 𝑦, 𝑡), ∀𝑦 ∈ [𝑐, 𝑑], ∀𝑡 ≥ 0, 𝑞(𝑥, 𝑐, 𝑡) = 𝑞(𝑥, 𝑑, 𝑡), ∀𝑥 ∈ [𝑎, 𝑏], ∀𝑡 ≥ 0.

Similarly to Section 2.1, Equation (3.7) and Problem (3.1) are equivalent when 𝑞, 𝒖 ∈
1
𝑃(Ω). For Problem 3.1, the total mass in Ω is defined by:

𝑀Ω(𝑡) = ∫
Ω
𝑞(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦, ∀𝑡 ∈ [0, 𝑇 ], (3.10)

and is conserved within time:

𝑀Ω(𝑡) = 𝑀Ω(0), ∀𝑡 ∈ [0, 𝑇 ]. (3.11)

Considering a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆) discretization of 𝐷 = Ω× [0, 𝑇 ] and substituting 𝑡1, 𝑡2, 𝑥1, 𝑥2, 𝑦1
and 𝑦2 by 𝑡𝑛, 𝑡𝑛+1, 𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2
, 𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
, respectively, in Equation (3.9), we obtain:

𝑄𝑖𝑗(𝑡𝑛+1) = 𝑄𝑖𝑗(𝑡𝑛) −
Δ𝑡

Δ𝑥Δ𝑦
𝛿𝑥(

1
Δ𝑡 ∫

𝑡2

𝑡1
∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(𝑢𝑞)(𝑥𝑖, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡) (3.12)

−
Δ𝑡

Δ𝑥Δ𝑦
𝛿𝑦(

1
Δ𝑡 ∫

𝑡2

𝑡1
∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(𝑣𝑞)(𝑥, 𝑦𝑗 , 𝑡) 𝑑𝑥 𝑑𝑡),

where we are using the centered finite-difference notation. Now we can define a discretized
version of Problem 3.1 as Problem 3.2.

Problem 3.2. Assume the framework of Problem 3.1 and consider a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)-
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discretization of Ω × [0, 𝑇 ]. Since we are in the framework of Problem 3.1, it follows that:

𝑄𝑖𝑗(𝑡𝑛+1) = 𝑄𝑖𝑗(𝑡𝑛) − 𝜆𝛿𝑥(
1

Δ𝑡Δ𝑦 ∫
𝑡𝑛+1

𝑡𝑛
∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(𝑢𝑞)(𝑥𝑖, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡)

− 𝜆𝛿𝑦(
1

Δ𝑡Δ𝑥 ∫
𝑡𝑛+1

𝑡𝑛
∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(𝑣𝑞)(𝑥, 𝑦𝑗 , 𝑡) 𝑑𝑥 𝑑𝑡),

where 𝑄𝑖𝑗(𝑡) = 1
Δ𝑥Δ𝑦 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

∫ 𝑦𝑗+ 1
2

𝑦𝑗− 1
2

𝑞(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦. Our problem now consists of finding the

values 𝑄𝑖𝑗(𝑡𝑛), ∀𝑖 = 1, … , 𝑁 , ∀𝑗 = 1, … ,𝑀 , ∀𝑛 = 0,… , 𝑁𝑇 − 1, given the initial values 𝑄𝑖𝑗(0),
∀𝑖 = 1, …𝑁 , ∀𝑗 = 1, … ,𝑀 . In other words, we aim to find the average values of 𝑞 in each
control volume Ω𝑖𝑗 at the specified time instances.

It is important to note that no approximations have been made in Problems (3.1) and
(3.2).

3.2 The finite-volume approach

Finally, we define the 2D-FV scheme problem as follows in Problem 3.3.

Problem 3.3 (2D-FV scheme). Assume the framework defined in Problem 3.2. The finite-
volume approach of Problem 3.2 consists of a finding a scheme of the form:

𝑄𝑛+1
𝑖𝑗 = 𝑄𝑛

𝑖𝑗 − 𝜆𝛿𝑖𝐹 𝑛𝑖𝑗 − 𝜆𝛿𝑗𝐺𝑛
𝑖𝑗 , (3.13)

∀𝑖 = 1, … , 𝑁 , ∀𝑗 = 1, … ,𝑀, ∀𝑛 = 0,… , 𝑁𝑇 − 1,

where 𝛿𝑖𝐹 𝑛𝑖𝑗 = 𝐹 𝑛𝑖+ 1
2 ,𝑗

− 𝐹 𝑛𝑖− 1
2 ,𝑗

, 𝛿𝑗𝐺𝑛
𝑖𝑗 = 𝐺𝑛

𝑖,𝑗+ 1
2
− 𝐺𝑛

𝑖,𝑗− 1
2

and 𝑄𝑛 ∈ ℙ𝑁×𝑀
𝜈 is intended to be an

approximation of 𝑄(𝑡𝑛) ∈ ℙ𝑁×𝑀
𝜈 in some sense. We define 𝑄0

𝑖𝑗 = 𝑄𝑖𝑗(0) or 𝑄0
𝑖𝑗 = 𝑞0𝑖𝑗 .

The term 𝐹 𝑛𝑖+ 1
2 ,𝑗

is known as numerical flux in the 𝑥 direction and it approximates
1

Δ𝑡Δ𝑦 ∫
𝑡𝑛+1
𝑡𝑛

∫ 𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(𝑢𝑞)(𝑥𝑖+ 1
2
, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡, ∀𝑖 = 0, 1, … , 𝑁 , and 𝐺𝑛

𝑖,𝑗+ 1
2

is known as numerical flux in

the 𝑦 direction and it approximates 1
Δ𝑡Δ𝑥 ∫

𝑡𝑛+1
𝑡𝑛

∫ 𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(𝑣𝑞)(𝑥, 𝑦𝑗+ 1
2
, 𝑡) 𝑑𝑥 𝑑𝑡, ∀𝑗 = 0, 1, … ,𝑀 , or,

in other words, they estimate the time-averaged fluxes at the control volume Ω𝑖𝑗 boundaries.

Remark 3.3. For Problem 3.3, we define the CFL number in the 𝑥 and 𝑦 direction by
max𝑖,𝑗 {|𝑢𝑛𝑖+ 1

2 ,𝑗
|} Δ𝑡Δ𝑥 and max𝑖,𝑗 {|𝑣𝑛𝑖,𝑗+ 1

2
|} Δ𝑡Δ𝑦 , respectively. The CFL number is maximum between

these numbers and we say that the CFL condition is satisfied if the CFL number is less than
one.

For a 2D-FV the discrete total mass at the time-step 𝑛 is given by

𝑀𝑛 = Δ𝑥Δ𝑦
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝑄𝑛
𝑖𝑗 .

Therefore, the discrete total mass is constant for a 2D-FV scheme, which follows from a
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straightforward computation:

𝑀𝑛+1 = Δ𝑥
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝑄𝑛+1
𝑖𝑗 = 𝑀𝑛 − Δ𝑡

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

(𝐹 𝑛𝑖+ 1
2 ,𝑗

− 𝐹 𝑛𝑖− 1
2 ,𝑗
) − Δ𝑡

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

(𝐺𝑛
𝑖,𝑗+ 1

2
− 𝐺𝑛

𝑖,𝑗− 1
2
)

= 𝑀𝑛 − Δ𝑡
𝑀

∑
𝑗=1

(𝐹 𝑛𝑁+ 1
2 ,𝑗

− 𝐹 𝑛1
2 ,𝑗
) − Δ𝑡

𝑁

∑
𝑖=1

(𝐺𝑛
𝑖,𝑀+ 1

2
− 𝐺𝑛

𝑖, 12
) = 𝑀𝑛,

where we are using that 𝐹 𝑛𝑁+ 1
2 ,𝑗

= 𝐹 𝑛1
2 ,𝑗

, 𝐺𝑛
𝑖,𝑀+ 1

2
= 𝐺𝑛

𝑖, 12
since we are assuming bi-periodic

boundary conditions.

As we mentioned in Problem 3.3, the initial condition may be assumed as 𝑞0𝑖𝑗 or 𝑄𝑖𝑗(0).
For two-dimensional simulations, we are going to assume 𝑞0𝑖𝑗 as initial data to avoid the
computation of integrals. Furthermore, the errors will be calculated using the values 𝑞𝑛𝑖𝑗
instead of𝑄𝑖𝑗(𝑡𝑛). Similarly to Proposition 2.2, we have that the centroid value approximates
the average value with second order, as Proposition 3.1 shows.

Proposition 3.1. If 𝑞 ∈ 2, then |𝑄𝑖𝑗(𝑡𝑛) − 𝑞𝑛𝑖𝑗 | = 𝐶1Δ𝑥2 + 𝐶2Δ𝑥Δ𝑦 + 𝐶3Δ𝑦2, where 𝐶1, 𝐶2
and 𝐶3 are constants.

Proof. Just apply Theorem A.5 for the function 𝑞(𝑥, 𝑦, 𝑡𝑛).

In order to check the consistency of 2D-FV, it is useful to use the notion of discrete
divergence.

Definition 3.5 (Discrete divergence). For Problem 3.3, we define the discrete divergence as
a (Δ𝑥, Δ𝑦)-grid function 𝔻𝑛(𝑄𝑛, 𝑢𝑛, 𝑣𝑛) ∈ ℙ𝑁×𝑀

𝜈 given by:

𝔻𝑛
𝑖𝑗(𝑄

𝑛, 𝑢𝑛, 𝑣𝑛) =
1
Δ𝑡(

𝛿𝑖𝐹 𝑛𝑖𝑗
Δ𝑥

+
𝛿𝑗𝐺𝑛

𝑖𝑗

Δ𝑦 ), 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … ,𝑀. (3.14)

With the aid of the discrete divergence, we may rewrite Equation (3.13) as:

𝑄𝑛+1 = 𝑄𝑛 − Δ𝑡𝔻𝑛(𝑄𝑛, 𝑢𝑛, 𝑣𝑛), (3.15)

Notice that if we replace 𝑄𝑛 by the exact solution 𝑄(𝑡𝑛) in Equation (3.15), we have

𝑄(𝑡𝑛+1) = 𝑄(𝑡𝑛) − Δ𝑡𝔻𝑛(𝑄(𝑡𝑛), 𝑢𝑛, 𝑣𝑛) − Δ𝑡𝜏𝑛, (3.16)

where 𝜏𝑛 ∈ ℙ𝑁×𝑀
𝜈 is the local truncation error (LTE). Rearranging the terms of Equation

(3.16), we obtain:

𝜏𝑛 =
𝑄(𝑡𝑛+1) − 𝑄(𝑡𝑛)

Δ𝑡
− 𝔻𝑛(𝑄(𝑡𝑛), 𝑢𝑛, 𝑣𝑛). (3.17)

We define the consistency of the 2D-FV scheme as follows.

Definition 3.6 (Consistency). Let us consider the framework of Problem 3.3. A 2D-FV scheme
is said to be consist in the 𝑝-norm if for any sequence of (Δ𝑥(𝑘), Δ𝑦(𝑘), Δ𝑡(𝑘), 𝜆)-discretizations,
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𝑘 ∈ ℕ, with lim𝑘→∞ Δ𝑥(𝑘) = lim𝑘→∞ Δ𝑦(𝑘) = lim𝑘→∞ Δ𝑡(𝑘) = 0, we have:

lim
𝑘→∞ [ max

1≤𝑛≤𝑁 (𝑘)
𝑇

‖𝜏𝑛‖𝑝,Δ𝑥(𝑘)×Δ𝑦(𝑘)] = 0,

and it is said to be consistent with order 𝑑 in the 𝑝−norm if

max
1≤𝑛≤𝑁 (𝑘)

𝑇

‖𝜏𝑛‖𝑝,Δ𝑥(𝑘)×Δ𝑦(𝑘) = (Δ𝑥𝑑).

The relationship between consistency and convergence is explained in Section A.4. If
𝑞 satisfies Equation (3.7), it can be observed that consistency is equivalent to the follow-
ing:

max
1≤𝑛≤𝑁 (𝑘)

𝑇

‖D𝑛 − 𝔻𝑛(𝑄𝑛, 𝑢𝑛, 𝑣𝑛)‖𝑝,Δ𝑥(𝑘)×Δ𝑦(𝑘) = (Δ𝑥𝑑),

where D𝑛 ∈ ℙ𝑁×𝑀
𝜈 is defined in Equation (3.2). Therefore, we can determine whether a

2D-FV scheme is consistent by comparing the discrete divergence to the exact diver-
gence.

3.3 Dimension splitting

This Section aims to demonstrate how a 2D-FV scheme, such as the one presented
in Problem 3.3, can be constructed using 1D-FV schemes through a technique known
as dimension splitting. Before introducing the dimension splitting scheme proposed by
Lin and Rood (1996), it is helpful to examine general operator splitting schemes, as the
dimension splitting technique is a specific instance of operator splitting methods.

For a given time interval [0, 𝑇 ], we utilize a Δ𝑡-temporal grid. Let us consider the
abstract Cauchy problem.

{
𝑑𝑞
𝑑𝑡 (𝑡) = 𝐴𝑞(𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],
𝑞(𝑡𝑛) = 𝑞𝑛,

for 𝑛 = 0,… , 𝑁𝑇 − 1, where 𝑞(𝑡) ∈  for some Banach space , and 𝐴 ∶  →  is a linear
operator following the framework of Richtmyer and Morton (1968, Chapter 3). We are
interested in finding 𝑞(𝑡𝑛+1) given 𝑞𝑛. Assuming that 𝐴 = 𝐴1 + 𝐴2 for two linear operators
𝐴1, 𝐴2 ∶  → , we consider the following abstract Cauchy sub-problems:

{
𝑑𝑞1
𝑑𝑡 (𝑡) = 𝐴1𝑞(𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],
𝑞1(𝑡𝑛) = 𝑞𝑛,

and
{

𝑑𝑞21
𝑑𝑡 (𝑡) = 𝐴2𝑞(𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],
𝑞21(𝑡𝑛) = 𝑞1(𝑡𝑛+1).
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Then we can approximate 𝑞(𝑡0 + Δ𝑡) as 𝑞21(𝑡𝑛 + Δ𝑡) with an error of (Δ𝑡) if 𝐴1 and 𝐴2
do not commute. Otherwise, this method is exact. This approach is known as Lie-Trotter
splitting. It’s worth noting that the Lie-Trotter splitting can also be performed in reverse
order when solving the sub-problems:

{
𝑑𝑞2
𝑑𝑡 (𝑡) = 𝐴2𝑞(𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],
𝑞2(𝑡𝑛) = 𝑞𝑛,

and
{

𝑑𝑞21
𝑑𝑡 (𝑡) = 𝐴1𝑞(𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],
𝑞12(𝑡𝑛) = 𝑞1(𝑡𝑛+1),

and again we estimate 𝑞(𝑡𝑛+1) by 𝑞12(𝑡𝑛+1) with error (Δ𝑡). As noted by Strang (1968), we
can consider the following equation to approximate 𝑞(𝑡𝑛+1) using a second-order ((Δ𝑡2))
symmetric scheme:

𝑞∗(𝑡𝑛+1) =
𝑞21(𝑡𝑛+1) + 𝑞12(𝑡𝑛+1)

2
, (3.18)

This scheme is referred to as the average Lie-Trotter splitting (Holden et al., 2010). The
process of averaging two Lie-Trotter splittings is a specific case of methods known as
weighted sequential splitting methods in the literature. Furthermore, this scheme averaging
process can be extended to achieve higher-order schemes (Jia & Li, 2011). For an analysis
of the accuracy of weighted sequential splitting methods, we recommend referring to
Csomós et al. (2005).

It is worth noting that one of the most commonly used second-order splitting schemes
in the literature is the Strang splitting (Strang, 1968). This scheme requires solving three
sub-problems per time-step, with one of them at time 𝑡𝑛 + Δ𝑡

2 . In contrast, the average
Lie-Trotter splitting requires solving four sub-problems per time-step. Consequently, the
Strang splitting is computationally more efficient. However, as we will observe in this
Chapter, when applied to the linear advection equation, the average Lie-Trotter splitting
allows for a modification that eliminates a splitting error arising from considering a
constant scalar field and non-divergent velocity (Lin & Rood, 1996).

3.3.1 Lie-Trotter splitting using PPM

To move towards the scheme from Lin and Rood (1996), let us consider Problem 3.1 in
its differential form (Equation (3.7)). We are going to consider 𝑁 + 2𝜈 one-dimensional
advection equations in the 𝑥-direction:

[𝜕𝑡𝑞𝑥 + 𝜕𝑥(𝑢𝑞𝑥)](𝑥, 𝑦𝑗 , 𝑡) = 0,

for 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈, and the 𝑁 + 2𝜈 one-dimensional advection equations in the
𝑦-direction

[𝜕𝑡𝑞𝑦 + 𝜕𝑦(𝑣𝑞𝑦)](𝑥𝑖, 𝑦, 𝑡) = 0,

for, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈.
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We shall assume that these problems are solved using a 1D-FV scheme as in Problem 2.4
with the PPM numerical flux functions F𝑃𝑃𝑀,𝑥

𝑖+ 1
2 ,𝑗

[𝑄𝑛
×,𝑗 , 𝑐𝑥,𝑛] and F

𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝑄𝑛

𝑖,×, 𝑐𝑦,𝑛], respectively,
where 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
is the time-averaged CFL used in the departure point estimation in the 𝑥

direction and 𝑐𝑦,𝑛𝑖,𝑗+ 1
2

is the time-averaged CFL used in the departure point estimation in
the 𝑦 direction, assuming that the CFL number is less than one (see Equation (2.68)). The
time-averaged CFL numbers are computed using the schemes DP1 (Subsection 2.3.1) and
DP2 (Subsection 2.3.2), applied separately in the 𝑥 and 𝑦 directions.

The values 𝑞𝑥𝐿,𝑖𝑗 , 𝑞𝑥𝑅,𝑖𝑗 , 𝑞
𝑦
𝐿,𝑖𝑗 , and 𝑞𝑦𝑅,𝑖𝑗 , which approximate values of 𝑞, namely 𝑞𝑖− 1

2 ,𝑗
, 𝑞𝑖+ 1

2 ,𝑗
,

𝑞𝑖,𝑗− 1
2
, 𝑞𝑖,𝑗+ 1

2
, respectively, are computed using one of the schemes unlimited PPM (UNLIM)

and monotonic PPM (MONO) as described in Sections 2.4.1 and 2.4.2, again applied sepa-
rately in the 𝑥 and 𝑦 directions. These approximations are expected to be second-order
accurate because the given average values are computed on the 2D control volume Ω𝑖𝑗
instead of the 1D control volumes 𝑋𝑖 or 𝑌𝑗 .

As in Section 2.5, in Equations (2.66) and (2.66), we define the perturbation values in
the 𝑥 direction as:

𝑏𝑥𝐿,𝑖,𝑗 = 𝑞𝑥𝐿,𝑖,𝑗 − 𝑄𝑛
𝑖𝑗 , (3.19)

𝑏𝑥𝑅,𝑖,𝑗 = 𝑞𝑥𝑅,𝑖,𝑗 − 𝑄𝑛
𝑖𝑗 , (3.20)

and the perturbation values in the 𝑦 direction as:

𝑏𝑦𝐿,𝑖,𝑗 = 𝑞𝑦𝐿,𝑖,𝑗 − 𝑄𝑛
𝑖𝑗 , (3.21)

𝑏𝑦𝑅,𝑖,𝑗 = 𝑞𝑦𝑅,𝑖,𝑗 − 𝑄𝑛
𝑖𝑗 . (3.22)

Then, we may express the 1D fluxes in 𝑥 direction as in Equation (2.68), namely:

F𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[𝑄𝑛

×,𝑗 , 𝑐
𝑥,𝑛] =

{
𝑄𝑛
𝑖𝑗 + (1 − 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
)(𝑏𝑥𝑅,𝑖,𝑗 − 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
(𝑏𝑥𝐿,𝑖,𝑗 + 𝑏𝑥𝑅,𝑖,𝑗)), if 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
≥ 0,

𝑄𝑛
𝑖+1,𝑗 + (1 + 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
)(𝑏𝑥𝐿,𝑖+1,𝑗 + 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
(𝑏𝑥𝐿,𝑖+1,𝑗 + 𝑏𝑥𝑅,𝑖+1,𝑗)), if 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
< 0,
(3.23)

for 𝑖 = 0, … , 𝑁 , 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈, and the 1D fluxes in 𝑦 direction reads

F
𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝑄𝑛

𝑖,×, 𝑐
𝑦,𝑛] =

{
𝑄𝑛
𝑖𝑗 + (1 − 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
)(𝑏

𝑦
𝑅,𝑖,𝑗 − 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
(𝑏𝑦𝐿,𝑖,𝑗 + 𝑏𝑦𝑅,𝑖,𝑗)), if 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
≥ 0,

𝑄𝑛
𝑖,𝑗+1 + (1 + 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
)(𝑏

𝑦
𝐿,𝑖,𝑗+1 + 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
(𝑏𝑦𝐿,𝑖,𝑗+1 + 𝑏𝑦𝑅,𝑖,𝑗+1)), if 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
< 0,

(3.24)
for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑗 = 0, … ,𝑀 . For both the unlimited and monotonic PPM schemes,
we set 𝜈 = 3.

We introduce the auxiliary grid functions 𝐅 and 𝐆, both belonging to ℝ𝑁×𝑀
𝜈 , given

by:

𝐅𝑖𝑗[𝑄𝑛, 𝑐𝑥,𝑛] = −
1

|Ω𝑖𝑗 |(
𝑥

𝑖+ 1
2 ,𝑗
F𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[𝑄𝑛

×,𝑗 , 𝑐
𝑥,𝑛] −𝑥

𝑖− 1
2 ,𝑗
F𝑃𝑃𝑀,𝑥
𝑖− 1

2 ,𝑗
[𝑄𝑛

×,𝑗 , 𝑐
𝑥,𝑛]),
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for 𝑖 = 1, … , 𝑁 , 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈, and

𝐆𝑖𝑗[𝑄𝑛, 𝑐𝑦,𝑛] = −
1

|Ω𝑖𝑗 |(
𝑦

𝑖,𝑗+ 1
2
F
𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝑄𝑛

𝑖,×, 𝑐
𝑦,𝑛] −𝑦

𝑖,𝑗− 1
2
F
𝑃𝑃𝑀,𝑦
𝑖,𝑗− 1

2
[𝑄𝑛

𝑖,×, 𝑐
𝑦,𝑛]),

for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈 𝑗 = 1, … ,𝑀 . We are using the notations |Ω𝑖𝑗 | = Δ𝑥Δ𝑦 to represent
the area of the control volume and

𝑥
𝑖+ 1

2 ,𝑗
= 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
Δ𝑥Δ𝑦,

𝑦
𝑖,𝑗+ 1

2
= 𝑐𝑦,𝑛𝑖,𝑗+ 1

2
Δ𝑥Δ𝑦.

This notation shall be useful when we consider these schemes on the cubed-sphere in
Chapter 5. Hence, the operators 𝐅 and 𝐆 represent the numerical updates added to the
average values at time level 𝑛 to obtain their values at time level 𝑛 + 1 when solving the
advection equation in the 𝑥 and 𝑦 directions, respectively.

x

y

(a) 𝑄𝑛 (black circles) and 𝑢 at
edges (blue squares).

x

y

(b) 𝑄𝑥,𝑛 (black circles) and 𝑣 at
edges (red squares).

x

y

(c) 𝑄𝑦𝑥,𝑛 (black circles) after ad-
vecting 𝑄𝑥,𝑛 in 𝑦 direction.

Figure 3.2: Illustration of the Lie-Trotter splitting applied in the 𝑥 direction (operator 𝐅) and then in
the 𝑦 direction (operator 𝐆). Interior cells are depicted using black lines, while ghost cells are depicted
using gray lines. All the winds shown are the ones used in the DP1 departure point scheme. If the DP2
scheme is used, an additional layer of wind ghost values should be added at each boundary in (a) and
(b).

x

y

(a) 𝑄𝑛 (black circles) and 𝑣 at
edges (red squares).

x

y

(b) 𝑄𝑦,𝑛 (black circles) and 𝑢 at
edges (blue squares).

x

y

(c) 𝑄𝑥𝑦,𝑛 (black circles) after ad-
vecting 𝑄𝑦,𝑛 in 𝑥 direction.

Figure 3.3: Similar to Figure 3.2 but considering the Lie-Trotter splitting in reverse order.
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The Lie-Trotter splitting is obtained by solving the advection in the 𝑥 direction

𝑄𝑥,𝑛
𝑖𝑗 = 𝑄𝑛

𝑖𝑗 + 𝐅𝑖𝑗[𝑄𝑛, 𝑐𝑥,𝑛],

for 𝑗 = 𝜈 + 1,… ,𝑀 + 𝜈, 𝑖 = 1, … , 𝑁 (Figure 3.2b), and then we advect in the 𝑦 direction
with initial data 𝑄𝑥,𝑛

𝑄𝑦𝑥,𝑛
𝑖𝑗 = 𝑄𝑥,𝑛

𝑖𝑗 + 𝐆𝑖𝑗[𝑄𝑥,𝑛, 𝑐𝑦,𝑛],

for 𝑗 = 1, … ,𝑀 , 𝑖 = 1, … , 𝑁 (Figure 3.2c). To get the average Lie-Trotter splitting we repeat
the process in the reverse order by solving the advection equation in the 𝑦 direction

𝑄𝑦,𝑛
𝑖𝑗 = 𝑄𝑛

𝑖𝑗 + 𝐆𝑖𝑗[𝑄𝑛, 𝑐𝑦,𝑛],

for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑗 = 1, … ,𝑀 (Figure 3.3b), and then we advect in the 𝑥-direction
with initial data 𝑄𝑦,𝑛+1

𝑄𝑥𝑦,𝑛
𝑖𝑗 = 𝑄𝑦,𝑛

𝑖𝑗 + 𝐅𝑖𝑗[𝑄𝑦,𝑛, 𝑐𝑥,𝑛],

for 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … ,𝑀 (Figure 3.3c) and thus we have the average Lie-Trotter
solution:

𝑄𝑛+1 =
(𝑄𝑥𝑦,𝑛 + 𝑄𝑦𝑥,𝑛)

2
= 𝑄𝑛 +

1
2
𝐅[𝑄𝑛, 𝑐𝑥,𝑛] +

1
2
𝐆[𝑄𝑛, 𝑐𝑦,𝑛]

+
1
2
𝐅[𝑄

𝑛 + 𝐆[𝑄𝑛, 𝑐𝑦,𝑛], 𝑐𝑥,𝑛] +
1
2
𝐆[𝑄

𝑛 + 𝐅[𝑄𝑛, 𝑐𝑥,𝑛], 𝑐𝑦,𝑛].

(3.25)

This scheme shall be referred to in this work as the average Lie-Trotter (LT) scheme.
Finally, we point out that this scheme could be built using any other 1D numerical flux
function, but we focus on PPM since this is what is used in FV3.

3.3.2 Elimination of splitting error for a constant scalar field and
non-divergent wind

Let us, for an instant, assume that 𝐅 and 𝐆 are linear in their first input. This implies
that Equation (3.25) may be rewritten as:

𝑄𝑛+1 = 𝑄𝑛 + 𝐅[𝑄𝑛, 𝑐𝑥,𝑛] + 𝐆[𝑄𝑛, 𝑐𝑦,𝑛]

+
1
2
𝐅[𝐆[𝑄

𝑛, 𝑐𝑦,𝑛], 𝑐𝑥,𝑛] +
1
2
𝐆[𝐅[𝑄

𝑛, 𝑐𝑥,𝑛], 𝑐𝑦,𝑛]. (3.26)

The numerical flux functions defined in Chapter 2 are indeed linear in the input 𝑄 if there
are no monotonic constraints, that is, when we use the unlimited PPM, implying that 𝐅
and 𝐆 are both linear in this case. We are going to consider Equation (3.26) even when
there are monotonic constraints, to analyse the scheme when 𝒖 is non-divergent (∇ ⋅ 𝒖 = 0)
and the scalar field is equal to a constant 𝑞. Then the solution remains constant. Since the
wind is non-divergent, it follows from the Helmholtz decomposition theorem that there
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exists a stream function 𝜓 ∈ 2 such that

𝑢(𝑥, 𝑦, 𝑡) = −𝜕𝑦𝜓(𝑥, 𝑦, 𝑡),
𝑣(𝑥, 𝑦, 𝑡) = 𝜕𝑥𝜓(𝑥, 𝑦, 𝑡).

Then, we may compute the wind using centered-finite differences

𝑢𝑛𝑖+ 1
2 ,𝑗

= −(

𝜓𝑛𝑖+ 1
2 ,𝑗+

1
2
− 𝜓𝑛𝑖+ 1

2 ,𝑗−
1
2

Δ𝑦 ),

𝑣𝑛𝑖,𝑗+ 1
2
=
𝜓𝑛𝑖+ 1

2 ,𝑗+
1
2
− 𝜓𝑛𝑖− 1

2 ,𝑗+
1
2

Δ𝑥
,

and thus the following discrete divergence free condition holds

𝛿𝑖𝑢𝑛𝑖𝑗
Δ𝑥

+
𝛿𝑗𝑣𝑛𝑖𝑗
Δ𝑦

= 0. (3.27)

Notice that this identity holds for the time-averaged winds if we assume that that 𝑢̃𝑛 and
𝑣̃𝑛 are computed using DP1. If we use DP2, this identity is no longer valid. Now, using the
fact that the scalar field is supposed to be constant, we have:

𝐅𝑖𝑗[𝑞, 𝑐𝑥,𝑛] = −𝑞𝜆𝛿𝑖𝑢̃𝑛𝑖𝑗 ,
𝐆𝑖𝑗[𝑞, 𝑐𝑦,𝑛] = −𝑞𝜆𝛿𝑗 𝑣̃𝑛𝑖𝑗 ,

recalling that 𝜆 = Δ𝑡
Δ𝑥 = Δ𝑡

Δ𝑦 . Applying 𝐆 and 𝐅 again, we have:

𝐆𝑖𝑗[𝐅[𝑞, 𝑐𝑦,𝑛], 𝑐𝑥,𝑛] = 𝑞𝜆2(𝑣̃
𝑛
𝑖,𝑗+ 1

2
F
𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝛿𝑖𝑢̃𝑛𝑖𝑗 , 𝑐

𝑦,𝑛] − 𝑣̃𝑛𝑖,𝑗− 1
2
F
𝑃𝑃𝑀,𝑦
𝑖,𝑗− 1

2
[𝛿𝑖𝑢̃𝑛𝑖𝑗 , 𝑐

𝑦,𝑛])

= 𝑞𝜆2𝛿𝑖(𝑣̃𝑛𝑖𝑗F
𝑃𝑃𝑀,𝑦
𝑖𝑗 [𝛿𝑖𝑢̃𝑛𝑖𝑗 , 𝑐

𝑦,𝑛]),

𝐅𝑖𝑗[𝐆[𝑞, 𝑐𝑥,𝑛], 𝑐𝑦,𝑛] = 𝑞𝜆2(𝑢̃
𝑛
𝑖,𝑗+ 1

2
F𝑃𝑃𝑀,𝑥
𝑖,𝑗+ 1

2
[𝛿𝑗 𝑣̃𝑛𝑖𝑗 , 𝑐

𝑥,𝑛] − 𝑢̃𝑛𝑖,𝑗− 1
2
F𝑃𝑃𝑀,𝑥
𝑖,𝑗− 1

2
[𝛿𝑗 𝑣̃𝑛𝑖𝑗 , 𝑐

𝑥,𝑛])
= 𝑞𝜆2𝛿𝑗(𝑢̃𝑛𝑖𝑗F

𝑃𝑃𝑀,𝑥
𝑖𝑗 [𝛿𝑗 𝑣̃𝑛𝑖𝑗 , 𝑐

𝑥,𝑛]).

However, if we compute the updated solution using Equation (3.26) we have that the error
is given by

𝑄𝑛+1
𝑖𝑗 − 𝑞 = −Δ𝑡(

𝛿𝑖𝑢̃𝑛𝑖𝑗
Δ𝑥

+
𝛿𝑗 𝑣̃𝑛𝑖𝑗
Δ𝑦 ) −

𝑞
2
𝜆2(𝛿𝑗(𝑢̃

𝑛
𝑖𝑗F

𝑃𝑃𝑀,𝑥
𝑖𝑗 [𝛿𝑗 𝑣̃𝑛𝑖𝑗 , 𝑐

𝑥,𝑛]) + 𝛿𝑖(𝑣̃𝑛𝑖𝑗F
𝑃𝑃𝑀,𝑦
𝑖𝑗 [𝛿𝑖𝑢̃𝑛𝑖𝑗 , 𝑐

𝑦,𝑛]))

= −
𝑞
2
𝜆2(𝛿𝑗(𝑢̃

𝑛
𝑖𝑗F

𝑃𝑃𝑀,𝑥
𝑖𝑗 [𝛿𝑗 𝑣̃𝑛𝑖𝑗 , 𝑐

𝑥,𝑛]) + 𝛿𝑖(𝑣̃𝑛𝑖𝑗F
𝑃𝑃𝑀,𝑦
𝑖𝑗 [𝛿𝑖𝑢̃𝑛𝑖𝑗 , 𝑐

𝑦,𝑛])), (3.28)
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To eliminate this error, Lin and Rood (1996) proposed modifying the Equation (3.25)
to

𝑄𝑛+1 = 𝑄𝑛 +
1
2
𝐅[𝑄𝑛, 𝑐𝑥,𝑛] +

1
2
𝐆[𝑄𝑛, 𝑐𝑦,𝑛]

+
1
2
𝐅[𝑄

𝑛 + 𝐠[𝑄𝑛, 𝑐𝑦,𝑛], 𝑐𝑥,𝑛] +
1
2
𝐆[𝑄

𝑛 + 𝐟[𝑄𝑛, 𝑐𝑥,𝑛], 𝑐𝑦,𝑛], (3.29)

where 𝐟 and 𝐠 are called inner advective operators. In this work, we shall consider the
inner advective operator proposed by Putman and Lin (2007) (hereafter referred to as
PL). The PL scheme is currently used in the FV3 dynamical core. Also, notice that the LT
scheme is equivalent to the PL scheme but uses 𝐟 = 𝐅 and 𝐠 = 𝐆. All the expressions for
each inner advective operator mentioned are shown in Table 3.1.

Scheme 𝐟𝑖𝑗(𝑄𝑛, 𝑐𝑥,𝑛) 𝐠𝑖𝑗(𝑄𝑛, 𝑐𝑦,𝑛)
LT 𝐅𝑖𝑗(𝑄𝑛, 𝑐𝑥,𝑛) 𝐆𝑖𝑗(𝑄𝑛, 𝑐𝑦,𝑛)
PL −𝑄𝑛

𝑖𝑗 +
𝑄𝑛
𝑖𝑗+𝐅𝑖𝑗 (𝑄𝑛,𝑐𝑥,𝑛)

1− 1
|Ω𝑖𝑗 |(𝑥

𝑖+ 1
2 ,𝑗

−𝑥
𝑖− 1

2 ,𝑗
)

−𝑄𝑛
𝑖𝑗 +

𝑄𝑛
𝑖𝑗+𝐆𝑖𝑗 (𝑄𝑛,𝑐𝑦,𝑛)

1− 1
|Ω𝑖𝑗 | (

𝑦
𝑖,𝑗+ 1

2
−𝑦

𝑖,𝑗− 1
2
)

Table 3.1: Expression of the inner advective operators considered in this work. LT stands for the
average Lie-Trotter scheme, while PL stands for the scheme from Putman and Lin (2007).

It is easy to see that the PL operator eliminates the term multiplied by 𝜆2 that appeared
in Equation (3.28) when we apply these operators to a constant grid function 𝑄𝑛 and a
non-divergent velocity field in Equation (3.28). Therefore, these inner advective operators
eliminate the splitting error for a constant field and a non-divergent velocity field, making
this scheme exact in this case if we use DP1 to compute the departure points. If we use
DP2 with PL splitting, Equation (3.28) will introduce a first-order error since the discrete
divergence-free condition (Equation (3.27)) for the time-averaged winds of DP2 does not
hold in this case. We shall see this in the numerical experiments (Section 3.4). We point
out that although the LT scheme has an error in Equation (3.28), it is a second-order error,
since this scheme is generally second-order accurate (Holden et al., 2010), provided that
the 1D flux is second-order, which shall be the case if we use the DP2 scheme as discussed
in Chapter 2.

3.4 Numerical experiments
To assess the dimension-splitting schemes LT and PL introduced previously, we are

going to consider the linear advection equation on the spatial domain [−𝐿
2 ,

𝐿
2 ] × [−𝐿

2 ,
𝐿
2 ]

and in the time interval [0, 𝑇 ], with biperiodic boundary conditions, where 𝐿 = 𝜋
2𝑅.

Here, 𝑅 = 6.371 × 106 meters, representing the Earth’s radius, and 𝑇 = 1036800 seconds,
equivalent to 12 days. The spatial domain spans approximately 104 kilometers in both
directions, which correspond to approximately the lengths of a cubed-sphere panel, as
shall be seen in Chapter 4.

For the 1D schemes, we will consider the FV-SL unlimited PPM (Subsection 2.4.1) and
the monotonic PPM (Subsection 2.4.2), each tested with both departure point schemes DP1
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(Subsection 2.3.1) and DP2 (Subsection 2.3.2). We employ (Δ𝑥(𝑘), Δ𝑦(𝑘), 𝜆)-discretizations
with Δ𝑥(𝑘) = Δ𝑦(𝑘) = 𝐿

𝑁 (𝑘) , 𝑁 (𝑘) = 48 × 2𝑘, 𝑘 = 0,… , 4. We introduce the relative error in the
𝑝-norm:

𝐸𝑘 =
‖𝑄𝑛 − 𝑄0‖𝑝,Δ𝑥×Δ𝑦

‖𝑄0‖𝑝,Δ𝑥×Δ𝑦
.

We are going to consider 𝑝 = 1 and 𝑝 = ∞. The convergence rate, as defined in Section
2.6, and the preservation of total mass variation with machine precision are considered in
all experiments presented here. It is worth noting that in error computation, we employ
centroid values instead of exact average values to avoid the computation of analytical
integrals. This approximation, as discussed in Proposition 3.1, introduces a second-order
error.

3.4.1 Square wave with constant wind advection

For the initial test, a constant velocity 𝒖 = ( 𝐿𝑇 ,
𝐿
𝑇 ) is considered. The IC is a rectangular

profile (refer to Figure 3.4a) given by:

𝑞0(𝑥, 𝑦) =

{
1 if (𝑥, 𝑦) ∈ [−0.1𝐿, 0.1𝐿] × [−0.1𝐿, 0.1𝐿],
0.1 otherwise.

(3.30)

(a) IC (b) PL-UNLIM (c) PL-MONO.

Figure 3.4: Linear advection experiment using a constant velocity 𝒖 = ( 𝐿𝑇 ,
𝐿
𝑇 ), a CFL number set

to 0.67, and a grid resolution of 𝑁 = 𝑀 = 48. The initial condition is given by Equation (3.30). We
run this test with the PL splitting combined with the unlimited PPM (UNLIM) (b) and the monotonic
PPM (MONO) (c). The figures display the advected profile after 12 days (one time period). The initial
condition is depicted in (a).

We will employ a time step of 14400 seconds and set 𝑁 = 𝑀 = 48 (therefore Δ𝑥 =
Δ𝑦 ≈ 208 km), resulting in a CFL number approximately equal to 0.67. The exact solution
of Problem 3.1 in this scenario is 𝑞0((𝑥, 𝑦) − 𝒖𝑡). Due to the constant velocity field, all
splitting schemes introduced in Section 3.3 are equivalent. Therefore, we only consider
the PL splitting. Additionally, it is evident that the Lie-Trotter splitting is exact in this case
(see, for example, LeVeque, 1990, p. 202-203), meaning no splitting error is introduced. For
the 1D schemes, we utilize DP1 to compute the departure point, as this scheme is exact
when the velocity is constant. The conclusions drawn from this test closely resemble those
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of the first 1D test discussed in Section 2.6.1. This similarity arises because no splitting
error is introduced when the velocity remains constant. Figure 3.4c illustrates that PL
splitting maintains monotonicity, particularly noticeable when using the monotonic 1D
scheme.

3.4.2 Flow deformation with nondivergent wind
For a first variable velocity testing, we consider two Gaussian hills given by:

𝑞0(𝑥, 𝑦) = 0.1 + 0.9 exp( − 10 sin2
(𝜋(

𝑥
𝐿
− 0.1)))exp( − 10 sin2

(𝜋
𝑦
𝐿))

+

exp( − 10 sin2
(𝜋(

𝑥
𝐿
+ 0.1)))exp( − 10 sin2

(𝜋
𝑦
𝐿))

,
(3.31)

defined in [−𝐿
2 ,

𝐿
2 ] × [−

𝐿
2 ,

𝐿
2 ], whose graph is shown in Figure 3.5.

Figure 3.5: Two Gaussian hills IC (Equation (3.31)).

We consider the Cartesian version of the deformational flow test case on the sphere
from Nair and Lauritzen (2010) proposed by Y. Chen et al. (2017). The velocity is given
by: {

𝑢(𝑥, 𝑦, 𝑡) = −𝑐 𝐿𝑇 sin
2(𝛼1) sin (

𝜋𝑦
𝐿 ) cos (

𝜋𝑦
𝐿 ) cos (

𝜋𝑡
𝑇 ) +

𝐿
𝑇 ,

𝑣(𝑥, 𝑦, 𝑡) = −2𝑐 𝐿𝑇 sin(𝛼1) cos(𝛼1) cos
2 (

𝜋𝑦
𝐿 ) cos (

𝜋𝑡
𝑇 ),

(3.32)

where 𝛼1 = 2𝜋( 𝑥𝐿 −
𝑡
𝑇 ), 𝑐 = 10. Y. Chen et al. (2017) uses periodic boundary conditions in

the 𝑥−direction and zero-gradient in the 𝑦−direction. However, we will employ biperiodic
boundary conditions to simplify the problem. This velocity field is divergence-free, and
deforms the initial condition. After 𝑇 time units (12 days in our case), the scalar field
returns to its initial position and shape, allowing us to compute the error. Notice that in
Equation (3.32), we have added a constant wind 𝐿

𝑇 in the component 𝑢 to prevent error
cancellation, as discussed by Nair and Lauritzen (2010).

Figure 3.6 illustrates the results obtained using two Gaussian hills and the velocity
field from Equation (3.32). We employed a high-resolution grid with 𝑁 = 768, along with
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the PL-DP1-MONO scheme, to demonstrate the behavior of the test. The Figure shows the
deformation of the scalar field over time, eventually returning to its initial position.

(a) 𝑡 = 2 days. (b) 𝑡 = 4 days.

(c) 𝑡 = 6 days. (d) 𝑡 = 8 days.

(e) 𝑡 = 10 days. (f) 𝑡 = 12 days.

Figure 3.6: Linear advection experiment using the velocity from Equation (3.32), a CFL number equal
to 0.79, 𝑁 = 768 cells, and the IC is given by Equation (3.31) These figures show the advected profile at
2 (3.6a), 4 (3.6b), 6 (3.6c), 8 (3.6d), 10 (3.6e), and 12 (3.6f) days. The white arrows illustrate the velocity
field. We are using the PL-DP1-MONO scheme, where MONO is the monotonic PPM.

To investigate the error convergence, we employ time steps Δ𝑡(𝑘) = 5400
2𝑘 for 𝑘 = 0,… , 4,

and the spatial discretization as described at the beginning of Section 3.4, resulting in a
CFL number approximately equal to 0.79.

We can observe from Figure 3.7 that for the unlimited PPM, PL-DP1 and LT-DP2 have
smaller error and higher convergence order than PL-DP2 and LT-DP1. However, when
considering the monotonic PPM, all the schemes have the same error in 𝐿∞ norm. The
results of the monotonic scheme have an order of approximately 1.5, which is expected, as
the monotonic limiter reduces the order of accuracy. The errors in 𝐿1 norm (Figure 3.8)
exhibit a similar behavior; the only difference is that PL-DP1 and LT-DP2 have smaller
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errors than PL-DP2 and LT-DP1, along with higher convergence order. The reason that
justifies why improving the departure point calculation of the PL scheme, moving from
PL-DP1 to PL-DP2, does not improve the overall error, is justified by the analysis provided
in Section 3.3.2, where it is pointed out that PL-DP2 will not satisfy the discrete divergence-
free condition (Equation (3.27)), introducing a first-order error in this case.

Figure 3.7: 𝐿∞ error for the two Gaussian hills (Equation 3.31) with the velocity from Equation (3.32).
Schemes using the unlimited PPM (UNLIM) are on the left, and the monotonic PPM (MONO) are on
the right. The PL scheme with DP1 is in green, and with DP2 is in red. The LT scheme with DP1 is in
blue, and with DP2 is in yellow.

Figure 3.8: Similar to Figure 3.7 but considering the 𝐿1 error.
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3.4.3 Flow deformation with divergent wind
For a second variable velocity testing, we consider two Gaussian hills given by Equation

(3.31) and the following wind:
{
𝑢(𝑥, 𝑦, 𝑡) = − 𝐿

𝑇 cos
2 (𝜋𝑥𝐿 ) sin (

2𝜋𝑦
𝐿 ) cos (𝜋𝑡𝑇 ),

𝑣(𝑥, 𝑦, 𝑡) = − 𝐿
𝑇 cos

2 (
𝜋𝑦
𝐿 ) sin (

2𝜋𝑥
𝐿 ) cos (𝜋𝑡𝑇 ).

(3.33)

This test is based on the planar test from Nair and Lauritzen (2010), but we adapt it to make
the wind divergent. Figure 3.9 illustrates the results obtained using two Gaussian hills and
the velocity field from Equation (3.33), similarly to Figure 3.6. Again, the IC returns to its
initial position after 12 days, allowing us to compute the error.

(a) 𝑡 = 2 days. (b) 𝑡 = 4 days.

(c) 𝑡 = 6 days. (d) 𝑡 = 8 days.

(e) 𝑡 = 10 days. (f) 𝑡 = 12 days.

Figure 3.9: Similar to Figure 3.6 but using the wind from Equation (3.33). We are using the PL-DP1-
MONO scheme, where MONO is the monotonic PPM.

We employ time steps Δ𝑡(𝑘) = 14400
2𝑘 for 𝑘 = 0,… , 4, to analyse the error convergence,
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along with the spatial discretization as described at the beginning of Section 3.4, resulting
in a CFL number approximately equal to 0.67.

We can observe from Figure 3.10 that for the unlimited PPM, PL-DP1 has the bigger
error, while LT-DP2 has the smaller error and the highest convergence rate. However,
when considering the monotonic PPM scheme, all the schemes have almost the same error
in 𝐿∞ norm. Regarding the error in 𝐿1 norm (Figure 3.11), we can see that for monotonic
PPM, LT-DP2 achieves second-order accuracy, while PL-DP1 achieves only first order.
Finally, the schemes PL-DP2 and LT-DP1 have the same errors for both the unlimited and
monotonic PPM, in both 𝐿∞ and 𝐿1 norms.

Figure 3.10: 𝐿∞ error for the two Gaussian hills (Equation 3.31) with the velocity from Equation
(3.33). Schemes using the unlimited PPM (UNLIM) are on the left, and monotonic PPM (MONO) are on
the right. The PL scheme with DP1 is in green, and with DP2 is in red. The LT scheme with DP1 is in
blue, and with DP2 is in yellow.

Figure 3.11: Similar to Figure 3.10 but considering the 𝐿1 error.
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3.5 Concluding remarks
In this Chapter, we introduced the dimension-splitting method, which replaces the

solution of the 2D advection equation with the solution of multiple 1D advection equations,
resulting in more cost-effective 2D-FV schemes. For our simulations, we adopted the 1D
FV-SL scheme based on PPM to solve the 1D equations.

We modified the average of two Lie-Trotter splittings, which is second-order accurate, to
ensure the preservation of a constant scalar field with a divergence-free velocity, following
the works of Lin and Rood (1996) and Putman and Lin (2007). This modification addresses
the limitation of the classical averaging Lie-Trotter splitting and follows the methodology
used in FV3.

Based on the simulation with constant velocity, we concluded that all the splitting
schemes are equivalent and do not introduce any splitting errors. In fact, the splittings are
exact in this case. We observed that all the conclusions from the 1D simulations hold true
in the 2D case as well, with mass conservation and monotonicity being preserved when
using the monotonic limiters in the 1D subproblems.

In the simulation with variable velocity, we conducted two flow deformation test cases.
For the divergence-free test, the schemes PL-DP1 and LT-DP2 showed similar behavior and
performed better than PL-DP2 and LT-DP1 in all error metrics analyzed here. However,
for the velocity with non-zero divergence, we observed that the scheme PL-DP1 achieved
only first-order accuracy and had larger errors than PL-DP2 and LT-DP1. This limitation is
because the PL-DP1 method is designed to be accurate for divergence-free winds. This test
highlights this limitation because we have divergence. The scheme LT-DP2 showed better
error performance, achieving second-order accuracy regardless of the non-divergence-free
condition in the wind. LT-DP2 also showed second-order accuracy in the 𝐿1 norm when
we employed the monotonic 1D flux, while PL-DP1 achieved first order.

In summary, the scheme PL-DP1, which is currently used in FV3 as the 2D advection
solver, showed second-order accuracy for divergence-free winds, with LT-DP2 exhibiting
similar behavior. However, for non-divergent free winds, LT-DP2 demonstrated second-
order accuracy, while PL-DP1 achieved only first order.
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Chapter 4

Cubed-sphere grids

So far, we have described the dimension-splitting technique in Chapter 3 for solving
the advection equation on the plane. Our current goal is to apply these schemes to solve
the advection equation on the sphere. Consequently, we need to introduce a grid over
the sphere. In order to facilitate the extension of dimension-splitting techniques onto the
sphere, we require a logical Cartesian coordinate system, at least locally.

We point out that dimension-splitting schemes could be formulated in unstructured
grids (see for instance Herzfeld and Engwirda (2023)). A good reason to use a locally
Cartesian grid is to avoid problems, such as the lack of convergence of the divergence
operator, among others, that may arise in some grid cells within those grids (Peixoto,
2016; Peixoto & Barros, 2013; Weller et al., 2012). Also, a logical Cartesian coordinate
system eases the process of higher-order interpolation, which can be more complicated on
a spherical unstructured grid, requiring tangent plane approximations (Peixoto & Barros,
2014; Skamarock & Gassmann, 2011).

The scheme proposed by Lin and Rood (1996) was originally implemented on latitude-
longitude grids, and the FV dynamical core was elucidated in Lin (2004). The latitude-
longitude grids exhibit convergence of meridians at the poles, necessitating the utilization
of the Semi-Lagrangian formulation of PPM for larger CFL numbers, as discussed in Section
2.5, to overcome the CFL restriction imposed by the poles. However, this approach needs
the processes in a parallel domain decomposition of the latitude-longitude grid to utilize
more data at the poles, resulting in less parallel efficiency. Therefore, Putman and Lin
(2007) proposed considering the cubed-sphere (CS, hereafter) instead. The CS grid is more
uniform, thus not exhibiting a strong CFL condition anywhere. This eliminates the need
for the Semi-Lagrangian formulation of PPM, which is better for parallel efficiency, and
led to the development of the FV3 core.

The CS grid was originally proposed by Sadourny (1972) and was reinvestigated by
Ronchi et al. (1996) and Rančić et al. (1996). As is usual for Planotic grids, we start with a
Platonic solid, in this case, a cube, which is circumscribed in a sphere. We then project
its faces onto the sphere. The original CS, called the equidistant CS, was proposed by
Sadourny (1972) but resulted in a non-uniform grid. To address this issue, a solution was
proposed by introducing angular coordinates, leading to a quasi-uniform grid known as the
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equiangular CS. The cubed sphere consists of six panels, each one having a local Cartesian
coordinate system. As we pointed out before, this makes it easier to extend methods from
the plane to the sphere. In fact, Putman and Lin (2007) extends the dimension splitting
technique from Lin and Rood (1996), as presented in Chapter 3, to the CS.

There are essentially two major challenges when working with the CS grid:

1. The non-orthogonal grid system: This challenge is primarily related to the appear-
ance of metric terms in the equations. It adds computational cost and often requires
conversions between contravariant and covariant components of a velocity field.

2. The discontinuity of the coordinate system at the cube edges: This is perhaps the
most problematic challenge. Computing stencils along the cube edges becomes
challenging due to the discontinuous nature of the coordinate system.

One possible approach to compute stencils at the edges is to extend the local coordinate of
each panel to its neighboring panels, adding ghost cells in the halo region. In the case of
the equiangular CS, ghost cell values lie on the same geodesics containing the data from
the neighboring panels. This allows for the use of one-dimensional high-order Lagrange
interpolation to compute the stencils at the edges. This approach has been extensively
used in the literature (X. Chen, 2021; Croisille, 2013; Katta et al., 2015a, 2015b) and was
initially introduced by Ronchi et al. (1996). This approach is referred to as duo-grid, as
named by X. Chen (2021). Alternatively, Putman and Lin (2007) uses extrapolation for
the PPM reconstruction values near the cube edges. Another approach that avoids the
need for interpolation or extrapolation near the edges is the conformal CS developed by
Rančić et al. (1996). While this grid leads to an orthogonal and continuous coordinate
system near the edges, it generates grid singularities near the cube corners, similar to
the pole problem. An improved and more uniform conformal grid, called the Uniform
Jacobian cubed sphere, was later proposed by Rančić et al. (2017). Each approach is likely
to generate grid imprinting, and one of the goals of this work is to investigate the amount
of grid imprinting produced by different methods.

This Chapter aims to review and investigate the geometrical properties of the CS. We
start with a basic review of the CS mappings in Section 4.1. In Section 4.2, we introduce
the CS grids and investigate its geometrical properties. Section 4.3 investigates how we
can apply 1D Lagrange interpolation using the adjacent panels data to obtain values of a
scalar/vector field on ghost cells. In Section 4.3.4, we compare the current extrapolation
used in FV3 with Lagrange when using the PPM reconstruction to remap the values
from centers to edges on the cubed-sphere cells. Final thoughts are presented in Section
4.4.
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4.1 Cubed-sphere mappings

4.1.1 Mapping between the cube and sphere

We start this section by introducing the mapping between the cube and the sphere,
which will divide the sphere into 6 quadrilaterals, also called panels, and allow us to
tessellate the sphere into smaller quadrilaterals for panels. Given 𝑅 > 0, we denote the
sphere of radius 𝑅 centered at the origin of ℝ3 as:

𝕊2𝑅 = {𝑃 = (𝑋, 𝑌 , 𝑍) ∈ ℝ3 ∶ 𝑋 2 + 𝑌 2 + 𝑍2 = 𝑅2}.

We consider the family of maps 𝚪𝑝 ∶ [−1, 1] × [−1, 1] → 𝕊2𝑅, 𝑝 = 1,… , 6, where:

𝚪1(𝑥, 𝑦) =
𝑅√

1 + 𝑥2 + 𝑦2
(1, 𝑥, 𝑦),

𝚪2(𝑥, 𝑦) =
𝑅√

1 + 𝑥2 + 𝑦2
(−𝑥, 1, 𝑦),

𝚪3(𝑥, 𝑦) =
𝑅√

1 + 𝑥2 + 𝑦2
(−1, −𝑥, 𝑦),

𝚪4(𝑥, 𝑦) =
𝑅√

1 + 𝑥2 + 𝑦2
(𝑥, −1, 𝑦),

𝚪5(𝑥, 𝑦) =
𝑅√

1 + 𝑥2 + 𝑦2
(−𝑦, 𝑥, 1),

𝚪6(𝑥, 𝑦) =
𝑅√

1 + 𝑥2 + 𝑦2
(𝑦, 𝑥, −1).

(a) Gridlines of the cube to the sphere mapping (b) Cube and sphere mapping for 𝑍 = 0.

Figure 4.1: (a) Illustration of the resulting cube-to-sphere mapping and (b) illustration of the cube-to-
sphere projection.
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The set of 6 maps {𝚪𝑝, 𝑝 = 1, … , 6} allow us to cover the sphere (Figure 4.1). Here 𝑝
denotes a panel, and they are defined and orientated as Figure 4.2 shows. Then, we can
represent a point on the sphere using the cubed-sphere coordinates (𝑥, 𝑦, 𝑝).

Figure 4.2: Cubed-sphere panels definition and orientation. Figure taken from Jung et al. (2019).

The derivative of the maps 𝚪𝑝 are given by:

𝑑𝚪1(𝑥, 𝑦) =
𝑅

(1 + 𝑥2 + 𝑦2)3/2
⎡
⎢
⎢
⎣

−𝑥 −𝑦
1 + 𝑦2 −𝑥𝑦
−𝑥𝑦 1 + 𝑥2

⎤
⎥
⎥
⎦
, 𝑑𝚪2(𝑥, 𝑦) =

𝑅
(1 + 𝑥2 + 𝑦2)3/2

⎡
⎢
⎢
⎣

−(1 + 𝑦2) 𝑥𝑦
−𝑥 −𝑦
−𝑥𝑦 1 + 𝑥2

⎤
⎥
⎥
⎦
,

𝑑𝚪3(𝑥, 𝑦) =
𝑅

(1 + 𝑥2 + 𝑦2)3/2
⎡
⎢
⎢
⎣

𝑥 𝑦
−(1 + 𝑦2) 𝑥𝑦

−𝑥𝑦 1 + 𝑥2

⎤
⎥
⎥
⎦
, 𝑑𝚪4(𝑥, 𝑦) =

𝑅
(1 + 𝑥2 + 𝑦2)3/2

⎡
⎢
⎢
⎣

1 + 𝑦2 −𝑥𝑦
𝑥 𝑦

−𝑥𝑦 1 + 𝑥2

⎤
⎥
⎥
⎦
,

𝑑𝚪5(𝑥, 𝑦) =
𝑅

(1 + 𝑥2 + 𝑦2)3/2
⎡
⎢
⎢
⎣

𝑥𝑦 −(1 + 𝑥2)
1 + 𝑦2 −𝑥𝑦
−𝑥 −𝑦

⎤
⎥
⎥
⎦
, 𝑑𝚪6(𝑥, 𝑦) =

𝑅
(1 + 𝑥2 + 𝑦2)3/2

⎡
⎢
⎢
⎣

−𝑥𝑦 1 + 𝑥2
1 + 𝑦2 −𝑥𝑦
𝑥 𝑦

⎤
⎥
⎥
⎦
.

With the aid of the derivative, we may define a basis of tangent vectors {𝜕𝑥𝚪, 𝜕𝑦𝚪} on each
point on the sphere by:

𝜕𝑥𝚪(𝑥, 𝑦, 𝑝) = 𝑑𝚪𝑝(𝑥, 𝑦) ⋅ [
1
0] , 𝜕𝑦𝚪(𝑥, 𝑦, 𝑝) = 𝑑𝚪𝑝(𝑥, 𝑦) ⋅ [

0
1] .

Notice that the matrix

𝐺𝚪(𝑥, 𝑦) ∶= [𝑑𝚪𝑝(𝑥, 𝑦)]𝑇 𝑑𝚪𝑝(𝑥, 𝑦) =
𝑅2

(1 + 𝑥2 + 𝑦2)2 [
1 + 𝑥2 −𝑥𝑦
−𝑥𝑦 1 + 𝑦2] ,

does not depend on 𝑝. This matrix is known as metric tensor. It is easy to see that:

𝐺𝚪(𝑥, 𝑦) = [
⟨𝜕𝑥𝚪𝑝, 𝜕𝑥𝚪𝑝⟩ ⟨𝜕𝑥𝚪𝑝, 𝜕𝑦𝚪𝑝⟩
⟨𝜕𝑥𝚪𝑝, 𝜕𝑦𝚪𝑝⟩ ⟨𝜕𝑦𝚪𝑝, 𝜕𝑦𝚪𝑝⟩]

, (4.1)

where ⟨⋅, ⋅⟩ denotes the standard inner product of ℝ3, and that 𝐺Γ(𝑥, 𝑦) is positive-definite,
∀(𝑥, 𝑦) ∈ [−1, 1] × [−1, 1]. The Jacobian of the metric tensor 𝐺𝚪(𝑥, 𝑦), denoted by

√
g𝚪 and
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called metric term, is then given by:

√
g𝚪(𝑥, 𝑦) ∶=

√
| det 𝐺𝚪(𝑥, 𝑦)| =

𝑅2

(1 + 𝑥2 + 𝑦2)3/2
.

Now let us assume that we have a function 𝛽 ∶ [−𝛼, 𝛼] → [−1, 1], for some positive
𝛼 > 0, supposed to be bijective and 1 with inverse 1 as well. That is, 𝛽 is a change of
coordinates. Let us consider 𝚿𝑝 ∶ [−𝛼, 𝛼] × [−𝛼, 𝛼] → 𝕊2𝑅, given by

𝚿𝑝(𝑥, 𝑦) ∶= 𝚪𝑝(𝛽(𝑥), 𝛽(𝑦)).

It follows from the chain rule that:

𝑑𝚿𝑝(𝑥, 𝑦) = 𝑑𝚪𝑝(𝛽(𝑥), 𝛽(𝑦)) ⋅ diag(𝛽′(𝑥), 𝛽′(𝑦)),

where diag(𝛽′(𝑥), 𝛽′(𝑦)) is a diagonal 2 × 2 matrix with diagonal entries given by 𝛽′(𝑥)
and 𝛽′(𝑦). We also have that tangent vector basis {𝜕𝑥𝚿𝑝, 𝜕𝑦𝚿𝑝} satisfying

𝜕𝑥𝚿𝑝(𝑥, 𝑦) = 𝛽′(𝑥) ⋅ 𝜕𝑥𝚪𝑝(𝛽(𝑥), 𝛽(𝑦)),

𝜕𝑦𝚿𝑝(𝑥, 𝑦) = 𝛽′(𝑦) ⋅ 𝜕𝑦𝚪𝑝(𝛽(𝑥), 𝛽(𝑦)).

The metric tensor of 𝚿𝑝 is defined as 𝐺Γ in Equation (4.1):

𝐺(𝑥, 𝑦) = [
⟨𝜕𝑥𝚿𝑝, 𝜕𝑥𝚿𝑝⟩ ⟨𝜕𝑥𝚿𝑝, 𝜕𝑦𝚿𝑝⟩
⟨𝜕𝑥𝚿𝑝, 𝜕𝑦𝚿𝑝⟩ ⟨𝜕𝑦𝚿𝑝, 𝜕𝑦𝚿𝑝⟩]

.

Finally, the metric term
√
g ∶=

√
det 𝐺 is expressed in terms of

√
gΓ as

√
g(𝑥, 𝑦) = 𝛽′(𝑥)𝛽′(𝑦)

√
gΓ(𝛽(𝑥), 𝛽(𝑦))

= 𝛽′(𝑥)𝛽′(𝑦)
𝑅2

(1 + 𝛽(𝑥)2 + 𝛽(𝑦)2)
3/2 ,

which may also be expressed as

√
g(𝑥, 𝑦) = ‖𝜕𝑥𝚿𝑝‖‖𝜕𝑦𝚿𝑝‖ sin 𝛼(𝑥, 𝑦, 𝑝), (4.2)

where 𝛼 is the angle between 𝜕𝑥𝚿𝑝 and 𝜕𝑦𝚿𝑝 that satisfies

cos 𝛼(𝑥, 𝑦, 𝑝) =
⟨𝜕𝑥𝚿𝑝, 𝜕𝑥𝚿𝑝⟩
‖𝜕𝑥𝚿𝑝‖‖𝜕𝑦𝚿𝑝‖

.



62

4 | CUBED-SPHERE GRIDS

4.2 Cubed-sphere grids
Now that we have established the mapping between the cube and sphere with coordi-

nate changes, we may introduce the cubed-sphere grids proposed in the literature.

4.2.1 Equidistant cubed-sphere
The first cubed-sphere grid was proposed by Sadourny (1972). This grid is obtained by

using 𝛽(𝑥) = 𝑥 , 𝛼 = 1 in the 𝚿𝑝 mapping described in Section 4.1.1. This grid partitions
the cube face into equally spaced points and projects them onto the sphere, as illustrated in
Figure 4.1, hence the name equidistant. We shall denote this grid by g1 since the parameter
grid_type in FV3 is set equal to 1 to use this grid.

4.2.2 Equiangular cubed-sphere
Another cubed-sphere mapping is the equiangular mapping, introduced by Ronchi

et al. (1996), which leads to a more uniform grid. This grid is obtained by considering the
mapping 𝚿𝑝 described in Section 4.1.1 with 𝛽(𝑥) = tan 𝑥 and 𝛼 = 𝜋

4 . In this case, 𝛽(𝑥)
represents the angular coordinates, and the cube-sphere is obtained by partitioning the
angle between grid points equally, as illustrated in Figure 4.3, hence the name equiangular.
This grid is denoted by g2, for the same reason of the notation g1.

(a) Gridlines of the cube to the sphere equian-
gular mapping

(b) Cube and sphere equiangular mapping for
𝑍 = 0.

Figure 4.3: (a) Illustration of the resulting cube-to-sphere mapping and (b) illustration of the cube-to-
sphere projection using the equiangular mapping.

4.2.3 Equi-edge cubed-sphere
Another cubed-sphere mapping is the equi-edge reported by X. Chen (2021) using

𝛽(𝑥) =
√
2 tan 𝑥 and 𝛼 = arcsin ( 1√

3). It is worth noting that while this mapping technique
had been used previously in FV3, it was not formally documented until the work of X. Chen
(2021). Figure 4.4 illustrates the equi-edge mapping.



4.2 | CUBED-SPHERE GRIDS

63

(a) Gridlines of the cube to the sphere equi-edge
mapping

(b) Cube and sphere equi-edge mapping for
𝑍 = 0.

Figure 4.4: (a) Illustration of the resulting cube-to-sphere mapping and (b) illustration of the cube-to-
sphere projection using the equi-edge mapping.

The idea behind the equi-edge cubed-sphere lies in partitioning the edges of the
spherical cube equally, and then generating the other cells, hence the name equi-edge.
This grid is denoted by g0, for the same reason of the notation g1. Also, this grid leads to
more uniform cells after applying the grid stretching option of FV3 (X. Chen, 2021; Harris
et al., 2016).

4.2.4 Geometric properties

We will utilize the notation introduced in Section 3.1.1 throughout this Chapter. We
shall used the Earth radius 𝑅 = 6.371 × 106 meters. The parameter 𝜈 represents a non-
negative integer indicating the number of ghost cell layers in each panel boundary, called
halo size. To generate the cubed-sphere, we consider a (Δ𝑥, Δ𝑦)-grid denoted by ΩΔ𝑥,Δ𝑦 =
(Ω𝑖𝑗)𝑖,𝑗=−𝜈+1,…,𝑁+𝜈, where Δ𝑥 = Δ𝑦, and it covers the domain Ω. A control volume of the
cubed-sphere is denoted by Ω𝑖𝑗𝑝, defined as follows:

Ω𝑖𝑗𝑝 = Ψ𝑝(Ω𝑖𝑗) − 𝜈 + 1 ≤ 𝑖, 𝑗 ≤ 𝑁 + 𝜈, 1 ≤ 𝑝 ≤ 6.

The cubed-sphere grid refers to the collection of control volumes (Ω𝑖𝑗𝑝)
𝑝=1,…,6
𝑖,𝑗=−𝜈+1,…,𝑁+𝜈. In

Figures 4.1, 4.3 and 4.4 examples of the cubed-sphere grids are depicted, excluding the
ghost cells. These grids are generated using the equidistant, equiangular and equi-edge
mappings for 𝑁 = 10.

We will denote the area of Ω𝑖𝑗𝑝 by |Ω𝑖𝑗 |. Notice that the area does not depend on the

panel due to the grid symmetry. We also define the diameter of a cell as 2
√

|Ω𝑖𝑗 |
𝜋 , which

corresponds to the diameter of a circle with area |Ω𝑖𝑗 |. This gives a good approximation to
the cell diameters, as a cell on the cubed-sphere has similar lengths. The control volume
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area is given by:

|Ω𝑖𝑗 | = ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

√
g(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = |Ω̂𝑖𝑗 | + (Δ𝑥2), (4.3)

where |Ω̂𝑖𝑗 | =
√
g(𝑥𝑖, 𝑦𝑗)Δ𝑥Δ𝑦, and the last equality follows from Proposition 3.1. In tables

4.1, 4.2, and 4.3, we display the diameters of the equi-edge (g0), equidistant (g1), and
equiangular (g2) grids for 𝑁 = 48× 2𝑘, where 𝑘 = 0,… , 4. These values of 𝑁 are considered
in this work. Similarly, in tables 4.4, 4.5, and 4.6, we display the areas.

𝑁 Mean Length (km) Min Length (km) Max Length (km) Max
Min

48 218 175 266 1.5192
96 108 86 131 1.5195
192 54 43 65 1.5196
384 26 21 32 1.5197
768 13 10 16 1.5197

Table 4.1: Mean diameter, minimum diameter, and maximum diameter for different values of 𝑁
considering the equi-edge grid (g0).

𝑁 Mean Length (km) Min Length (km) Max Length (km) Max
Min

48 215 134 305 2.2780
96 107 66 151 2.2791
192 53 33 75 2.2794
384 26 16 37 2.2795
768 13 8 18 2.2795

Table 4.2: As Table 4.1 but considering the equidistant grid (g1).

𝑁 Mean Length (km) Min Length (km) Max Length (km) Max
Min

48 220 202 240 1.1890
96 109 99 118 1.1892
192 54 49 59 1.1892
384 27 24 29 1.1892
768 13 12 14 1.1892

Table 4.3: As Table 4.1 but considering the equiangular grid (g2).

We can observe that in terms of areas and diameters of the cells, the equidistant grid (g1)
is the less uniform, while the equiangular grid is the most uniform grid. The equi-edge grid
is more uniform than the equidistant grid, but the maximum/minimum ratio of the areas is
almost 2.3. Despite this, the equi-edge grid is the operational grid in some applications of
FV3 (X. Chen, 2021; Harris et al., 2021), such as, for instance, the Next Generation Global
Prediction System (NGGPS) (Zhou et al., 2019), because this grid is expected to produce
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𝑁 Mean Area (km2) Min Area (km2) Max Area (km2) Max
Min

48 38033 24113 55650 2.3078
96 9364 5902 13628 2.3090
192 2323 1460 3371 2.3093
384 578 363 838 2.3094
768 144 90 209 2.3094

Table 4.4: Mean area, minimum area, and maximum area for different values of 𝑁 considering the
equi-edge grid (g0).

𝑁 Mean Area (km2) Min Area (km2) Max Area (km2) Max
Min

48 37762 14145 73403 5.1891
96 9331 3462 17985 5.1944
192 2319 856 4450 5.1957
384 578 213 1106 5.1960
768 144 53 276 5.1961

Table 4.5: As Table 4.4 but considering the equidistant grid (g1).

𝑁 Mean Area (km2) Min Area (km2) Max Area (km2) Max
Min

48 38269 32062 45327 1.4137
96 9393 7847 11096 1.4141
192 2327 1941 2745 1.4142
384 579 482 682 1.4142
768 144 120 170 1.4142

Table 4.6: As Table 4.4 but considering the equiangular grid (g2).

less grid imprinting due to its greater uniformity near the cubed edges. Therefore, in this
thesis, we shall constrain our attention only to the equi-edge and equiangular grids, since
the equiangular grid is ideally more uniform and the equi-edge grid is currently used in
FV3. In Figure 4.5, we illustrate the areas of both grids, equi-edge (g0) and equiangular
(g2). We can observe that the areas of the equi-edge grid exhibit a higher gradient near
the cube corners, while the equiangular grid appears to have a higher gradient near the
middle of the cube edges.

There are four types of grid points on the cubed-sphere that we need to compute: the
center, corners, right-left edge midpoints, and up-down edge midpoints. The locations of
these points are illustrated in Figure 4.6 for the equiangular grid (g2).

One possible approach is to use the cubed-sphere mapping to generate these points,
based on the grid points projected onto the sphere from the plane. These points shall be
denoted using a superscript ’c’. The corner points, as the name suggest, represent the
corners of the control volume, namely

Ψ𝑐
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

∶= Ψ𝑝(𝑥𝑖+ 1
2
, 𝑦𝑗+ 1

2
). (4.4)
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(a) g0 grid areas (km2). (b) g2 grid areas (km2).

Figure 4.5: Areas for the grid equi-edge (g0) and equiangular grid (g2) using 𝑁 = 384.

Figure 4.6: Illustration of the center (white), corner (black), right-left edge (blue) and up-down edge
(red) points for the equiangular grid (g2) with 𝑁 = 10.

Similarly, the cell centers are:
Ψ𝑐
𝑖𝑗𝑝 ∶= Ψ𝑝(𝑥𝑖, 𝑦𝑗). (4.5)

The right-left edge points are the midpoints of the edge in the 𝑦-direction, namely:

Ψ𝑐
𝑖+ 1

2 ,𝑗 ,𝑝
∶= Ψ𝑝(𝑥𝑖+ 1

2
, 𝑦𝑗). (4.6)

The up-down edge points are the midpoints of the edge in the 𝑥-direction, namely:

Ψ𝑐
𝑖,𝑗+ 1

2 ,𝑝
∶= Ψ𝑝(𝑥𝑖, 𝑦𝑗+ 1

2
). (4.7)

The grids equi-edge (g0) and equiangular (g2), formulated with these grid points, are
denoted by g0.c and g2.c, respectively. We refer to this grid point formulation as cube
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midpoints, which is a common approach used in the literature (Guo et al., 2014; Katta et al.,
2015a, 2015b; Nair et al., 2005b; Ullrich et al., 2010).

Another way to compute the grid points, which is used in FV3, is to compute the
corner points as before and obtain the center, right-left edge and up-down edge points
using the spherical midpoints. These points shall be denoted using a superscript ’s’. The
corner points in this case are:

Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

∶= Ψ𝑐
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝
. (4.8)

The center points are computed by averaging the values of 4 corner points:

Ψ𝑠
𝑖𝑗𝑝 ∶=

Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖+ 1

2 ,𝑗−
1
2 ,𝑝

+ Ψ𝑠
𝑖− 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖− 1

2 ,𝑗−
1
2 ,𝑝

‖Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖+ 1

2 ,𝑗−
1
2 ,𝑝

+ Ψ𝑠
𝑖− 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖− 1

2 ,𝑗−
1
2 ,𝑝
‖
. (4.9)

Similarly, the right-left edge points are obtained by averaging the values of 2 corner
points.

Ψ𝑠
𝑖+ 1

2 ,𝑗 ,𝑝
∶=

Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖+ 1

2 ,𝑗−
1
2 ,𝑝

‖Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖+ 1

2 ,𝑗−
1
2 ,𝑝
‖
. (4.10)

and the up-down edge points are also given by the average the values of 2 corner
points:

Ψ𝑠
𝑖,𝑗+ 1

2 ,𝑝
∶=

Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖− 1

2 ,𝑗+
1
2 ,𝑝

‖Ψ𝑠
𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

+ Ψ𝑠
𝑖− 1

2 ,𝑗+
1
2 ,𝑝
‖
. (4.11)

The grids equi-edge (g0) and equiangular (g2), formulated with these grid points, are
denoted by g0.s and g2.s, respectively. We refer to this grid points formulation as spherical
midpoints. One can easily see that:

Ψ𝑠
𝑖+ 1

2 ,𝑗 ,𝑝
= Ψ𝑐

𝑖+ 1
2 ,𝑗 ,𝑝

+ (Δ𝑥2), (4.12)

Ψ𝑠
𝑖,𝑗+ 1

2 ,𝑝
= Ψ𝑐

𝑖,𝑗+ 1
2 ,𝑝

+ (Δ𝑥2), (4.13)

Ψ𝑠
𝑖,𝑗 ,𝑝 = Ψ𝑐

𝑖,𝑗 ,𝑝 + (Δ𝑥2). (4.14)

Then, we should expect similar results when using different grid point formulations,
especially when using a high-resolution grid. In g0.c or g2.c grids, the points are aligned
along geodesics. This happens because the cube-mapping maps lines on the plane onto
geodesics on the sphere. However, one can see that this does not occur on g0.s or g2.s, as
the center, right-left edge, and up-down edge points are not aligned on the same geodesic.
Although this misalignment becomes negligible for high resolutions, it impacts ghost cell
interpolation accuracy, as we shall see in Section 4.3.

Hereafter in this Subsection, we are going to omit the superscripts ’s’ and ’c’, because
what is described here has the same meaning for both midpoint formulations. Finally, we
introduce the following geodesic distances in 𝑥 and 𝑦 directions, respectively,

𝛿𝑥𝑖𝑗 = 𝑑(Ψ𝑖+ 1
2 ,𝑗 ,𝑝

, Ψ𝑖− 1
2 ,𝑗 ,𝑝

), (4.15)

𝛿𝑦𝑖𝑗 = 𝑑(Ψ𝑖,𝑗+ 1
2 ,𝑝
, Ψ𝑖,𝑗− 1

2 ,𝑝
), (4.16)
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where 𝑑(𝑃, 𝑄) = 𝑅 arccos (⟨𝑃, 𝑄⟩), for 𝑃, 𝑄 ∈ 𝕊2𝑅, and we assume that 𝑖 and 𝑗 can be integers
or half-integers. Notice that these distances do not depend on the panel due to the grid
symmetry. These distances may be represented in terms of the tangent vector norms
as:

𝛿𝑥𝑖𝑗 = ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

‖𝜕𝑥𝚿𝑝‖(𝑥, 𝑦𝑗) 𝑑𝑥, (4.17)

𝛿𝑦𝑖𝑗 = ∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

‖𝜕𝑦𝚿𝑝‖(𝑥𝑖, 𝑦) 𝑑𝑦. (4.18)

Hence, their midpoint approximations are defined as:

𝛿̂𝑥𝑖𝑗 = ‖𝜕𝑥𝚿𝑖𝑗𝑝‖Δ𝑥, (4.19)

𝛿̂𝑦𝑖𝑗 = ‖𝜕𝑦𝚿𝑖𝑗𝑝‖Δ𝑦, (4.20)

which are second-order accurate (see Theorem A.4):

𝛿𝑥𝑖𝑗 = 𝛿̂𝑥𝑖𝑗 + (Δ𝑥2), (4.21)

𝛿𝑦𝑖𝑗 = 𝛿̂𝑦𝑖𝑗 + (Δ𝑦2). (4.22)

4.2.5 Duo-grid points

The corner duo-grid points are generated by computing the mappings 𝚿𝑝 for the grid
points (𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2
) where 𝑖 and 𝑗 out of the range 0 to 𝑁 . When using the cube midpoint

formulation, the center, right-left edge, and up-down edge points are computed analogously.
In Figure 4.7, we illustrate the duo-grid points obtained for both equi-edge and equiangular
grids. We can observe in Figure 4.7c that the corner duo-grid points of the equiangular
grid are aligned on common geodesics. This property has been known since the work of
Ronchi et al. (1996), and similarly, it holds for center, right-left edge, and up-down edge
duo-grid points when using the cube midpoint formulation. This property is very useful
because it allows us to use 1D Lagrange interpolation to estimate the duo-grid values using
values from neighboring panels, and it has been widely used in the literature (X. Chen,
2021; Croisille, 2013; Katta et al., 2015a, 2015b; Rossmanith, 2006).

However, it is evident from Figure 4.7a that the analogous property does not hold for
the equi-edge grid To address this problem, X. Chen (2021) proposes modifying the ghost
values of the 𝑥 and 𝑦 coordinates by mirroring certain points. This generates the new
duo-grid points, aligning them on the same geodesic as those from the neighboring panel.
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More formally, for 𝑔 = 1, 2, … , 𝜈, we introduce the mirrored values

𝑥̂−𝑔+ 1
2
= arctan(

1
𝛼
tan (−

𝜋
2
− arctan (𝛼 tan 𝑥𝑔+ 1

2
))) , (4.23)

𝑥̂𝑁+𝑔+ 1
2
= −𝑥̂−𝑔+ 1

2
, (4.24)

𝑦̂−𝑔+ 1
2
= arctan(

1
𝛼
tan (−

𝜋
2
− arctan (𝛼 tan 𝑦𝑔+ 1

2
))) , (4.25)

𝑦̂𝑁+𝑔+ 1
2
= −𝑦̂−𝑔+ 1

2
, (4.26)

to replace 𝑥−𝑔+ 1
2
, 𝑥𝑁+𝑔+ 1

2
, 𝑦−𝑔+ 1

2
and 𝑦𝑁+𝑔+ 1

2
, respectively. When computing the grid points

using the cube midpoints formulation, the values of 𝑥𝑖 and 𝑦𝑗 are readjusted similarly.
Figure 4.7b illustrates how the modified duo-grid of equi-edge (g0) aligns with the geodesics
of neighboring panels just as the equiangular grids (g2) (Figure 4.7c). Notice, however,
that the equi-edge corner points will no longer be equally spaced in terms of its 𝑥 and 𝑦
coordinates, in contrast to equiangular grid, where the 𝑥 and 𝑦 coordinates of the corner
points are uniformly spaced. This may require special attention from numerical schemes
using equi-edge near edges due to the loss of uniformity.

4.2.6 Tangent vectors on the sphere

The tangent space at 𝑃 ∈ 𝕊2𝑅 is denoted by 𝑇𝑃𝕊2. It is easy to see that:

𝑇𝑃𝕊2𝑅 = {𝑃0 ∈ ℝ3 ∶ ⟨𝑃, 𝑃0⟩ = 0}.

We are going to consider three ways to represent an element of 𝕊2𝑅: using (𝑋, 𝑌 , 𝑍) coor-
dinates, or using (𝜆, 𝜙) latitude-longitude coordinates, or, at last, using the cubed-sphere
coordinates (𝑥, 𝑦, 𝑝), where (𝑥, 𝑦) are the cube face coordinates and 𝑝 ∈ {1, 2, ⋯ , 6} stands
for a cube panel. We say that a vector field 𝒖 ∶ 𝕊2𝑅 → ℝ3 is tangent on the sphere if
𝒖(𝑃) ∈ 𝑇𝑃𝕊2𝑅, ∀𝑃 ∈ 𝕊2𝑅.

Conversions between latitude-longitude and contravariant coordinates

We consider the latitude-longitude mapping 𝚷 ∶ [0, 2𝜋] × [−𝜋
2 ,

𝜋
2 ] → 𝕊2𝑅, 𝚷 =

(Π1, Π2, Π3), given by:

Π1(𝜆, 𝜙) = 𝑅 cos 𝜙 cos 𝜆, (4.27)
Π2(𝜆, 𝜙) = 𝑅 cos 𝜙 sin 𝜆, (4.28)
Π3(𝜆, 𝜙) = 𝑅 sin 𝜙. (4.29)

The derivative or Jacobian matrix of the mapping 𝚷 is given by:

𝑑𝚷(𝜆, 𝜙) = 𝑅
⎡
⎢
⎢
⎣

− cos 𝜙 sin 𝜆 − sin 𝜙 cos 𝜆
cos 𝜙 cos 𝜆 sin 𝜙 sin 𝜆

0 cos 𝜙

⎤
⎥
⎥
⎦
. (4.30)
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(a) g0 duo-grid. (b) Mirrored g0 duo-grid.

(c) g2 duo-grid.

Figure 4.7: Duo-grid lines of panel 1 for the equi-edge grid g0 (a) and the equiangular grid g2 (c). (b)
shows the mirrored duo-grid of equi-edge grid. Corner duo-grid points are denoted by blue circles, and
the corner points are denoted by white points.

Using this matrix’s columns, we can define the tangent vectors:

𝜕𝜆𝚷(𝜆, 𝜙) = 𝑑𝚷(𝜆, 𝜙) [
1
0] , 𝜕𝜙𝚷(𝜆, 𝜙) = 𝑑𝚷(𝜆, 𝜙) [

0
1] . (4.31)

We normalize the vectors 𝜕𝜆𝚷 and 𝜕𝜙𝚷 and we obtain unit tangent vectors on the sphere
at Π(𝜆, 𝜙):

𝒆𝜆(𝜆, 𝜙) =
⎡
⎢
⎢
⎣

− sin 𝜆
cos 𝜆
0

⎤
⎥
⎥
⎦
, 𝒆𝜙(𝜆, 𝜙) =

⎡
⎢
⎢
⎣

− sin 𝜙 cos 𝜆
− sin 𝜙 sin 𝜆

cos 𝜙

⎤
⎥
⎥
⎦
. (4.32)
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Let us consider a tangent vector field 𝒖 ∶ 𝕊2𝑅 → ℝ3 on the sphere, represented as

𝒖(𝜆, 𝜙) = 𝑢𝜆(𝜆, 𝜙)𝒆𝜆(𝜆, 𝜙) + 𝑣𝜙(𝜆, 𝜙)𝒆𝜙(𝜆, 𝜙). (4.33)

We call 𝑢𝜆 as zonal component of the wind and 𝑣𝜙 as meridional component of the wind.
Or, we may also represent this vector field using the basis obtained by cubed-sphere
coordinates:

𝒖(𝑥, 𝑦, 𝑝) = u(𝑥, 𝑦, 𝑝)𝜕𝑥𝚿𝑝(𝑥, 𝑦) + v(𝑥, 𝑦, 𝑝)𝜕𝑦𝚿𝑝(𝑥, 𝑦). (4.34)

This representation is known as contravariant representation. In order to relate the latitude-
longitude representation with the contravariant representation, we notice that:

𝜕𝑥𝚿𝑝(𝑥, 𝑦, 𝑝) = ⟨𝜕𝑥𝚿𝑝, 𝒆𝜆⟩𝒆𝜆(𝜆, 𝜙) + ⟨𝜕𝑥𝚿𝑝, 𝒆𝜙⟩𝒆𝜙(𝜆, 𝜙), (4.35)
𝜕𝑦𝚿𝑝(𝑥, 𝑦, 𝑝) = ⟨𝜕𝑦𝚿𝑝, 𝒆𝜆⟩𝒆𝜆(𝜆, 𝜙) + ⟨𝜕𝑦𝚿𝑝, 𝒆𝜙⟩𝒆𝜙(𝜆, 𝜙), (4.36)

which holds since the vectors 𝒆𝜆(𝜆, 𝜙) and 𝒆𝜙(𝜆, 𝜙) are orthogonal. Replacing Equations
(4.35) and (4.36) in Equation (4.34), we obtain the values (𝑢𝜆, 𝑣𝜙) in terms of the contravari-
ant components (𝑢, 𝑣) as the following matrix equation:

[
𝑢𝜆(𝜆, 𝜙)
𝑣𝜙(𝜆, 𝜙)]

= [
⟨𝜕𝑥𝚿𝑝, 𝒆𝜆⟩ ⟨𝜕𝑦𝚿𝑝, 𝒆𝜆⟩
⟨𝜕𝑥𝚿𝑝, 𝒆𝜙⟩ ⟨𝜕𝑦𝚿𝑝, 𝒆𝜙⟩] [

u(𝑥, 𝑦, 𝑝)
v(𝑥, 𝑦, 𝑝)] . (4.37)

Conversely, we may express the contravariant components in terms of latitude-longitude
components by inverting Equation (4.37).

In practice when discretizing PDEs on the cubed-sphere, FV3 schemes use the normal-
ized contravariant wind (𝑢, 𝑣) given by:

𝒖(𝑥, 𝑦, 𝑝) = 𝑢(𝑥, 𝑦, 𝑝)𝒆𝑥(𝑥, 𝑦, 𝑝) + 𝑣(𝑥, 𝑦, 𝑝)𝒆𝑦(𝑥, 𝑦, 𝑝), (4.38)

where 𝒆𝑥 and 𝒆𝑦 are the normalized cubed-sphere tangent vectors:

𝒆𝑥(𝑥, 𝑦, 𝑝) =
𝜕𝑥𝚿𝑝(𝑥, 𝑦)
‖𝜕𝑥𝚿𝑝(𝑥, 𝑦)‖

, 𝒆𝑦(𝑥, 𝑦, 𝑝) =
𝜕𝑦𝚿𝑝(𝑥, 𝑦)
‖𝜕𝑦𝚿𝑝(𝑥, 𝑦)‖

. (4.39)

It is easy to see that:

u(𝑥, 𝑦, 𝑝) =
𝑢(𝑥, 𝑦, 𝑝)

‖𝜕𝑥𝚿𝑝(𝑥, 𝑦)‖
, v(𝑥, 𝑦, 𝑝) =

𝑣(𝑥, 𝑦, 𝑝)
‖𝜕𝑦𝚿𝑝(𝑥, 𝑦)‖

. (4.40)

The normalized contravariant form is used because it offers greater generality and flexi-
bility when working with optimized cubed-sphere grids, as discussed in Putman and Lin
(2007), and stretched grids (Harris et al., 2016), where explicit expressions of the exact,
non-normalized tangent vectors are either not available or can be overly complicated.
On the other hand, the normalized tangent vectors at grid points may be computed
easily in terms of the grid points (see Appendix C2 of X. Chen (2021)). The latitude-
longitude representation is related with the normalized contravariant representation by
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the expression:

[
𝑢𝜆(𝜆, 𝜙)
𝑣𝜙(𝜆, 𝜙)]

= [
⟨𝒆𝑥 , 𝒆𝜆⟩ ⟨𝒆𝑦 , 𝒆𝜆⟩
⟨𝒆𝑥 , 𝒆𝜙⟩ ⟨𝒆𝑦 , 𝒆𝜙⟩] [

𝑢(𝑥, 𝑦, 𝑝)
𝑣(𝑥, 𝑦, 𝑝)] . (4.41)

Conversely, we may express the normalized contravariant components in terms of latitude-
longitude components by inverting Equation (4.41).

Covariant/contravariant conversion

Let us consider again a tangent vector field 𝒖 ∶ 𝕊2𝑅 → ℝ3 on the sphere. Its contravariant
representation is given by Equation (4.34). The covariant components (U,V) are given
by:

U(𝑥, 𝑦, 𝑝) = ⟨𝒖(𝑥, 𝑦, 𝑝), 𝜕𝑥𝚿𝑝(𝑥, 𝑦, 𝑝)⟩, (4.42)
V(𝑥, 𝑦, 𝑝) = ⟨𝒖(𝑥, 𝑦, 𝑝), 𝜕𝑦𝚿𝑝(𝑥, 𝑦, 𝑝)⟩. (4.43)

Replacing Equation (4.34) in Equations (4.42) and (4.43) we obtain the relation between
covariant components in terms of the contravariant terms:

[
U(𝑥, 𝑦, 𝑝)
V(𝑥, 𝑦, 𝑝)] = [

⟨𝜕𝑥𝚿𝑝, 𝜕𝑥𝚿𝑝⟩ ⟨𝜕𝑥𝚿𝑝, 𝜕𝑦𝚿𝑝⟩
⟨𝜕𝑥𝚿𝑝, 𝜕𝑦𝚿𝑝⟩ ⟨𝜕𝑦𝚿𝑝, 𝜕𝑦𝚿𝑝⟩] [

𝑢(𝑥, 𝑦, 𝑝)
𝑣(𝑥, 𝑦, 𝑝)] . (4.44)

Like the contravariant component, FV3 works with the normalized covariant wind (𝑈 , 𝑉 )
given by:

𝑈(𝑥, 𝑦, 𝑝) = ⟨𝒖(𝑥, 𝑦, 𝑝), 𝒆𝑦(𝑥, 𝑦, 𝑝)⟩, 𝑉 (𝑥, 𝑦, 𝑝) = ⟨𝒖(𝑥, 𝑦, 𝑝), 𝒆𝑦(𝑥, 𝑦, 𝑝)⟩. (4.45)

It is easy to see that:

𝑈(𝑥, 𝑦, 𝑝) =
U(𝑥, 𝑦, 𝑝)

‖𝜕𝑥𝚿𝑝(𝑥, 𝑦)‖
, 𝑉 (𝑥, 𝑦, 𝑝) =

V(𝑥, 𝑦, 𝑝)
‖𝜕𝑦𝚿𝑝(𝑥, 𝑦)‖

. (4.46)

Replacing Equation (4.38) in Equation (4.45) we obtain the relation between normalized
covariant components in terms of the normalized contravariant terms:

[
𝑈(𝑥, 𝑦, 𝑝)
𝑉 (𝑥, 𝑦, 𝑝)] = [

1 ⟨𝒆𝑥 , 𝒆𝑦⟩
⟨𝒆𝑥 , 𝒆𝑦⟩ 1 ] [

𝑢(𝑥, 𝑦, 𝑝)
𝑣(𝑥, 𝑦, 𝑝)] . (4.47)

Recall that
⟨𝒆𝑥 , 𝒆𝑦⟩(𝑥, 𝑦, 𝑝) = cos 𝛼(𝑥, 𝑦, 𝑝), (4.48)

where 𝛼(𝑥, 𝑦, 𝑝) is the angle between 𝒆𝑥 and 𝒆𝑦 , which is the formula implemented in
FV3 following Putman and Lin (2007). We may express the normalized contravariant
components in terms of the normalized covariant terms inverting Equation (4.47). Notice
that combining Equation (4.47) with Equations (4.41) one may get relations between the
latitude-longitude components and the covariant components.
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4.3 Edges treatment

4.3.1 Notation

We also utilize the notation 𝑁 = ℝ(𝑁+𝜈)×(𝑁+𝜈)×6 to represent grid functions on the
cubed-sphere at cell centers. These grid functions, as they are defined at cell centers and
following the nomenclature of Arakawa and Lamb (1977), define what we call an A-grid
field or function. We define the average values of a function 𝑞 with the aid of the metric
term

√
g(𝑥, 𝑦) at time 𝑡:

𝑄𝑖𝑗𝑝(𝑡) =
1

|Ω𝑖𝑗 | ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑞(𝑥, 𝑦, 𝑝, 𝑡)
√
g(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (4.49)

Let us assume we have a function 𝑞 ∶ 𝕊2𝑅 × [0, 𝑇 ] → ℝ, and we have a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)-
discretization of Ω × [0, 𝑇 ]. We introduce 𝑞𝑛 ∈ 𝑁 , which represents the grid function
𝑞 evaluated at the discrete points. In other words, 𝑞𝑛𝑖𝑗𝑝 = 𝑞(𝑥𝑖, 𝑦𝑗 , 𝑝, 𝑡𝑛), where 𝑖, 𝑗 = −𝜈 +
1,… , 𝑁 + 𝜈, and 𝑝 = 1,… , 6. Furthermore, we use the notations 𝑞𝑛𝑖+ 1

2 ,𝑗 ,𝑝
= 𝑞(𝑥𝑖+ 1

2
, 𝑦𝑗 , 𝑡𝑛) for

𝑖 = −𝜈, … , 𝑁 + 𝜈 and 𝑗 = −𝜈+ 1,… , 𝑁 + 𝜈 to represent 𝑞 at right-left edge points. Similarly,
we use 𝑞𝑛𝑖,𝑗+ 1

2 ,𝑝
= 𝑞(𝑥𝑖, 𝑦𝑗+ 1

2
, 𝑡𝑛) for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈 and 𝑗 = −𝜈,… , 𝑁 + 𝜈 to represent 𝑞

at the up-down edge points. When 𝑞 does not depend on the time variable 𝑡, we can omit
the index 𝑛. For a grid function 𝑄 we also use the notations:

𝑄×,𝑗 ,𝑝 ∶= (𝑄−𝜈+1,𝑗 ,𝑝, … , 𝑄𝑁+𝜈,𝑗 ,𝑝) ∈ ℝ𝑁
𝜈 ,

𝑄𝑖,×,𝑝 ∶= (𝑄𝑖,−𝜈+1,𝑝, … , 𝑄𝑖,𝑁+𝜈,𝑝) ∈ ℝ𝑁
𝜈 .

In this work, we shall always approximate the average values since our schemes are ex-
pected to be at most second-order, this approximation does not deteriorate the convergence
order. The 𝑝-norm for 𝑞 ∈ 𝑁 , is defined as:

‖𝑞‖𝑝,𝑁 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(∑6
𝑘=1∑

𝑁
𝑖=1∑

𝑁
𝑗=1 |𝑞𝑖𝑗𝑘 |𝑝|Ω𝑖𝑗 |)

1
𝑝

if 1 ≤ 𝑝 < ∞,

max𝑖=1,…,𝑁 ,𝑗=1,…,𝑁 ,𝑘=1,…,6 |𝑞𝑖𝑗𝑘 | if 𝑝 = ∞.
(4.50)

4.3.2 Ghost cells scalar field interpolation

Let us consider a function 𝑞 ∶ 𝕊2𝑅 → ℝ given at the center points denoted by 𝑞𝑖𝑗𝑝, where
𝑖, 𝑗 = 1… , 𝑁 and 𝑝 = 1,… , 6. That is, we are given an A-grid scalar field. Our objective is
to estimate these values at positions outside the range 1, … , 𝑁 , specifically at ghost cell
positions.

To solve this problem, we will employ the strategy outlined in Zerroukat and Allen
(2022), named duo-grid by X. Chen (2021). As previously mentioned, the ghost cells in the
local Cartesian systems are mapped onto the geodesics of adjacent panels, which enables
us to use Lagrange interpolation to obtain the values of ghost cells.

To illustrate this process in Panel 1, we depict the values of 𝑞𝑖𝑗𝑝 in Figure 4.8. The
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(a) A-grid values (blue circles). (b) Kinked A-grid values (red and green circles)

(c) A duo-grid values (blue squares) (d) Interpolation lines (dashed blue lines)

Figure 4.8: Illustration of the A duo-grid interpolation for a scalar field.

blue circles represent the values in Panel 1 (Figure 4.8a), while the red and green circles
represent the so called kinked values in the other panels (Figure 4.8b). Assuming a halo
size of 3, we also indicate the target values at the ghost cell positions using blue squares
(Figure 4.8c). It is worth noting that the dashed blue lines in Figure 4.8d illustrate how the
ghost cell points lie on geodesics containing grid positions from adjacent panels. With
the exception of the blue squares that lie on a cube corner (Figure 4.8d), all the ghost
cell values can be obtained using 1D Lagrange interpolation, utilizing the surrounding
red/green circles on the geodesic. This interpolation procedure can be performed for all
panels. Subsequently, the blue squares located on a cube corner can be interpolated using
the green and red points by connecting these points using geodesics and further extending
the blue lines from Figure 4.8d.

There are two ways of computing the Lagrange polynomials. The first one is based on
the geodesic distances of the duo-grid line points. This approach was explored in X. Chen
(2021) and Mouallem et al. (2023), and we are going to consider it here, calling it dg1.
The second one is to use cube-based distances, where all duo-grid and kinked points are
remapped to the plane using the inverse of the cube mapping. This approach has the
advantage of having uniformly spaced data (the remapped kinked values) used in the
duo-grid points interpolation. This approach is called dg2.
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Figure 4.9: Scalar field from Equation (4.51).

We are going to show a numerical example of this interpolation process using a halo
region of size 3 and cubic polynomials. We shall consider the following trigonometric
function from test case 2 in Williamson et al. (1992) in our tests:

𝑞(𝜆, 𝜙) = ℎ0 −
1
𝑔(

𝑅Ω𝑢0 +
𝑢20
2 )( − cos(𝜆) cos(𝜙) sin(𝛼) + sin(𝜙) cos(𝛼))

2

, (4.51)

where ℎ0 = 3 × 103, 𝛼 = 𝜋
4 , 𝑢0 = 2𝜋𝑅

12days , 𝑔 = 9.8 is the gravity and Ω = 7.2921 × 10−5 is the
Earth angular rotation speed. In Figure 4.9 we depict the graph of this field.

We compute the maximum errors for values of 𝑁 of the form 𝑁 = 48 × 2𝑘, where 𝑘
ranges from 0 to 4. We consider g0.s and g0.c, each one with dg1 and dg2, whose errors
are depicted in Figure 4.10a. Additionally, we analyze g2.s and g2.c, each one with dg1 and
dg2, and their errors are illustrated in Figure 4.10b.

From the dashed lines in Figure 4.10, we observe that both dg1 and dg2 achieve fourth-
order accuracy when the midpoints use the cube formulation, with dg2 being much
more accurate than dg1. However, when spherical midpoints are employed, we observe a
reduction in accuracy by two orders, as indicated by the solid lines. Both dg1 and dg2 are
very similar in this case. This discrepancy arises due to a second-order mismatch between
cube and spherical midpoints, as discussed in Section 4.2.5. Finally, we observe that the
equi-edge grid (g0) yields slightly better results than the equiangular grid (g2) for the cube
midpoints formulation.

At last, we point out that B-grid fields, as defined by Arakawa and Lamb, 1977 represents
a scalar field at the corner points, namely, denoted by 𝑞𝑖+ 1

2 ,𝑗+
1
2 ,𝑝

, where 𝑖, 𝑗 = 0… , 𝑁 and
𝑝 = 1,… , 6. We can estimate these values at positions outside the range 0, … , 𝑁 using an
analogous procedure to the one described here for A-grid fields.
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(a) Error for equi-edge (g0). (b) Error for g2.

Figure 4.10: Error for the duo-grid interpolation of the scalar field of (4.51) for the equi-edge grid (g0,
left) and the equiangular grid (g2, right). Dashed lines use the cube midpoint formulation, while solid
lines use the spherical midpoint formulation. Green lines represent dg1, and red lines represent dg2.

4.3.3 Ghost cells wind interpolation

Let us consider the following problem: Assume that we are given a tangent vector field
of the sphere, denoted as 𝒖 ∶ 𝕊2𝑅 → ℝ3. We also have its normalized contravariant normal
components at the edge points, namely 𝑢𝑖+ 1

2 ,𝑗 ,𝑝
for 𝑖 = 0, … , 𝑁 and 𝑗 = 1, … , 𝑁 , as well as

𝑣𝑖,𝑗+ 1
2 ,𝑝

for 𝑖 = 1, … , 𝑁 and 𝑗 = 0, … , 𝑁 . This grid function is called C-grid covariant wind
following Arakawa and Lamb (1977) (Figure 4.11a). The C-grid covariant wind is defined
similarly using (𝑈 , 𝑉 ).

Our objective is to obtain the values

𝑢𝑖+ 1
2 ,𝑗 ,𝑝

for 𝑖 = −1,… , 𝑁 + 1, 𝑗 = −𝜈 + 1,… , 0, 𝑗 = 𝑁 ,… , 𝑁 + 𝜈,

𝑣𝑖,𝑗+ 1
2 ,𝑝

for 𝑗 = 0, … , 𝑁 , 𝑖 = −𝜈 + 1,… , 0, 𝑖 = 𝑁 ,… , 𝑁 + 𝜈.

This problem arises when we apply the dimension splitting method on each panel
of the cubed-sphere. We point out that the method we are going to describe considers
the C-grid covariant wind, but it works very similarly for the C-grid contravariant wind.

This problem can be solved by using the duo-grid interpolation process described
earlier for a scalar field. To apply that interpolation process, we first need to interpolate
the values of 𝑢 and 𝑣 from the edges to the center points required for the ghost cells
interpolation (Figure 4.11b). Specifically, we need the values:

𝑢1+𝑘,𝑗 ,𝑝, 𝑣1+𝑘,𝑗 ,𝑝 for 𝑗 = 1, … , 𝑁 , 𝑘 = 0, … , 𝜈,
𝑢𝑁−𝑘,𝑗 ,𝑝, 𝑣𝑁−𝑘,𝑗 ,𝑝 for 𝑗 = 1, … , 𝑁 , 𝑘 = 0, … , 𝜈,
𝑢𝑖,1+𝑘,𝑝, 𝑣𝑖,1+𝑘,𝑝 for 𝑖 = 1, … , 𝑁 , 𝑘 = 0, … , 𝜈,
𝑢𝑖,𝑁−𝑘,𝑝, 𝑣𝑖,𝑁−𝑘,𝑝 for 𝑖 = 1, … , 𝑁 , 𝑘 = 0, … , 𝜈.
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(a) C-grid wind values (blue and red squares). (b) A-grid wind (black circles)

(c) A-duo-grid points (green circles) (d) C-duo-grid wind values (green circles)

Figure 4.11: Illustration of the C duo-grid interpolation for a C-grid wind.

(a) Error for equi-edge grid (g0). (b) Error for equiangular grid (g2).

Figure 4.12: As Figure 4.10 but using the C-grid wind given by Equation (4.52).

We apply a simple linear interpolation to remap 𝑢 and 𝑣 to the center points (Figure 4.11).
Then we obtain two A-grid scalar fields, and we may proceed as before to fill the ghost
cell values. However, we are going to use one extra layer of A-grid values since they
will be needed for re-interpolation to the edge points. For instance, for 3 layers of ghost
cells, we need 4 layers of A duo-grid values to fill the C-grid wind at the duo-grid edge
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points, as shown in Figure 4.11b. Once these interpolated values are computed, we convert
the covariant values 𝑢𝑖𝑗𝑝, 𝑣𝑖𝑗𝑝 to their latitude-longitude components (𝑢𝜆)𝑖𝑗𝑝, (𝑣𝜙)𝑖𝑗𝑝 using
Equations (4.47) and (4.41). This conversion avoids any coordinate system discontinuity,
as this interpolation is performed only close to the cube edges and far from the poles.
Then, we can use the ghost cell centers interpolation procedure described before for the
latitude-longitude components to recover the wind at the ghost cell centers using any
polynomial degree (Figures 4.11c). Finally, we can use the values at the ghost cell centers
to obtain the values at the ghost cell edges by employing a linear interpolation once
again (Figures 4.11d). Subsequently, the covariant components can be obtained by using
Equations (4.41) and (4.47).

We will consider the following rotated zonal field, as a numerical test, based on
Williamson et al. (1992):

{
𝑢𝜆(𝜆, 𝜙, 𝑡) = 𝑢0(cos(𝜙) cos(𝛼) + sin(𝜙) cos(𝜆) sin(𝛼)),
𝑣𝜙(𝜆, 𝜙, 𝑡) = −𝑢0 sin(𝜆) sin(𝛼).

(4.52)

Here, 𝑢0 = 2𝜋𝑅
12days and 𝛼 = 𝜋

4 . We will adopt the same grids and schemes as in Section
4.3.2. Next, we will compute the relative errors of the covariant components at the edge
midpoints. The errors are presented in Figure 4.12, along with the convergence rate for
different schemes employed in the ghost cell center interpolation. We emphasize that,
since we utilize a linear interpolation to retrieve the A-grid wind components from the
edge midpoints, as well as in the interpolation from the center duo-grid points to edge
duo-grid points, the maximum attainable scheme order is 2. Indeed, from Figure 4.12, we
observe that when employing a cubic polynomials in the duo-grid interpolation step, the
final order achieved is 2. We can also observe again that the spherical midpoints yield
larger errors than the cube midpoints formulation. Additionally, dg2 yields smaller errors,
and overall, equi-edge (g0) performs slightly better than the equiangular (g2) grid.

We point out that we define the D-grid contravariant wind as the grid functions namely
𝑣𝑖+ 1

2 ,𝑗 ,𝑝
for 𝑖 = 0, … , 𝑁 and 𝑗 = 1, … , 𝑁 , as well as 𝑢𝑖,𝑗+ 1

2 ,𝑝
for 𝑖 = 1, … , 𝑁 and 𝑗 = 0, … , 𝑁 ,

following again Arakawa and Lamb (1977). On the D-grid wind, we have the tangential
components of the wind, whereas on the C-grid wind, we have the normal components of
the wind. The D-grid wind at duo-grid points may be obtained using a very similar process
as described before. The D-grid covariant wind is defined similarly using (𝑈 , 𝑉 ).
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4.3.4 Edges reconstruction

Let us consider the following problem: given the values 𝑞𝑖𝑗𝑝 we wish to find approxi-
mations of the function 𝑞 at the edge points denoted by

𝑞𝐿,𝑥𝑖𝑗𝑝 ≈ 𝑞𝑖− 1
2 ,𝑗 ,𝑝

, 𝑞𝑅,𝑥𝑖𝑗𝑝 ≈ 𝑞𝑖+ 1
2 ,𝑗 ,𝑝

, 𝑞𝐿,𝑦𝑖𝑗𝑝 ≈ 𝑞𝑖,𝑗− 1
2 ,𝑝
, 𝑞𝑅,𝑦𝑖𝑗𝑝 ≈ 𝑞𝑖,𝑗+ 1

2 ,𝑝
.

We can estimate the desired values by using the one-dimensional reconstruction
schemes described in Section 2.4, performing PPM reconstruction independently in the 𝑥
and 𝑦 directions. It is worth noting that all the schemes discussed in those sections are
expected to be second-order accurate due to the centroid point approximation.

There are some differences in the computation of the stencil near the cube edges.
Unlike in the previous chapters, where periodic boundary conditions were assumed, the
boundary conditions in this context are related to the adjacent panels. One way to address
this issue is to use the duo-grid as discussed in Section 4.3.2 to compute the stencils. We
are going to consider the dg2 method, since it yields better results overall.

Another approach, employed in Sadourny (1972), involves ignoring the discontinuity
of the coordinate system and simply using the values of the cells in the adjacent panels
as the ghost cell values. Additionally, an alternative method that avoids the use of ghost
cells was developed by Putman and Lin (2007), which entails extrapolation at the cells
surrounding the cube edge. We will refer to this scheme as kinked method. This scheme
uses the following extrapolations:

𝑞𝐿,𝑥1,𝑗 ,𝑝 =
1
2(

3𝑄1,𝑗 ,𝑝 − 𝑄2,𝑗 ,𝑝),

𝑞𝑅,𝑥𝑁 ,𝑗 ,𝑝 =
1
2(

3𝑄𝑁 ,𝑗,𝑝 − 𝑄𝑁−1,𝑗,𝑝),

at the points that are located on the cube edges. The other edge values are estimated
as:

𝑞𝑅,𝑥1,𝑗 ,𝑝 =
1
14(

3𝑄1,𝑗 ,𝑝 + 11𝑄2,𝑗 ,𝑝 − 2(𝑄3,𝑗 ,𝑝 − 𝑄1,𝑗 ,𝑝)),

𝑞𝐿,𝑥2,𝑗 ,𝑝 = 𝑞𝑅,𝑥1,𝑗 ,𝑝,

𝑞𝐿,𝑥𝑁 ,𝑗 ,𝑝 =
1
14(

3𝑄𝑁 ,𝑗,𝑝 + 11𝑄𝑁−1,𝑗,𝑝 − 2(𝑄𝑁−2,𝑗,𝑝 − 𝑄𝑁 ,𝑗,𝑝)),

𝑞𝑅,𝑥𝑁−1,𝑗 ,𝑝 = 𝑞𝐿,𝑥𝑁 ,𝑗 ,𝑝,

in the 𝑥 direction. Similar formulas are used in the 𝑦 direction. We are going to use
the trigonometric function (Equation (4.51)) as before on the unit sphere to compare the
schemes kinked and dg2. The scheme dg2 uses cubic polynomials. We introduce the relative
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errors:

𝑒𝑖− 1
2 ,𝑗 ,𝑝

= (|𝑞𝑖− 1
2 ,𝑗 ,𝑝

− 𝑞𝐿,𝑥𝑖𝑗𝑝 |)/|𝑞𝑖− 1
2 ,𝑗 ,𝑝

|,

𝑒𝑖+ 1
2 ,𝑗 ,𝑝

= (|𝑞𝑖+ 1
2 ,𝑗 ,𝑝

− 𝑞𝑅,𝑥𝑖𝑗𝑝 |)/|𝑞𝑖+ 1
2 ,𝑗 ,𝑝

|,

𝑒𝑖,𝑗− 1
2 ,𝑝

= (|𝑞𝑖,𝑗− 1
2 ,𝑝

− 𝑞𝐿,𝑦𝑖𝑗𝑝 |)/|𝑞𝑖,𝑗− 1
2 ,𝑝
|,

𝑒𝑖,𝑗+ 1
2 ,𝑝

= (|𝑞𝑖,𝑗+ 1
2 ,𝑝

− 𝑞𝑅,𝑦𝑖𝑗𝑝 |)/|𝑞𝑖,𝑗+ 1
2 ,𝑝
|,

𝑒𝑖𝑗𝑝 = max{𝑒𝑖− 1
2 ,𝑗 ,𝑝

, 𝑒𝑖+ 1
2 ,𝑗 ,𝑝

, 𝑒𝑖,𝑗− 1
2 ,𝑝
, 𝑒𝑖,𝑗+ 1

2 ,𝑝
},

𝐸 = max{𝑒𝑖𝑗𝑝}.

We are going to compute 𝐸 for different values of 𝑁 as in the numerical experiments
of Section 4.3.2. We consider the kinked scheme for the grids g0.s and g2.s, and the dg2
scheme for the grids g0.s, g0.c, g2.s, and g2.c. The reconstruction scheme employed is
the limited PPM (MONO). We depict the errors in Figure 4.13. We can observe that the
error for the equi-edge grid (g0) is only slightly better than the error for the equiangular
grid (g2). Also, the errors for the cube midpoint formulation and the spherical midpoint
formulation are essentially the same when using dg2.

(a) Error for equi-edge (g0). (b) Error for g2.

Figure 4.13: Relative error for the PPM reconstruction using scalar field from Equation (4.51). Equi-
edge (g0) grid results are on the left, and equiangular grid (g2) results are on the right. Green lines
represent g2.s with the kinked method; red lines represent g2.s with dg2; blue lines represent g2.c with
dg2. The reconstruction scheme is the limited PPM (MONO).

From Figure 4.13, we see that the dg2 method leads to second-order accuracy, while
the kinked method leads to first-order accuracy. Since the kinked and dg2 affect the PPM
reconstruction only near to the cube edges, we expect that the error of the kinked method
is larger only at the corners, leading to grid imprinting. Indeed, in Figure 4.14, we depict
the logarithm of the error (on base 10 for plotting purposes) for the equi-edge (g0) grids. It
becomes clear from Figure 4.14a that the kinked method leads to grid imprinting, while
Figures 4.14b and 4.14c show that dg2 introduces less grid imprinting. Figure 4.15 shows
similar results to Figure 4.14, but considering the equiangular grid instead, from which
we can draw similar conclusions. In general, dg2 is not sensitive to changing midpoints
formulation. Additionally, the kinked method exhibits less grid imprinting in the equi-edge
grid (Figure 4.14a) than in the equiangular grid (Figure 4.15a).
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4.4 Concluding remarks
In this Chapter, we reviewed cubed-sphere mappings with a special focus on the

equiangular and equi-edge mappings, which leads to a more uniform cubed-sphere grid,
with the equiangular grid being the most uniform. The corner points are generated using
the equiangular and equi-edge mappings; however, the center and edge points may be
generated using a cubed-sphere mapping or using midpoints based on spherical midpoints
of the corner points (Section 4.2.4).

We observed that the equiangular cubed-sphere ghost cells, obtained by extending the
gridlines, have a nice property: their edge and center ghost points are located on a common
geodesic that contains the edge and center points of the adjacent panels. This property
allows us to use 1D Lagrange interpolation to obtain the values of scalar and vector fields
in the ghost cells. The equi-edge grid does not have this property, but we may mirror
some points to make its ghost cells have the same property as in the equiangular grid. In
fact, we demonstrated the accuracy of this interpolation on the duo-grid method through
numerical examples in Sections 4.3.2 and 4.3.3. We explored two ways of computing the
Lagrange polynomials: one based on the geodesic distances and the other based on local
coordinate distances. Overall, the method based on local coordinate distances showed that
it introduces smaller errors, especially when using the cube midpoints formulation instead
of the spherical midpoints formulation.

Afterward, in Section 4.3.4, we investigated different methods for computing stencils
near the cube edges. We considered the scheme based on 1D Lagrange interpolation and a
scheme based on extrapolations from Putman and Lin (2007), which is currently imple-
mented in FV3. Through numerical examples, we demonstrated that the reconstruction
at cell edges using the limited PPM (MONO) scheme generates grid imprinting near the
cubed edges when using extrapolations. The grid imprinting is greatly reduced when we
apply the duo-grid Lagrange interpolation, which shows that this scheme is much better
for filling the ghost cells of the cube panels.

One major conclusion of this Chapter is that the cube and spherical midpoints formu-
lation have a second-order difference. This impacts severely on the duo-grid interpolation
step, where we attain the expected orders of interpolation only for the cube midpoints
formulation. However, in the reconstruction from center to edge midpoints, both formula-
tions have essentially the same errors. Hence, we expect that both midpoint formulations
should lead to the very similar results.
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(a) g0.s with kinked.

(b) g0.s with dg2.

(c) g0.c with dg2.

Figure 4.14: The logarithm in base 10 of the errors of the edge grid points reconstruction from the
A-grid field given by Equation (4.51), using the equi-edge grid (g0) with 𝑁 = 192.
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(a) g0.s with kinked.

(b) g0.s with dg2.

(c) g0.c with dg2.

Figure 4.15: As Figure 4.14 but using the equiangular grid (g2).
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Chapter 5

Cubed-sphere finite-volume
methods

Now that we have described in Chapter 4 how we can obtain the ghost cell values of
each panel on the cubed-sphere using Lagrange interpolation, we are ready to apply the
dimension-splitting methods presented in Chapter 3 to solve the advection equation on
the cubed-sphere. One significant difference is that we have the metric term, which is not
present in the plane simulations. Additionally, when employing ghost cell layers using the
duo-grid, the flux at the cube edges is computed twice, requiring the averaging of fluxes at
the edges to ensure a unique value in order to achieve mass conservation.

This Chapter is organized as follows: Section 5.1 introduces the advection equation
on the cubed-sphere. Section 5.2 presents its finite-volume discretization with a focus on
the extension of dimension splitting (Section 5.3) as presented in Section 3.3. Numerical
experiments are presented in Section 5.4, where we use dimension splitting to solve the
advection equation. Section 5.5 presents the final thoughts.

5.1 Cubed-sphere advection equation in the integral
form

Given a tangent velocity field 𝒖 on the sphere, we denote its contravariant components
by u and v. We shall use all the notations introduced in Sections 4.1 and 4.2. The advection
equation on panel the 𝑝 of the cubed-sphere with initial condition 𝑞0 is given by:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

[𝜕𝑡𝑞 +
1√
g(𝜕𝑥(u𝑞

√
g) + 𝜕𝑦(v𝑞

√
g))](𝑥, 𝑦, 𝑝, 𝑡) = 0,

𝑞(𝑥, 𝑦, 𝑝, 0) = 𝑞0(𝑥, 𝑦, 𝑝),
(5.1)

∀(𝑥, 𝑦) ∈ Ω ∶= [−𝛼, 𝛼]2, 𝑡 ∈ [0, 𝑇 ]. We denote by ∇ ⋅ (𝑞𝒖) the divergence operator:

∇ ⋅ (𝑞𝒖)(𝑥, 𝑦, 𝑝, 𝑡) =
1
√
g
[𝜕𝑥(u𝑞

√
g) + 𝜕𝑦(v𝑞

√
g)](𝑥, 𝑦, 𝑝, 𝑡). (5.2)
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We recall that we say the 𝒖 is non-divergent if ∇ ⋅ 𝒖 = 0. We define the 𝑁 grid function
D𝑛 as the exact divergence of 𝑞𝒖 at the cell centers, namely

D𝑛
𝑖𝑗𝑝 = ∇ ⋅ (𝒖𝑞)(𝑥𝑖, 𝑦𝑗 , 𝑝, 𝑡𝑛). (5.3)

In this Chapter, it shall be useful to define the average value of 𝑞√g on the 2D coordinates
as:

(
√
g𝑞)𝑖𝑗𝑝(𝑡) =

1
Δ𝑥Δ𝑦 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑞(𝑥, 𝑦, 𝑝, 𝑡)
√
g(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (5.4)

This average value simplifies the deduction of finite-volume method on the cubed-sphere
instead of using the spherical average values (Equation (4.49)). Since the metric term does
not depend on 𝑡, we may rewrite Equation (5.1) as

[𝜕𝑡(𝑞
√
g) + 𝜕𝑥(u𝑞

√
g) + 𝜕𝑦(v𝑞

√
g)](𝑥, 𝑦, 𝑝, 𝑡) = 0. (5.5)

Therefore, as in Problem (3.1), the integral form of Equation (5.1) is stated in Problem
(5.1).

Problem 5.1. Given an initial condition 𝑞0 and a velocity on the sphere 𝒖, with contravariant
components (u, v) on the cubed-sphere coordinate system, we would like to find a weak solution
𝑞 of the cubed-sphere advection equation in its integral form:

∫
𝑥2

𝑥1
∫

𝑦2

𝑦1
(𝑞
√
g)(𝑥, 𝑦, 𝑝, 𝑡) 𝑑𝑥 𝑑𝑦 =∫

𝑥2

𝑥1
∫

𝑦2

𝑦1
(𝑞
√
g)(𝑥, 𝑦, 𝑝, 𝑡) 𝑑𝑥 𝑑𝑦

− ∫
𝑡2

𝑡1
∫

𝑦2

𝑦1 ((u𝑞
√
g)(𝑥2, 𝑦, 𝑡) − (u𝑞

√
g)(𝑥1, 𝑦, 𝑡)) 𝑑𝑦 𝑑𝑡

− ∫
𝑡2

𝑡1
∫

𝑥2

𝑥1 ((v𝑞
√
g)(𝑥, 𝑦2, 𝑡) − (v𝑞

√
g)(𝑥, 𝑦1, 𝑡)) 𝑑𝑥 𝑑𝑡.

∀[𝑥1, 𝑥2] × [𝑦1, 𝑦2] × [𝑡1, 𝑡2] ⊂ Ω × [0, 𝑇 ], and 𝑞(𝑥, 𝑦, 𝑝, 0) = 𝑞0(𝑥, 𝑦, 𝑝).

Similarly to Section 3.1.2, Equation (5.1) and Problem (5.1) are equivalent when 𝑞, 𝒖 ∈
1(𝕊2𝑅). For Problem 5.1, the total mass in 𝕊2𝑅 is defined by:

𝑀𝕊2𝑅(𝑡) =
6

∑
𝑝=1

∫
Ω
(𝑞
√
g)(𝑥, 𝑦, 𝑝, 𝑡) 𝑑𝑥 𝑑𝑦, ∀𝑡 ∈ [0, 𝑇 ], (5.6)

and is conserved within time:

𝑀𝕊2𝑅(𝑡) = 𝑀𝕊2𝑅(0), ∀𝑡 ∈ [0, 𝑇 ]. (5.7)

We define a discretized version of Problem (5.1) as Problem (5.2).

Problem 5.2. Assume the framework of Problem 5.1 and consider a (Δ𝑥, Δ𝑦, Δ𝑡, 𝜆)-
discretization of Ω × [0, 𝑇 ], with Δ𝑥 = Δ𝑦. Since we are in the framework of Problem 5.1, it
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follows that:

(
√
g𝑞)𝑖𝑗𝑝(𝑡𝑛+1) = (

√
g𝑞)𝑖𝑗𝑝(𝑡𝑛) − 𝜆𝛿𝑥(

1
Δ𝑡Δ𝑦 ∫

𝑡𝑛+1

𝑡𝑛
∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(u𝑞
√
g)(𝑥𝑖, 𝑦, 𝑝, 𝑡) 𝑑𝑦 𝑑𝑡)

− 𝜆𝛿𝑦(
1

Δ𝑡Δ𝑥 ∫
𝑡𝑛+1

𝑡𝑛
∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(v𝑞
√
g)(𝑥, 𝑦𝑗 , 𝑝, 𝑡) 𝑑𝑥 𝑑𝑡),

where
(
√
g𝑞)𝑖𝑗𝑝(𝑡) =

1
Δ𝑥Δ𝑦 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

(𝑞
√
g)(𝑥, 𝑦, 𝑝, 𝑡) 𝑑𝑥 𝑑𝑦. (5.8)

Our problem now consists of finding the values 𝑄𝑖𝑗𝑝(𝑡𝑛), ∀𝑖 = 1, … , 𝑁 , ∀𝑗 = 1, … ,𝑀 , ∀𝑛 =
0,… , 𝑁𝑇 − 1, given the initial values (√g𝑞)𝑖𝑗𝑝(0), ∀𝑖 = 1, …𝑁 , ∀𝑗 = 1, … ,𝑀 . In other words,
we aim to find the average values of (√g𝑞)𝑖𝑗𝑝 in each control volume Ω𝑖𝑗𝑝 at the specified
time instances.

It is important to note that no approximations have been made in Problems (5.1) and
(5.2).

5.2 Finite-volume on the cubed-sphere approach

We are ready to introduce the finite-volume scheme on the cubed-sphere (CS-FV). A
CS-FV scheme problem as follows in Problem 5.3. Before that, we consider the following
approximation, which follows from the midpoint rule (Theorem A.5):

(
√
g𝑞)𝑖𝑗𝑝(𝑡) =

√
g𝑖𝑗𝑞𝑖𝑗𝑝(𝑡) + (Δ𝑥2). (5.9)

We use this approximation in Problem 5.2 and we obtain the following CS-FV scheme:

Problem 5.3 (CS-FV scheme). Assume the framework defined in Problem 5.2. The finite-
volume approach of Problem 5.1 consists of a finding a scheme of the form:

𝑞𝑛+1𝑖𝑗𝑝 = 𝑞𝑛𝑖𝑗𝑝 −
𝜆

√
g𝑖𝑗
𝛿𝑖𝐹 𝑛𝑖𝑗𝑝 −

𝜆
√
g𝑖𝑗
𝛿𝑗𝐺𝑛

𝑖𝑗𝑝, (5.10)

∀𝑖 = 1, … , 𝑁 , ∀𝑗 = 1, … ,𝑀, 𝑝 = 1,… , 6, ∀𝑛 = 0,… , 𝑁𝑇 − 1,

where 𝛿𝑖𝐹 𝑛𝑖𝑗𝑝 = 𝐹 𝑛𝑖+ 1
2 ,𝑗 ,𝑝

− 𝐹 𝑛𝑖− 1
2 ,𝑗 ,𝑝

, 𝛿𝑗𝐺𝑛
𝑖𝑗𝑝 = 𝐺𝑛

𝑖,𝑗+ 1
2 ,𝑝

− 𝐺𝑛
𝑖,𝑗− 1

2 ,𝑝
and 𝑞𝑛 ∈ 𝑁 is intended to be an

approximation of 𝑞(𝑡𝑛) ∈ 𝑁 in some sense. We define 𝑞0𝑖𝑗𝑝 = 𝑞0𝑖𝑗𝑝.

The term 𝐹 𝑛𝑖+ 1
2 ,𝑗 ,𝑝

is known as numerical flux in the 𝑥 direction and it approximates
1

Δ𝑡Δ𝑦 ∫
𝑡𝑛+1
𝑡𝑛

∫ 𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(u𝑞√g)(𝑥𝑖+ 1
2
, 𝑦, 𝑝, 𝑡) 𝑑𝑦 𝑑𝑡, ∀𝑖 = 0, 1, … , 𝑁 , and 𝐺𝑛

𝑖,𝑗+ 1
2 ,𝑝

is known as numerical

flux in the 𝑦 direction and it approximates 1
Δ𝑡Δ𝑥 ∫

𝑡𝑛+1
𝑡𝑛

∫ 𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(v𝑞√g)(𝑥, 𝑦𝑗+ 1
2
, 𝑝, 𝑡) 𝑑𝑥 𝑑𝑡, ∀𝑗 =

0, 1, … ,𝑀 , or, in other words, they estimate the time-averaged fluxes at the control volume
Ω𝑖𝑗𝑝 boundaries.

Remark 5.1. For Problem 5.3, we define the CFL number in the 𝑥 and 𝑦 direction by
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max𝑖,𝑗 ,𝑝{|u𝑛𝑖+ 1
2 ,𝑗 ,𝑝

|} Δ𝑡Δ𝑥 and max𝑖,𝑗 ,𝑝{|v𝑛𝑖,𝑗+ 1
2 ,𝑝
|} Δ𝑡Δ𝑦 , respectively. The CFL number is maximum be-

tween these numbers and we say that the CFL condition is satisfied if the CFL number is less
than one.

As we mentioned in Problem 5.3, the initial condition may be assumed as 𝑞0𝑖𝑗𝑝 or
𝑄𝑖𝑗𝑝(0). We are going to assume 𝑞0𝑖𝑗𝑝 as initial data to avoid the computation of integrals.
Furthermore, the errors will be calculated using the values 𝑞𝑛𝑖𝑗𝑝 instead of 𝑄𝑖𝑗𝑝(𝑡𝑛). As in
Section 3.2 this approximation leads to a second-order error.

5.3 Dimension splitting
In this Section, we will utilize the dimension splitting method described in Section

3.3 to obtain a CS-FV scheme. To facilitate notation, we shall omit the index 𝑝 whenever
it may appear in this Section, as what is described here does not depend on 𝑝. Also, the
ghost cell values are assumed to be filled using the duo-grid interpolation.

5.3.1 PPM and the metric term
Recall that the dimension splitting technique requires the numerical solution of advec-

tion in the 𝑥 and 𝑦 directions for separability. For instance, in the case of the advection
equation on the cubed-sphere (Equation (5.5)), we need to solve the following equations
in the 𝑥 direction:

[𝜕𝑡(
√
g𝑞𝑥) + 𝜕𝑥(u

√
g𝑞𝑥)](𝑥, 𝑦𝑗 , 𝑝, 𝑡), (5.11)

for 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, at certain time levels 𝑡𝑛, 𝑛 = 1,… , 𝑁𝑇 (Section 3.3.1). We are
particularly interested in approximating 𝑞𝑥,𝑛+1𝑖𝑗 for 𝑖 = 1, … , 𝑁 , which represents the values
of 𝑞𝑥 at the cell centroids. This involves providing an approximation of the solution to
Equation (5.5), denoted as 𝑞𝑛𝑖𝑗 , serving as initial data at time level 𝑛, specifically 𝑞𝑥,𝑛𝑖𝑗 =
𝑞𝑛𝑖𝑗 .

Considering the midpoint approximation of the average value (Equation (5.9)), we
approximate the solution of the desired problem using an general 1D FV-SL scheme as
discussed in Section 2.2:

𝑞𝑥,𝑛+1𝑖𝑗 = 𝑞𝑛𝑖𝑗 −
Δ𝑡

√
g𝑖𝑗Δ𝑥 [

𝐹𝑖+ 1
2 ,𝑗(𝑞

𝑛; 𝑐𝑥,𝑛) − 𝐹𝑖− 1
2 ,𝑗(𝑞

𝑛; 𝑐𝑥,𝑛)], (5.12)

for 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈 and 𝑖 = 1, … , 𝑁 , where

𝐹𝑖± 1
2 ,𝑗

=
1
Δ𝑡 ∫

𝑥𝑖± 1
2

𝑥̃𝑛
𝑖± 1

2 ,𝑗

(
√̃
g𝑞)𝑗(𝑥, 𝑡𝑛) 𝑑𝑥, (5.13)

𝑥̃𝑛𝑖± 1
2 ,𝑗

is an estimate of the departure point in 𝑥 direction using the time-averaged CFL

number 𝑐𝑥,𝑛𝑖+ 1
2 ,𝑗

(Section 2.3), and
√̃
g𝑞𝑗 is a PPM reconstruction (or any other reconstruction)

of
√
g𝑞 (Section 2.4) in the 𝑥 direction (𝑗 is fixed). The time-averaged CFL number 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
shall be discussed in details in Section 5.3.3.

It is also possible to compute the PPM reconstruction in terms only of 𝑞, ignoring
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the metric term
√
g. In other words, we may assume that the metric is constant on each

integration domain, which leads to the following first-order error:

∫
𝑥𝑖± 1

2

𝑥̃𝑛
𝑖± 1

2 ,𝑗

(
√̃
g𝑞)(𝑥, 𝑡𝑛) 𝑑𝑥 =

√
g𝑖± 1

2 ,𝑗 ∫
𝑥𝑖± 1

2

𝑥̃𝑛
𝑖± 1

2 ,𝑗

𝑞̃(𝑥, 𝑡𝑛) 𝑑𝑥 + (Δ𝑥). (5.14)

In this case, the flux reads:

𝐹𝑖± 1
2 ,𝑗

=
√
g𝑖± 1

2 ,𝑗

Δ𝑡 ∫
𝑥𝑖± 1

2

𝑥̃𝑛
𝑖± 1

2 ,𝑗

𝑞̃(𝑥, 𝑡𝑛) 𝑑𝑥. (5.15)

Then, in this case, we perform the PPM flux for the grid function 𝑞𝑛. When we compute
the flux using Equation (5.13), we denote this by mt0; when using Equation (5.15), we
denote this by mt1.

The works of Lin (2004) and Putman and Lin (2007) use the mt1 method, which
is currently employed in FV3. This process, although it introduces a first-order error,
significantly simplifies the elimination of the splitting error that arises when 𝑞𝑖𝑗 = 𝑞, for a
constant 𝑞, and when the wind is divergence-free. This occurs because when we use mt1,
we have

𝐹𝑖± 1
2 ,𝑗

= 𝑞
√
g𝑖± 1

2 ,𝑗

Δ𝑡
𝛿𝑖𝑐𝑥,𝑛𝑖𝑗 , (5.16)

assuming that the departure point is computed using the DP1 method for the departure
point calculation (as discussed in Section 3.3.2). The property from Equation (5.16) does
not occur for mt0.

5.3.2 The 2D scheme on each cube panel
For a CS-grid function 𝜓 ∈ 𝑁 we introduce the following PPM flux in the 𝑥 direction

(recall Equation (2.68))

F𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[𝜓𝑛; 𝑐𝑥,𝑛] =

{
𝜓𝑛𝑖−1,𝑗 + (1 − 𝑐𝑥,𝑛𝑖+ 1

2
)(𝑏𝐿𝑖𝑗 − 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
)(𝑏𝐿𝑖𝑗 + 𝑏𝑅𝑖𝑗), if 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
> 0,

𝜓𝑛𝑖𝑗 + (1 + 𝑐𝑥,𝑛𝑖+ 1
2 ,𝑗
)(𝑏𝐿𝑖+1,𝑗 + 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
)(𝑏𝐿𝑖+1,𝑗 + 𝑏𝑅𝑖+1,𝑗), if 𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
≤ 0.

(5.17)

for each 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈 and 𝑖 = 1, … , 𝑁 , and where the PPM perturbation values
𝑏𝐿 and 𝑏𝑅 values are computed using the unlimited PPM (Section 2.4.1) or the monotonic
(Section 2.4.2). Recall that when using the mt1 scheme, we compute the flux for 𝜓 = √

g𝑞.
We point out that, in this case, the perturbation values (Equations (2.66) and (2.67)) use
the exact expression of the metric term, namely:

𝑏𝐿𝑖𝑗 =
√
g𝑖+ 1

2 ,𝑗
𝑞𝐿,𝑥𝑖𝑗 −

√
g𝑖𝑗𝑞

𝑛
𝑖𝑗 , (5.18)

𝑏𝑅𝑖𝑗 =
√
g𝑖,𝑗+ 1

2
𝑞𝑅,𝑦𝑖𝑗 −

√
g𝑖𝑗𝑞

𝑛
𝑖𝑗 , (5.19)

where the edge values reconstruction values 𝑞𝑅,𝑥𝑖𝑗 and 𝑞𝐿,𝑥𝑖𝑗 are computed using the UNLIM or
MONO 1D PPM scheme in the 𝑥 and 𝑦 directions, respectively. Hence, when a monotonic
filter is applied, it is applied only to the field 𝑞 instead of the field

√
g𝑞, which is important
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to preserve monotonicity.

Therefore, we may rewrite Equation (5.12) as

𝑞𝑥,𝑛+1𝑖𝑗 = 𝑞𝑛𝑖𝑗 + 𝐅𝑖𝑗[𝑞𝑛, 𝑐𝑥,𝑛], (5.20)

for 𝑖 = 1, … , 𝑁 , 𝑗 = −𝜈 + 1,… ,𝑀 + 𝜈, and where

𝐅𝑖𝑗[𝑞𝑛, 𝑐𝑥,𝑛] = −
1

|Ω̂𝑖𝑗 |(
𝑥

𝑖+ 1
2 ,𝑗
 𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[𝑞𝑛×,𝑗 , 𝑐

𝑥,𝑛] −𝑥
𝑖− 1

2 ,𝑗
 𝑃𝑃𝑀,𝑥
𝑖− 1

2 ,𝑗
[𝑞𝑛×,𝑗 , 𝑐

𝑥,𝑛]),

recalling the term |Ω̂𝑖𝑗 | from defined Equation (4.3), and following the discussion on the
metric term, we have the coefficients

𝑥
𝑖+ 1

2 ,𝑗
=

{
𝛿̂𝑥𝑖+ 1

2 ,𝑗
𝛿̂𝑦𝑖+ 1

2 ,𝑗
sin 𝛼𝑖+ 1

2 ,𝑗
𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
, for mt0,

Δ𝑥Δ𝑦𝑐𝑥,𝑛𝑖+ 1
2 ,𝑗

for mt1,
(5.21)

where we have made use of the definitions of 𝛿̂𝑥𝑖+ 1
2 ,𝑗

and 𝛿̂𝑦𝑖,𝑗+ 1
2

(Equation (4.19)) and the
metric term relation given in Equation (4.2). The PPM fluxes are

 𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[𝑞𝑛; 𝑐𝑥,𝑛] =

{
F𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[√g𝑞𝑛; 𝑐𝑥,𝑛] for mt0,

F𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗
[𝑞𝑛; 𝑐𝑥,𝑛] for mt1.

(5.22)

Similarly, we may derive a scheme to solve Equation (5.5) in the 𝑦 direction as

𝑞𝑦,𝑛+1𝑖𝑗 = 𝑞𝑛𝑖𝑗 + 𝐆𝑖𝑗[𝑞𝑛, 𝑐𝑦,𝑛], (5.23)

for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈 𝑗 = 1, … , 𝑁 , where

𝐆𝑖𝑗[𝑞𝑛, 𝑐𝑦,𝑛] = −
1

|Ω̂𝑖𝑗 |(
𝑦

𝑖,𝑗+ 1
2
 𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝑞𝑛𝑖,×, 𝑐

𝑦,𝑛] −𝑦
𝑖,𝑗− 1

2
 𝑃𝑃𝑀,𝑦
𝑖,𝑗− 1

2
[𝑞𝑛𝑖,×, 𝑐

𝑦,𝑛]),

and

𝑦
𝑖,𝑗+ 1

2
=

{
𝛿̂𝑥𝑖,𝑗+ 1

2
𝛿̂𝑦𝑖,𝑗+ 1

2
sin 𝛼𝑖,𝑗+ 1

2
𝑐𝑦,𝑛𝑖,𝑗+ 1

2
, for mt0,

Δ𝑥Δ𝑦𝑐𝑦,𝑛𝑖,𝑗+ 1
2
, for mt1,

(5.24)

and the PPM fluxes are

 𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝑞𝑛; 𝑐𝑦,𝑛] =

{
F
𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[√g𝑞𝑛; 𝑐𝑦,𝑛] for mt0,

F
𝑃𝑃𝑀,𝑦
𝑖+ 1

2 ,𝑗
[𝑞𝑛; 𝑐𝑦,𝑛] for mt1,

(5.25)

where F
𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
is the analogous of Equation (5.17) in 𝑦 direction. In FV3, the terms 𝛿̂𝑥𝑖𝑗 and

𝛿̂𝑦𝑖𝑗 and |Ω̂𝑖𝑗 | (for integers or half integers 𝑖 and 𝑗) are replaced by 𝛿𝑥𝑖𝑗 , 𝛿𝑦𝑖𝑗 and |Ω̂𝑖𝑗 |, which
represent the geodesic distances and areas (Section 4.2.4).

Following the same discussion of Sections 3.3.1 and 3.3.2, we may combine the operators
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Scheme 𝐟𝑖𝑗(𝑞𝑛, 𝑐𝑥,𝑛) 𝐠𝑖𝑗(𝑞𝑛, 𝑐𝑦,𝑛)
LT 𝐅𝑖𝑗(𝑞𝑛, 𝑐𝑥,𝑛) 𝐆𝑖𝑗(𝑞𝑛, 𝑐𝑦,𝑛)
PL −𝑞𝑛𝑖𝑗 +

𝑞𝑛𝑖𝑗+𝐅𝑖𝑗 (𝑞𝑛,𝑐𝑥,𝑛)

1− 1
|Ω̂𝑖𝑗 |(

𝑥
𝑖+ 1

2 ,𝑗
−𝑥

𝑖− 1
2 ,𝑗
)

−𝑞𝑛𝑖𝑗 +
𝑞𝑛𝑖𝑗+𝐆𝑖𝑗 (𝑞𝑛,𝑐𝑦,𝑛)

1− 1
|Ω̂𝑖𝑗 | (

𝑦
𝑖,𝑗+ 1

2
−𝑦

𝑖,𝑗− 1
2
)

Table 5.1: Expression of the inner advective operators considered in this work. LT stands for the
average Lie-Trotter scheme, while PL stands for the scheme from Putman and Lin (2007).

𝐅 and 𝐆 and obtain the following scheme to update the cell centered values:

𝑞𝑛+1 = 𝑞𝑛 +
1
2
𝐅[𝑞𝑛, 𝑐𝑥,𝑛] +

1
2
𝐆[𝑞𝑛, 𝑐𝑦,𝑛]

+
1
2
𝐅[𝑞

𝑛 + 𝐠[𝑞𝑛, 𝑐𝑦,𝑛], 𝑐𝑥,𝑛] +
1
2
𝐆[𝑞

𝑛 + 𝐟[𝑞𝑛, 𝑐𝑥,𝑛], 𝑐𝑦,𝑛], (5.26)

where the inner advection operators 𝐟 and 𝐠 are given in Table 5.1.

5.3.3 The upwind CFL number

When using the DP2 scheme (Section 2.3.2), we define the CFL number at the edges as
(recall the wind formulation in Section 4.2.6):

𝑐𝑥,𝑛𝑖+ 1
2 ,𝑗

= u𝑥,𝑛𝑖+ 1
2 ,𝑗

Δ𝑡
Δ𝑥

= 𝑢𝑥,𝑛𝑖+ 1
2 ,𝑗

Δ𝑡
𝛿̂𝑥𝑖+ 1

2 ,𝑗

, (5.27)

𝑐𝑦,𝑛𝑖,𝑗+ 1
2
= v

𝑦,𝑛
𝑖,𝑗+ 1

2

Δ𝑡
Δ𝑦

= 𝑣𝑦,𝑛𝑖,𝑗+ 1
2

Δ𝑡
𝛿̂𝑦𝑖,𝑗+ 1

2

. (5.28)

Therefore, the time-averaged CFL numbers may be computed using Equation (2.37). The
current implementation of FV3 and the advection schemes from Lin (2004) and Putman
and Lin (2007) uses the DP1 scheme (Section 2.3.1) and the following upwind CFL number
introduced in Lin et al. (1994):

𝑐𝑥,𝑛𝑖+ 1
2 ,𝑗

= 𝑢𝑥,𝑛𝑖+ 1
2 ,𝑗

Δ𝑡
𝛿̂𝑥∗𝑖+ 1

2 ,𝑗

, (5.29)

𝑐𝑦,𝑛𝑖,𝑗+ 1
2
= 𝑣𝑦,𝑛𝑖,𝑗+ 1

2

Δ𝑡
𝛿̂𝑦∗𝑖,𝑗+ 1

2

, (5.30)

where

𝛿̂𝑥∗𝑖+ 1
2 ,𝑗

=

{
𝛿̂𝑥𝑖𝑗 , if 𝑢𝑥,𝑛𝑖+ 1

2 ,𝑗
≥ 0,

𝛿̂𝑥𝑖+1,𝑗 , if 𝑢𝑥,𝑛𝑖+ 1
2 ,𝑗
< 0,

(5.31)
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𝛿̂𝑦∗𝑖,𝑗+ 1
2
=

{
𝛿̂𝑦𝑖𝑗 , if 𝑣𝑦,𝑛𝑖,𝑗+ 1

2
≥ 0,

𝛿̂𝑦𝑖,𝑗+1, if 𝑣𝑦,𝑛𝑖,𝑗+ 1
2
< 0,

(5.32)

We point out that Equation (5.27) to (5.28) and Equations (5.29) to (5.30) are equivalent
when the metric term is constant and equal to one, as on the Cartesian grid on the plane.
Additionally, we could use Equations (5.29) to (5.30) for the DP2 scheme, but we observed
that the results obtained on advection simulations using Equations (5.27) to (5.28) are
much better, while Equations (5.29) to (5.30) limit schemes with DP2 to first-order. Finally,
we stress that for DP1, both formulations of the CFL number yield very similar results,
but we use the upwind CFL for DP1 since this is what is used in FV3.

Finally, when using DP1, the upwind CFL requires reformulation of the terms 𝑥
𝑖+ 1

2 ,𝑗

(Equation (5.21)) and 𝑦
𝑖,𝑗}+ 1

2
(Equation (5.24)) for mt0, namely:

𝑥
𝑖+ 1

2 ,𝑗
=

{
𝛿̂𝑥∗𝑖+ 1

2 ,𝑗
𝛿̂𝑦𝑖+ 1

2 ,𝑗
sin 𝛼𝑖+ 1

2 ,𝑗
𝑐𝑥,𝑛𝑖+ 1

2 ,𝑗
, for mt0,

Δ𝑥Δ𝑦𝑐𝑥,𝑛𝑖+ 1
2 ,𝑗

for mt1,
(5.33)

and

𝑦
𝑖,𝑗+ 1

2
=

{
𝛿̂𝑥𝑖,𝑗+ 1

2
𝛿̂𝑦∗𝑖,𝑗+ 1

2
sin 𝛼𝑖,𝑗+ 1

2
𝑐𝑦,𝑛𝑖,𝑗+ 1

2
, for mt0,

Δ𝑥Δ𝑦𝑐𝑦,𝑛𝑖,𝑗+ 1
2
, for mt1.

(5.34)

5.3.4 Flux at edges treatment

As in Section 3.2 we introduce the notion of discrete divergence, which allow us to
check the consistency of CS-FV schemes.

Definition 5.1 (Discrete divergence). For Problem 5.3, we define the discrete divergence as
a 𝑁 -grid function 𝔻𝑛(𝑞𝑛, u𝑛, v𝑛) given by:

𝔻𝑛
𝑖𝑗𝑝(𝑞

𝑛, u𝑛, v𝑛) =
1

Δ𝑡√g𝑖𝑗(
𝛿𝑖𝐹 𝑛𝑖𝑗𝑝
Δ𝑥

+
𝛿𝑗𝐺𝑛

𝑖𝑗𝑝

Δ𝑦 ), 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … ,𝑀. (5.35)

With the aid of the discrete divergence, Equation (5.10) becomes:

𝑞𝑛+1 = 𝑞𝑛 − Δ𝑡𝔻𝑛(𝑞𝑛, u𝑛, v𝑛). (5.36)

When using the dimension splitting technique, it follows from Equation (5.26) that the
discrete divergence may be expressed as:

𝔻𝑛 =
−1
Δ𝑡 (

1
2
𝐅[𝑞𝑛, 𝑐𝑥,𝑛] +

1
2
𝐆[𝑞𝑛, 𝑐𝑦,𝑛] +

1
2
𝐅[𝑞

𝑛 + 𝐠[𝑞𝑛, 𝑐𝑦,𝑛], 𝑐𝑥,𝑛] +
1
2
𝐆[𝑞

𝑛 + 𝐟[𝑞𝑛, 𝑐𝑥,𝑛], 𝑐𝑦,𝑛]).

(5.37)
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For a CS-FV scheme the discrete total mass at the time-step 𝑛 is given by:

𝑀𝑛 =
6

∑
𝑝=1

𝑁

∑
𝑖,𝑗=1

𝑄𝑛
𝑖𝑗𝑝|Ω̂𝑖𝑗 |.

It follows from Equation (5.36) that:

𝑀𝑛+1 = 𝑀𝑛 −
6

∑
𝑝=1

𝑁

∑
𝑖,𝑗=1

𝔻𝑛
𝑖𝑗𝑝|Ω̂𝑖𝑗 |.

Hence, to ensure mass conservation, we must ensure that

6

∑
𝑝=1

𝑁

∑
𝑖,𝑗=1

𝔻𝑛
𝑖𝑗𝑝|Ω̂𝑖𝑗 | = 0.

This property is discrete version of

∫
𝕊2𝑅
∇ ⋅ (𝒖𝑞) 𝑑𝑆 = 0,

which follows from the divergence theorem and the fact of the sphere has no boundary,
where 𝑑𝑆 is the surface measure of the sphere.

When computing the flux, if we ignore the discontinuity in the cubed sphere coordinate
system and use values from adjacent panels (as in the kinked scheme from Chapter 4) to
compute stencils, we can ensure mass conservation because the flux at points lying on the
cube edge will be the same. However, if we consider ghost cell layers by extending the
gridlines (as in the duo-grid scheme from Chapter 4), the flux is computed twice at points
lying on the cube edge. Therefore, in this case, some modification is needed to ensure
mass conservation (Figure 5.1). One common alternative used in the literature to handle

Figure 5.1: Figure that illustrates the flux being computed twice on the cube edge, breaking the total
mass conservation. Figure taken from Rossmanith (2006).

the issue of values being defined twice at points on the cube edges is to simply average
the values (as seen in works such as C. Chen and Xiao (2008), X. Chen (2021), Mouallem
et al. (2023), and Rossmanith (2006)). When we are using flux averaging, we shall use the
label mf1. When no mass fixer is used, we employ the label mf0.
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5.4 Numerical experiments
This Section is dedicated to present the numerical experiments for the advection

equation on the sphere. In Table 5.2 we present the initial conditions (IC) and in Table 5.3
we present the velocity fields (VF) considered. In this section, we denote by 𝑟 the geodesic
distance from any point (𝜙, 𝜆) to a fixed point (𝜙0, 𝜆0), expressed as

𝑟 = 2𝑅 arcsin(

√

sin2
(
𝜙 − 𝜙0

2 ) + cos 𝜙 cos 𝜙0 cos2 (
𝜆 − 𝜆0

2 )), (5.38)

where 𝑅 is the Earth radius. We shall made usage of the characteristic function 𝜒𝑆 , where
𝜒𝑆(𝑠) = 1 if 𝑠 ∈ 𝑆, and 𝜒𝑆(𝑠) = 0 otherwise.

IC name 𝑞0
IC1 exp(𝑏0((𝑋 − 𝑋0)2 + (𝑌 − 𝑌0)2 + (𝑍 − 𝑍0)2))
IC2 0.5 + 0.5(1 + cos 𝜋𝑟

𝑟0
)𝜒{𝑟<𝑟0}(𝑟)

IC3 0.1 + 0.9𝜒{𝑟<𝑟0}(𝑟)𝜒{|𝜆−𝜆0 |≤0.05 or 𝜙≤𝜙0}(𝜆, 𝜙)
IC4 exp(𝑏0[(𝑋 − 𝑋1)2 + (𝑌 − 𝑌1)2 + (𝑍 − 𝑍1)2]) + exp(𝑏0[(𝑋 − 𝑋2)2 + (𝑌 − 𝑌2)2 + (𝑍 − 𝑍2)2])

Table 5.2: Initial conditions considered in the numerical experiments (Figure 5.2).

VF name 𝑢𝜆(𝜆, 𝜙, 𝑡) 𝑣𝜙(𝜆, 𝜙, 𝑡) Δ𝑡(0) CFL
VF1 𝑢0(cos(𝜙) cos(𝛼) + sin(𝜙) cos(𝜆) sin(𝛼)) −𝑢0 sin(𝜆) sin(𝛼) 3600 0.95
VF2 𝑢0 sin2(𝜆𝑝) sin(2𝜙) cos(𝜋𝑡𝑇 ) + 𝑢0 cos 𝜙 𝑢0 sin(2𝜆𝑝) cos(𝜙) cos(𝜋𝑡𝑇 ) 1600 0.73
VF3 −𝑢0 sin2(𝜆+𝜋2 ) sin(2𝜙) cos2(𝜙) cos(𝜋𝑡𝑇 )

𝑢0
2 sin(𝜆 + 𝜋) cos3(𝜙) cos(𝜋𝑡𝑇 ) 6400 0.91

Table 5.3: Velocity fields considered in the numerical experiments and their initial time step Δ𝑡(0) and
CFL number.

In Table 5.2, we have (𝑋0, 𝑌0, 𝑍0) = ( 1√
3 ,

1√
3 ,

1√
3), while (𝑋1, 𝑌1, 𝑍1) and (𝑋2, 𝑌2, 𝑍2) are

the Cartesian coordinates of the latitude-longitude points (𝜆1, 𝜙1) = (−𝜋
4 , 0) and (𝜆2, 𝜙2) =

(𝜋4 , 0), respectively. IC1 represents a Gaussian hill centered at a cube corner and we set
𝑏0 = −10. IC2 represent a cosine bell centered at a cube corner, where 𝑟0 = 𝑅

3 , for 𝜆0 = 𝜋
4

and 𝜙0 = 𝜋
2 − arccos ( 1√

3). IC3 represent a slotted cylinder, based on Nair and Lauritzen
(2010), where 𝑟0 = 𝑅

3 , for 𝜆0 = 𝜋
4 and 𝜙0 = 𝜋

2 − arccos ( 1√
3), and therefore the slotted

cylinder is also centered at a cube corner. IC4 represents two Gaussian hills as suggested
by Nair and Lauritzen (2010) and we set 𝑏0 = −5. The initial conditions are shown in Figure
5.2.

For the velocities provided in Table 5.3, we adopt the following parameter values: 𝛼 = 𝜋
4 ,

𝜆𝑝 = 𝜆 − 2𝜋𝑡
𝑇 , 𝑇 = 12 days (12×86400 seconds) and 𝑅 is the Earth radius. For VF1, VF2 and

VF3, we use 𝑢0 = 2𝜋𝑅
𝑇 . In this context, VF1 represents the non-divergent rotated zonal field

introduced in Williamson et al. (1992). VF2 corresponds to the non-divergent deformational
flow described in Nair and Lauritzen (2010), and VF3 represents the divergent flow also
presented in Nair and Lauritzen (2010). For all velocity fields presented here, the initial
condition is equal to the final solution after 12 days. Furthermore, for VF1, we can compute
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(a) IC1. (b) IC2.

(c) IC3. (d) IC4.

Figure 5.2: Illustration of the initial conditions considered in this chapter (Table 5.2).

the exact solution at any time instant for any initial condition. Therefore, we can analyze
the temporal evolution of the error. For an expression of the exact solution when using
VF1 and a general initial condition, refer to Brachet (2018, Theorem 5.1, p. 155).

We are going to consider the schemes LT-DP2 and PL-DP1 since these schemes yield
better results on planar simulations (Section 3.4). For a shorter notation, we shall denote
LT-DP2 and PL-DP1 by LT and PL advection schemes. These schemes will be tested
using the unlimited PPM and the monotonic PPM scheme. As we mentioned in Section
5.3.1, the PL scheme needs the mt1 metric term formulation for the 1D flux operators to
eliminate the splitting error for a constant scalar field. For the LT scheme, we shall use the
mt0 metric term formulation because for this scheme, we do not have the constraint of
eliminating the splitting error for a constant scalar field. Furthermore, this formulation
makes the LT scheme much more accurate, while mt1 for LT makes it first-order. We are
also going to consider the simulations without mass fixer (mf0) and with flux averaging at
cube edges (mf1) to investigate the impact of flux averaging on accuracy. Additionally, we
are using the duo-grid to fill the ghost cell values using cubic polynomials. The reader may
refer to Mouallem et al. (2023) for a comparison between results on the duo-grid versus
the kinked grid. Both equi-edge (g0, Section 4.2.3) and equiangular grids (g2, Section 4.2.2)
using the spherical midpoints formulation (Section 4.2.4) are going to be consider in this
Section.

To compute the convergence, consider cubed-sphere grids with value of 𝑁𝑘 = 48 × 2𝑘,
and Δ𝑡(𝑘) = Δ𝑡(𝑘)

2𝑘 , 𝑘 = 0,… , 4, where the value of Δ𝑡(0) in Table 5.3 for each VF. The relative
error in the 𝑝-norm (Equation (4.50)) and the convergence rate are defined as in Section
2.6.
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5.4.1 Advection of one Gaussian hill through the rotated zonal
wind

As a first test case, we consider the advection of the Gaussian hill given by IC1 using
the rotated zonal wind VF1. In Figure 5.3, we illustrate how the Gaussian hill is advected
and passes over 4 cube corners, eventually returning to its initial position.

(a) 𝑡 = 2 days. (b) 𝑡 = 4 days.

(c) 𝑡 = 6 days. (d) 𝑡 = 8 days.

(e) 𝑡 = 10 days. (f) 𝑡 = 12 days.

Figure 5.3: Advection experiment results using the Gaussian hill at a cube corner (IC1, Table 5.2)
and the rotated zonal wind (VF1, Table 5.3). These figures show the advected profile after 2 (5.3a), 4
(5.3b), 6 (5.3c), 8 (5.3d), 10 (5.3e), and 12 (5.3f) days. We are using the LT-MONO-mf1 scheme on the
equi-edge grid (g0) with 𝑁 = 384.

The goal of this test is to observe the ability of all schemes and grids to perform this
test without creating larger errors or grid-imprinting when the Gaussian hill reaches a
corner. In fact, in Figure 5.4 we show how the error evolves with time over 12 days in the
𝐿∞ norm for 𝑁 = 384. Similarly, Figure 5.5 shows the error evolution over time in the 𝐿2
norm. Both figures use green lines to represent the PL scheme and blue lines to represent
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the LT scheme. Light colors denote cases where the mass fixer is not used, while dark
colors represent cases where it is used. Dashed lines represent the monotonic while solid
lines represent the unlimited PPM.

In terms of the 𝐿2 norm, as shown in Figure 5.5, no spikes are observed in the graphs
corresponding to the days when the Gaussian passes over a corner. Another conclusion is
that the mass fixer does not have too much impact on error evolution when the monotonic
scheme is used. However, from Figure 5.4 we can see some small spikes in the 𝐿∞ error on
the equi-edge grid (g0) when using the PL and LT schemes, which is less pronounced on
the equiangular grid.

(a) Equi-edge grid (b) Equiangular grid

Figure 5.4: 𝐿∞ error evolution for IC1 (Table 5.2) and VF1 (Table 5.3) on the equi-edge grid (a) and on
the equiangular grid (b) grids for 12 days and 𝑁 = 384. Blue lines indicate the use of the LT scheme,
while green lines represent the PL scheme. Solid lines represent the results with the unlimited PPM
(UNLIM) scheme, whereas dashed lines represent the results with the monotonic (MONO). Light colors
show the result without mass fixer (mf0), whereas dark colors show the results with flux averaging
(mf1).

(a) Equi-edge grid (b) Equiangular grid

Figure 5.5: As Figure 5.4 but using the 𝐿2 error.
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Indeed, Figure 5.6 shows the final error at a cube corner for the equi-edge grid (g0),
and Figure 5.7 shows it for the equiangular grid (g2). The results without a mass fixer are
very similar and are not shown here. We can observe that the errors for PL are larger at
the corners (Figures 5.6a and 5.7a) than the corner errors of the LT scheme (Figures 5.6b
and 5.7b). Additionally, the equi-edge grid (g0) and the equiangular grid (g2) yield similar
results for both schemes, with the equi-edge grid resulting in smaller maximum errors.

(a) PL scheme - max = 1.19 × 10−3. (b) LT scheme - max = 8.22 × 10−4.

Figure 5.6: Advection experiment errors at a cube corner using the Gaussian hill (IC1, Table 5.2) and
the rotated zonal wind (VF1, Table 5.3) after 12 days, using the monotonic scheme (MONO) with PL
(left) and LT schemes (right) on the equi-edge grid (g0) with 𝑁 = 384.

(a) PL scheme - max = 9.52 × 10−4. (b) LT scheme - max = 7.20 × 10−4.

Figure 5.7: As Figure 5.6 but using the equiangular grid (g2).
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Finally, in Figures 5.8 and 5.9 we show the error convergence in 𝐿∞ and 𝐿2 norms.
We can observe that all schemes with the unlimited PPM (UNLIM) achieve second-order
accuracy as expected. However, for MONO, the order is reduced, which is also expected.
Additionally, we can see that MONO with LT has smaller errors when comparing the blue
dashed lines with the green dashed lines, for both 𝐿∞ and 𝐿2 norms on both equi-edge grid
(g0) and the equiangular grid (g2), indicating that LT is slightly more accurate. In general,
the errors of g0 are slightly smaller than those of g2.

Figure 5.8: 𝐿∞ error convergence for the advection on the sphere test using the Gaussian hill at cube a
corner (IC1, Table 5.2) and the rotated zonal wind (VF1, Table 5.3) on the equi-edge grid (g0, left) and
on the equiangular grid (g2, right) after 12 days. Blue lines indicate the use of the LT scheme, while
green lines represent the PL scheme. Solid lines represent the results with the unlimited PPM (UNLIM)
scheme, whereas dashed lines represent the results with the monotonic PPM (MONO). Light colors show
the result without mass fixer (mf0), whereas dark colors show the results with flux averaging (mf1).

Figure 5.9: As Figure 5.8 but considering the 𝐿2 norm.
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5.4.2 Advection of a cosine bell hill through the rotated zonal
wind

As the second test case, we consider the advection of the cosine bell given by IC2
using the rotated zonal wind VF1. The cosine bell is advected and passes over 4 cube
corners, very similarly to the Gaussian hill, as shown in Figure 5.3. The major difference
between IC1 and IC2 is that IC1 is a smooth function while IC2 is only continuous. Then,
we may compare how both schemes handle a non-differentiable function. For 𝑁 = 384,
the temporal evolution of the errors is very similar to that of IC1 (Figures 5.4 and 5.5) and
is omitted here.

(a) PL scheme - max = 2.92 × 10−3 (b) LT scheme - max = 2.34 × 10−3

Figure 5.10: Advection experiment errors at a cube corner using the cosine bell (IC2, Table 5.2) and
the rotated zonal wind (VF1, Table 5.3) after 12 days, using the monotonic scheme (MONO) with PL
(left) and LT schemes (right) on the equi-edge grid (g0) grid with 𝑁 = 384.

(a) PL scheme - max = 2.35 × 10−3 (b) LT scheme - max = 1.91 × 10−3

Figure 5.11: As Figure 5.6 but using the equiangular grid (g2).

In Figure 5.10, we show the final error at the cube corner for the equi-edge grid (g0),
and Figure 5.11 show the same for the equiangular grid (g2). We can observe that the
results are similar to IC1 with VF1 shown in Figures 5.6 and 5.7. We conclude again that
LT has a smaller error at the corner, especially for the equi-edge grid (g0).
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In Figures 5.12 and 5.13, we show the error convergence for the 𝐿∞ and 𝐿2 norms,
respectively. Note that the errors in the 𝐿∞ norm (Figure 5.12) for the unlimited PPM
(solid lines) are not achieving second order as they should because the solution is not
differentiable. For MONO (dashed lines), we can see that the 𝐿∞ errors for LT (blue lines)
are smaller than the errors of PL (green lines), especially for the equi-edge grid (g0). Finally,
the 𝐿2 errors are very similar (Figure 5.13).

Figure 5.12: 𝐿∞ error convergence for the advection on the sphere test using the cosine bell at cube a
corner (IC2, Table 5.2) and the rotated zonal wind (VF1, Table 5.3) on the equi-edge grid (g0, left) and
on the equiangular grid (g2, right) after 12 days. Blue lines indicate the use of the LT scheme, while
green lines represent the PL scheme. Solid lines represent the results with the unlimited PPM (UNLIM)
scheme, whereas dashed lines represent the results with monotonic (MONO). Light colors show the
result without mass fixer (mf0), whereas dark colors show the results with flux averaging (mf1).

Figure 5.13: As Figure 5.19 but considering the 𝐿2 norm.



102

5 | CUBED-SPHERE FINITE-VOLUME METHODS

5.4.3 Advection of a slotted cylinder through the rotated zonal
wind

The third test case here is the slotted cylinder advection, given by IC3 from Table 5.2
and using again the rotated zonal wind VF1 (Table 5.3). We show how the solution evolves
with time in Figure 5.14.

(a) 𝑡 = 2 days. (b) 𝑡 = 4 days.

(c) 𝑡 = 6 days. (d) 𝑡 = 8 days.

(e) 𝑡 = 10 days. (f) 𝑡 = 12 days.

Figure 5.14: Advection experiment results using the slotted cylinder at a cube corner (IC3, Table 5.2)
and the rotated zonal wind (VF1, Table 5.3). These figures show the advected profile after 2 (5.14a), 4
(5.14b), 6 (5.14c), 8 (5.14d), 10 (5.14e), and 12 (5.14f) days. We are using the LT-MONO-mf1 scheme
on the equi-edge grid (g2) with 𝑁 = 192.

The goal of this test is to assess the qualitative behavior of the solution, especially to
see if the limiter prevents oscillations that are expected since the slotted cylinder has a
discontinuous profile. Also, as the slotted cylinder is located at a cube corner, we would
like to see if the corner affects the solution. In Figure 5.15, we present the final solutions
for 𝑁 = 192 as well the reference solution. It is evident that all the schemes yield similar
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results, and we cannot observe any interference of the corner despite using a discontinuous
initial condition.

(a) PL-MONO at g0. (b) LT-MONO at g0.

(c) PL-MONO at g2. (d) LT-MONO at g2.

(e) IC and exact solution at day
12.

Figure 5.15: Slotted cylinder at corner test with 𝑁 = 192 after 12 days for the schemes PL-MONO at
the equi-edge grid (g0) (a), LT-MONO at the equi-edge grid (g0) (b), PL-MONO at the equiangular
grid (g2) (c) and LT-MONO at the equiangular grid (g2) (d). (e) depicts the reference solution. The
monotonic scheme is denoted by MONO.
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5.4.4 Non-divergent deformational flow
The fourth test case considers the divergence free wind VF2 from Table 5.3, along with

the initial condition IC4 from Table 5.2, where the velocity is time-dependent. This test is
suggested by Nair and Lauritzen (2010), and Figure 5.16 shows how the solution evolves
over time. Since the wind is divergence free, we observe that it deforms the two Gaussian
hills, without creating new extrema. Eventually, the final solution is equal to the initial
condition after 12 days. This test is the spherical analogous of the planar divergence free
deformational flow test presented in Section 3.4.2.

(a) 𝑡 = 2 days. (b) 𝑡 = 4 days.

(c) 𝑡 = 6 days. (d) 𝑡 = 8 days.

(e) 𝑡 = 10 days. (f) 𝑡 = 12 days.

Figure 5.16: Advection experiment results using the two Gaussian hills (IC4, Table 5.2) and the variable
in time divergent free wind (VF2, Table 5.3). These figures show the advected profile after 2 (5.16a), 4
(5.16b), 6 (5.16c), 8 (5.16d), 10 (5.16e), and 12 (5.16f) days. We are using the LT-MONO-mf1 scheme
on the equi-edge grid (g0) with 𝑁 = 384.
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Figures 5.17 and 5.18 show the final error at a cube face for the equi-edge grid (g0) and
the equiangular grid (g2), respectively. The results without a mass fixer are very similar
and are not shown here. We can observe that the errors for both PL and LT are very similar,
and also the type of grid does not have a significant impact.

(a) PL scheme. (b) LT scheme.

Figure 5.17: Advection experiment results using the two Gaussian hills (IC4, Table 5.2) and the variable
in time divergence free wind (VF2, Table 5.3). These figures show the advected profile after 2 (5.16a), 4
(5.16b), 6 (5.16c), 8 (5.16d), 10 (5.16e), and 12 (5.16f) days. We are using the LT-MONO-mf1 scheme
on the equi-edge grid (g0) with 𝑁 = 384.

(a) PL scheme. (b) LT scheme.

Figure 5.18: As Figure 5.17 but using the equiangular grid (g2).

Figures 5.19 and 5.20 we show the error convergence in 𝐿∞ and 𝐿2 norms. Once more, it
is evident that all schemes with the unlimited PPM (UNLIM) achieve second-order accuracy
as expected, while those with the monotonic PPM (MONO) experience a reduced order
in 𝐿∞ norm. In 𝐿2 norm, the order is 2 for MONO. Furthermore, LT and PL demonstrate
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almost the same errors when utilizing MONO, with the LT scheme being slightly smaller.
We also notice that the mass fixer does not impact the errors.

Figure 5.19: 𝐿∞ error convergence for the advection on the sphere test using the two Gaussian hills
(IC4, Table 5.2) and the variable in time divergent-free wind (VF2, Table 5.3) on the equi-edge grid
(g0, left) and on the equiangular grid (g2, right) after 12 days. Blue lines indicate the use of the LT
scheme, while green lines represent the PL scheme. Solid lines represent the results with the unlimited
PPM (UNLIM) scheme, whereas dashed lines represent the results with the monotonic PPM (MONO).
Light colors show the result without mass fixer (mf0), whereas dark colors show the results with flux
averaging (mf1).

Figure 5.20: As Figure 5.19 but considering the 𝐿2 norm.
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5.4.5 Divergent deformational flow
The fifth and last test case considers the divergent wind VF3 from Table 5.3, along with

the initial condition IC4 from Table 5.2, where the velocity is time-dependent. This test
is also suggested by Nair and Lauritzen (2010), and Figure 5.21 shows how the solution
evolves over time. Since the wind is divergent, we observe that it deforms the two Gaussian
hills, creating new extrema. Eventually, the final solution is equal to the initial condition
after 12 days. This test is the spherical analogous of the planar divergent deformational
flow test presented in Section 3.4.3.

(a) 𝑡 = 2 days. (b) 𝑡 = 4 days.

(c) 𝑡 = 6 days. (d) 𝑡 = 8 days.

(e) 𝑡 = 10 days. (f) 𝑡 = 12 days.

Figure 5.21: Advection experiment results using the two Gaussian hills (IC4, Table 5.2) and the
divergent wind (VF3, Table 5.3). These figures show the advected profile after 2 (5.21a), 4 (5.21b), 6
(5.21c), 8 (5.21d), 10 (5.21e), and 12 (5.21f) days. We are using the LT-MONO-mf1 scheme on the
equiangular grid (g2) with 𝑁 = 384.

Figures 5.22 and 5.23 show the final error at a cube face for the equi-edge grid (g0) and
the equiangular grid (g2), respectively. The results without a mass fixer are very similar and
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are not shown here. We can observe that the errors for PL are much larger, with significant
errors present in many cells, whereas LT has smaller errors that are concentrated in some
ripples.

(a) PL scheme. (b) LT scheme.

Figure 5.22: Advection experiment errors using the two Gaussian hills (IC4, Table 5.2) and the divergent
wind (VF3, Table 5.3) after 12 days, using the monotonic scheme (MONO) with PL (left) and LT schemes
(right) on the equi-edge grid (g0) with 𝑁 = 384.

(a) PL scheme. (b) LT scheme.

Figure 5.23: As Figure 5.22 but using the equiangular grid (g2).

Figures 5.24 and 5.25 we show the error convergence in 𝐿∞ and 𝐿2 norms. These figures
highlight a major significant distinction between LT and PL schemes, unlike the previous
tests. It is clear that PL with the unlimited PPM achieves only first-order accuracy, whereas
LT with the unlimited PPM (UNLIM) achieves third-order accuracy, surpassing second-
order the expectation, for both equi-edge grid (g0) and the equiangular grid (g2) and norms.
For the monotonic scheme (MONO), LT demonstrates second-order accuracy in the 𝐿2
norm, while PL is only first-order. LT with the monotonic scheme (MONO) exhibits smaller
errors in the 𝐿∞ norm compared to the PL scheme for all grids. This discrepancy arises
because the PL splitting is designed for divergence-free flows, while LT is designed to be
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second-order regardless of the flow characteristics. Finally, these results are similar to the
planar divergent deformational flow test presented in Section 3.4.3.

Figure 5.24: 𝐿∞ error convergence for the advection on the sphere test using the two Gaussian hills
(IC4, Table 5.2) and the divergent wind (VF3, Table 5.3) on the equi-edge grid (g0, left) and on the
equiangular grid (g2, right) after 12 days. Blue lines indicate the use of the LT scheme, while green
lines represent the PL scheme. Solid lines represent the results with the unlimited PPM (UNLIM) scheme,
whereas dashed lines represent the results with the monotonic PPM (MONO). Light colors show the
result without mass fixer (mf0), whereas dark colors show the results with flux averaging (mf1).

Figure 5.25: As Figure 5.24 but considering the 𝐿2 norm.
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5.5 Concluding remarks
In summary, in this Chapter, we demonstrate how the dimension-splitting methods

from Chapter 3, namely the PL and LT methods, can be extended to the cubed-sphere to
solve the advection equation on the sphere using the cubed-sphere grids equi-edge (g0)
and equiangular (g2), along with the duo-grid interpolation presented in Chapter 4. We
observed a major difference in the metric term that appears in this case, and it may be
treated differently in the PPM flux computation. Also, on the cubed-sphere, we need to
apply a mass fixer, namely averaging the fluxes at the cube edges, to ensure exact mass
preservation.

We showed that LT may use a more accurate metric term formulation, since this scheme
is more flexible and does not need to eliminate the splitting error for a constant scalar
wind and divergence-free wind, which is demanded for the PL scheme. This difference in
requirements allows the LT scheme to utilize a more accurate metric term formulation
compared to PL.

The conclusions of this Chapter are essentially extensions of the results from Chapter
3 from the plane to the cubed-sphere. In fact, the LT scheme, which utilize a second-
order departure point calculation, showed to have smaller errors than the PL scheme,
which is designed to preserve a constant scalar field for divergence-free winds. Both
schemes are second-order when no limiter is employed and the wind is divergence-free.
The major difference between LT and PL is when the wind is not divergence-free. In this
case, PL is only first order, while LT is second-order. Even with a limiter, LT is much
more accurate than PL in this case. This was demonstrated consistently throughout the
simulations. Therefore, our major conclusion here is that the LT scheme is much more
accurate regardless of whether the wind is divergence-free or not, while PL is only accurate
for divergence-free winds.

Additionally, the Gaussian hill and cosine bell advection through a rotated zonal wind
showed that some errors of PL and LT presented small spikes whenever the Gaussian hill
passed over a corner. The overall results for this test showed that the LT scheme have
slightly smaller errors. We could also observe that the mass fixer did not significantly impact
the results, and the equi-edge grid (g0) grid generally exhibited smaller errors compared
to the equiangular grid (g2), with LT showing good performance in both grids.
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Chapter 6

Cubed-sphere finite-volume
shallow-water model

Now that we have described how to solve the advection equation on the cubed-sphere
in Chapter 5, we are able to introduce the method of Lin and Rood (1997) for solving the
shallow-water equations (SWE) on the cubed-sphere. In fact, this scheme considers the
SWE in the vector invariant form, and therefore, the flux operators discussed in Chapter
5 are used to update the fluid depth, as well as the time-averaged relative vorticity and
kinetic energy fluxes. This scheme first solves the SWE for a half time-step to obtain
C-grid covariant winds and then utilizes this new information to advance the D-grid
covariant winds for a full time step. The C-grid half-step employs upwind flux operators,
which are computationally inexpensive, while the D-grid uses PPM-based fluxes, providing
higher accuracy. We note that other flux operators could be employed here, but the choice
presented is what is utilized in FV3.

Although the advection equation on the sphere plays a crucial role in the development
of dynamical cores by modeling the advection of scalar fields on the sphere, it does not
capture important features present in the SWE on the sphere, such as the Coriolis effect,
inertia-gravity waves, geostrophic adjustment, Rossby waves, among others. Therefore,
SWE serve as an excellent benchmark for assessing dynamical cores in general, as they
are only two-dimensional but represent a complex geophysical model for atmosphere
dynamics. Furthermore, the 3D non-hydrostatic solver of FV3 utilizes a vertical Lagrangian
coordinate system, requiring the solution of the shallow-water equations on the Lagrangian
surfaces (Harris et al., 2021; Lin, 2004).

The goal of this Chapter is to provide a detailed description of the SWE solver from
Lin and Rood (1997). Since this scheme uses advection operators to update the variables,
we are going to incorporate the new advection scheme LT introduced in Chapter 5 and
compare it with the PL advection scheme from Putman and Lin (2007), which is currently
employed in FV3. Thus, we will extend the comparisons made in Chapter 5 to the context
of the SWE.

This Chapter is outlined as follows: In Section 6.1, we introduce the SWE and some
of its properties, and then we discuss the C-grid and D-grid discretization proposed by
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Lin and Rood (1997) in Section 6.2. Our modifications for their scheme are presented in
Section 6.3. Following that, in Section 6.4, we present numerical results using classical
tests from the literature. Finally, in Section 6.5, we provide concluding remarks.

6.1 The shallow-water equations on the sphere
In this Section, we introduce the shallow-water equations (SWE) on the sphere using

a cubed-sphere mapping (equi-edge or equiangular) as discussed in Section 4.2. All the
notation from Sections 4.1 and 4.2 is utilized here. For simplicity, we omit the dependence
on 𝑝 since it does not affect the description across cube faces. Additionally, we assume that
the ghost cells are filled using the duo-grid interpolation scheme outlined in Sections 4.3.2
and 4.3.3. The shallow-water equations (SWE) are a set of hyperbolic partial differential
equations describing how the fluid depth, denoted by ℎ, and the wind 𝒖 evolve with time.
Since the cubed-sphere system is non-orthogonal, the SWEs will feature the covariant
winds U,V and contravariant winds u, v, as discussed in Section 4.2.6. The SWE on the
a cubed-sphere panel are expressed as in its vector invariant form as (Nair et al., 2005a;
Rančić et al., 1996):

𝜕𝑡(
√
gℎ)(𝑥, 𝑦, 𝑡) = −[𝜕𝑥(u

√
gℎ + 𝜕𝑦(v

√
gℎ)](𝑥, 𝑦, 𝑡), (6.1)

𝜕𝑡U(𝑥, 𝑦, 𝑡) = −[𝜕𝑥𝐾 − v
√
g𝜉 + 𝜕𝑥Φ](𝑥, 𝑦, 𝑡), (6.2)

𝜕𝑡V(𝑥, 𝑦, 𝑡) = −[𝜕𝑦𝐾 + u
√
g𝜉 + 𝜕𝑦Φ](𝑥, 𝑦, 𝑡), (6.3)

Φ = 𝑔(ℎ + 𝑏) is the geopotential, 𝑔 is the gravity, 𝑏 is the bottom topography,

𝐾 =
uU + vV

2
, (6.4)

is the kinetic energy,
𝜉 = 𝑓 + 𝜁 , (6.5)

is the absolute vorticity, where
𝑓 = 2Ω sin 𝜙, (6.6)

is the Coriolis parameter, 𝜙 is the latitude, Ω = 7.2921 × 10−5 is the Earth rotation speed,
and

𝜁 =
1
√
g
(𝜕𝑥V − 𝜕𝑦U), (6.7)

is the relative vorticity.

Now, let us describe some elementary properties of the SWE. By taking 𝜕𝑦 in Equation
(6.2) and 𝜕𝑥 in Equation (6.3) and subtracting the obtained results, we get that the absolute
vorticity satisfies:

𝜕𝑡(
√
g𝜉)(𝑥, 𝑦, 𝑡) = −[𝜕𝑥(u

√
g𝜉) + 𝜕𝑦(v

√
g𝜉)](𝑥, 𝑦, 𝑡). (6.8)

One can also easily show (as described in Section 5.1) that the total mass of ℎ and 𝜁 is
preserved.

By replacing Equations (4.40) and (4.46) in Equation (6.4), it follows that the kinetic
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energy may be rewritten in terms of the normalized contravariant and covariant wind
components as:

𝐾 =
𝑢𝑈 + 𝑣𝑉

2
. (6.9)

Recall that the normalized contravariant and covariant wind components are given by
Equation (4.40) and Equation (4.45), respectively.

The total energy is defined as:

𝐸 = 𝑔
ℎ2

2
+ 𝑔𝑏 + ℎ𝐾. (6.10)

One can deduce an equation for the time evolution of the total energy (see, for example,
Ringler et al. (2010)) and observe that its integral over the sphere is preserved; that is, the
total energy is conserved.

6.1.1 Momentum equation discretization
The continuity equation (6.1) has the exact same form as the advection equation when

written in its conservative form. Therefore, this equation can be solved on the A-grid using
C-grid contravariant winds, as explored in Chapters 3 and 5. This is how the continuity
equation is solved in FV3. As we shall see later, this equation is solved twice: once using
the 2D upwind flux and another using the dimension-splitting method from Chapter 5
with PPM.

Therefore, we need to describe how we can solve the momentum equations (6.2) and
(6.3). The method of Lin and Rood (1997) employs two types of approaches on their shallow-
water solver: one using a C-grid wind and the other using a D-grid wind. The C-grid
method serves as an intermediate step utilized by the D-grid method. Our goal now is to
describe a general discretization of the momentum equations for the C-grid and D-grid
winds. The full description of the C-grid and D-grid solvers proposed by Lin and Rood
(1997) will be provided in Sections 6.2.1 and 6.2.2, respectively.

D-grid discretization of the momentum equation

We introduce the following average operators for the covariant wind components in 𝑥
and 𝑦 directions, respectively:

U𝑥
𝑖,𝑗+ 1

2
(𝑡) =

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

U(𝑥, 𝑦𝑗+ 1
2
, 𝑡) 𝑑𝑥, 𝑖 = 1, … , 𝑁 , 𝑗 = 0, … , 𝑁 , (6.11)

V
𝑦
𝑖+ 1

2 ,𝑗
(𝑡) =

1
Δ𝑦 ∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

V(𝑥𝑖+ 1
2
, 𝑦, 𝑡) 𝑑𝑦, 𝑖 = 0, … , 𝑁 , 𝑗 = 1, … , 𝑁 . (6.12)

We shall also use the notation 𝑞𝑖𝑗(𝑡) = 𝑞(𝑥𝑖, 𝑦𝑗 , 𝑡) for any function 𝑞 and integer or half-
integer indices 𝑖 and 𝑗 . We also use the centered difference notations 𝛿𝑖𝑞𝑖𝑗(𝑡) = 𝑞𝑖+ 1

2 ,𝑗
(𝑡) −

𝑞𝑖− 1
2 ,𝑗
(𝑡) and 𝛿𝑗𝑞𝑖𝑗(𝑡) = 𝑞𝑖,𝑗+ 1

2
(𝑡)−𝑞𝑖,𝑗− 1

2
(𝑡) for any integer or half-integer indices 𝑖 and 𝑗 .

By integrating Equation (6.2) with respect to 𝑥 on [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] and Equation (6.3) with
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respect to 𝑦 on [𝑦𝑗− 1
2
, 𝑦𝑗+ 1

2
], we get the following equations:

𝑑
𝑑𝑡
U𝑥
𝑖,𝑗+ 1

2
(𝑡) = −

𝛿𝑖𝐾𝑖,𝑗+ 1
2
(𝑡)

Δ𝑥
−
𝛿𝑖Φ𝑖,𝑗+ 1

2
(𝑡)

Δ𝑥
+

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(v
√
g𝜉)(𝑥𝑖, 𝑦𝑗+ 1

2
, 𝑡) 𝑑𝑥, (6.13)

𝑑
𝑑𝑡
V

𝑦
𝑖+ 1

2 ,𝑗
(𝑡) = −

𝛿𝑗𝐾𝑖+ 1
2 ,𝑗
(𝑡)

Δ𝑦
−
𝛿𝑗Φ𝑖+ 1

2 ,𝑗
(𝑡)

Δ𝑦
−

1
Δ𝑦 ∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(u
√
g𝜉)(𝑥𝑖+ 1

2
, 𝑦, 𝑡) 𝑑𝑦. (6.14)

Integrating Equations (6.13) and (6.14) on time over [𝑡𝑛, 𝑡𝑛+1], we obtain:

U𝑥
𝑖,𝑗+ 1

2
(𝑡𝑛+1) = U𝑥

𝑖,𝑗+ 1
2
(𝑡𝑛) − ∫

𝑡𝑛+1

𝑡𝑛 [
𝛿𝑖𝐾𝑖,𝑗+ 1

2
(𝑡)

Δ𝑥
+
𝛿𝑖Φ𝑖,𝑗+ 1

2
(𝑡)

Δ𝑥
− (∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(v√g𝜉)(𝑥𝑖, 𝑦𝑗+ 1
2
, 𝑡)

Δ𝑥
𝑑𝑥)] 𝑑𝑡,

(6.15)

V
𝑦
𝑖+ 1

2 ,𝑗
(𝑡𝑛+1) = V

𝑦
𝑖+ 1

2 ,𝑗
(𝑡𝑛) − ∫

𝑡𝑛+1

𝑡𝑛 [
𝛿𝑗𝐾𝑖+ 1

2 ,𝑗
(𝑡)

Δ𝑦
+
𝛿𝑗Φ𝑖+ 1

2 ,𝑗
(𝑡)

Δ𝑦
+ (∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(u√g𝜉)(𝑥𝑖+ 1
2
, 𝑦, 𝑡)

Δ𝑦
𝑑𝑦)] 𝑑𝑡.

(6.16)

Using the midpoint rule and using the normalized covariant winds in Equations (6.15) and
(6.16), we derive a general scheme to update the normalized D-grid covariant winds:

𝑈 𝑛+1
𝑖,𝑗+ 1

2
= 𝑈 𝑛

𝑖,𝑗+ 1
2
− (

𝛿𝑖𝐾 𝑛
𝑖,𝑗+ 1

2

𝛿̂𝑥𝑖,𝑗+ 1
2

+
𝛿𝑖Φ𝑛

𝑖,𝑗+ 1
2

𝛿̂𝑥𝑖,𝑗+ 1
2

−
𝐺𝑖,𝑗+ 1

2

𝛿̂𝑥𝑖,𝑗+ 1
2

[𝜉 , 𝑣𝑛]), (6.17)

𝑉 𝑛+1
𝑖+ 1

2 ,𝑗
= 𝑉 𝑛

𝑖+ 1
2 ,𝑗

− (
𝛿𝑗𝐾𝑖+ 1

2 ,𝑗

𝛿̂𝑦𝑖+ 1
2 ,𝑗

+
𝛿𝑗Φ𝑛

𝑖+ 1
2 ,𝑗

𝛿̂𝑦𝑖+ 1
2 ,𝑗

+
𝐹𝑖+ 1

2 ,𝑗
[𝜉 , 𝑢𝑛]

𝛿̂𝑦𝑖+ 1
2 ,𝑗

). (6.18)

Then, this schemes requires an approximation of the time-averaged kinetic energy at the
B-grid:

𝐾 𝑛
𝑖+ 1

2 ,𝑗+
1
2
≈

1
2[ ∫

𝑡𝑛+1

𝑡𝑛
(𝑢𝑈)(𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2
, 𝑡) 𝑑𝑡 + ∫

𝑡𝑛+1

𝑡𝑛
(𝑣𝑉 )(𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2
, 𝑡) 𝑑𝑡], (6.19)

and an approximation of the time-averaged geopotential on B-grid:

Φ𝑛
𝑖+ 1

2 ,𝑗+
1
2
≈ ∫

𝑡𝑛+1

𝑡𝑛
Φ(𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2
, 𝑡) 𝑑𝑡, (6.20)

The terms should 𝐹𝑖+ 1
2 ,𝑗
[𝜉𝑛, 𝑢𝑛] and 𝐺𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑣𝑛] should approximate the time-averaged

absolute vorticity fluxes:

𝐹𝑖+ 1
2 ,𝑗
[𝜉𝑛, 𝑢𝑛] ≈ ∫

𝑡𝑛+1

𝑡𝑛
∫

𝑦𝑗+ 1
2

𝑦𝑗− 1
2

(u
√
g𝜉)(𝑥𝑖+ 1

2
, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡 (6.21)

𝐺𝑖,𝑗+ 1
2
[𝜉𝑛, 𝑣𝑛] ≈ ∫

𝑡𝑛+1

𝑡𝑛
∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(v
√
g𝜉)(𝑥, 𝑦𝑗+ 1

2
, 𝑡) 𝑑𝑥 𝑑𝑡. (6.22)

Notice that since 𝜉 satisfies the advection equation (6.8), these integrals may be approxi-
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mated using finite-volume fluxes assuming that 𝜉 may be advected on the A-grid. Indeed,
this is possible because, as we shall see soon, the D-grid covariant wind facilitates the
estimation of 𝜉 on the A-grid by using centered finite differences. All these approximations
needed for the D-grid scheme are described in Section 6.2.2.

C-grid discretization of the momentum equation

Similar to the derivation of the D-grid covariant wind scheme, we may deduce the
following C-grid covariant wind scheme for a half-time step:

𝑈 𝑛+1
𝑖+ 1

2 ,𝑗
= 𝑈 𝑛

𝑖+ 1
2 ,𝑗

− (

𝛿𝑖𝐾 𝑛
𝑖+ 1

2 ,𝑗

𝛿̂𝑥𝑖+ 1
2 ,𝑗

+
𝛿𝑖Φ𝑛

𝑖+ 1
2 ,𝑗

𝛿̂𝑥𝑖+ 1
2 ,𝑗

−
𝐺𝑖+ 1

2 ,𝑗
[𝜉𝑛, 𝑣𝑛]

𝛿̂𝑥𝑖+ 1
2 ,𝑗

), (6.23)

𝑉 𝑛+1
𝑖,𝑗+ 1

2
= 𝑉 𝑛

𝑖,𝑗+ 1
2
− (

𝛿𝑗𝐾𝑖,𝑗+ 1
2

𝛿̂𝑦𝑖,𝑗+ 1
2

+
𝛿𝑗Φ𝑛

𝑖,𝑗+ 1
2

𝛿̂𝑦𝑖,𝑗+ 1
2

+
𝐹𝑖,𝑗+ 1

2
[𝜉 , 𝑢𝑛]

𝛿̂𝑦𝑖,𝑗+ 1
2

). (6.24)

Then, this schemes requires an approximation of the time-averaged kinetic energy at the
A-grid

𝐾 𝑛
𝑖𝑗 ≈

1
2[ ∫

𝑡𝑛+ 1
2

𝑡𝑛
(𝑢𝑈)(𝑥𝑖, 𝑦𝑗 , 𝑡) 𝑑𝑡 + ∫

𝑡𝑛+ 1
2

𝑡𝑛
(𝑣𝑉 )(𝑥𝑖, 𝑦𝑗 , 𝑡) 𝑑𝑡], (6.25)

and an approximation of the time-averaged geopotential on A-grid points:

Φ𝑛
𝑖𝑗 ≈ ∫

𝑡𝑛+ 1
2

𝑡𝑛
Φ(𝑥𝑖, 𝑦𝑗 , 𝑡) 𝑑𝑡. (6.26)

The terms should 𝐹𝑖,𝑗+ 1
2
[𝜉𝑛, 𝑢𝑛] and 𝐺𝑖+ 1

2 ,𝑗
[𝜉𝑛, 𝑣𝑛] should approximate the time-averaged

absolute vorticity fluxes:

𝐹𝑖,𝑗+ 1
2
[𝜉𝑛, 𝑢𝑛] ≈ ∫

𝑡𝑛+
1
2

𝑡𝑛
∫

𝑦𝑗+1

𝑦𝑗
(u
√
g𝜉)(𝑥𝑖, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡 (6.27)

𝐺𝑖+ 1
2 ,𝑗
[𝜉𝑛, 𝑣𝑛] ≈ ∫

𝑡𝑛+
1
2

𝑡𝑛
∫

𝑥𝑖+1

𝑥𝑖
(v
√
g𝜉)(𝑥, 𝑦𝑗 , 𝑡) 𝑑𝑥 𝑑𝑡. (6.28)

Once again, since 𝜉 satisfies the advection equation (6.8), these integrals may be approxi-
mated using finite-volume fluxes assuming that 𝜉 may be advected on the B-grid. Indeed,
this is possible because, as we shall see soon, the C-grid covariant wind facilitates the
estimation of 𝜉 on the B-grid by using centered finite differences. All these approximations
are described in Section 6.2.1.

6.2 The FV3 shallow-water solver

This Section is dedicated to presenting all the details of the shallow-water solver
proposed by Lin and Rood (1997) on the cubed-sphere. The C-grid intermediate step is
described in Section 6.2.1, while the D-grid step is detailed in Section 6.2.2.



116

6 | CUBED-SPHERE FINITE-VOLUME SHALLOW-WATER MODEL

6.2.1 C-grid intermediate step

The C-grid intermediate step serves to provide the C-grid contravariant winds centered
at time 𝑢𝑛+

1
2

𝑖+ 1
2 ,𝑗

and 𝑣𝑛+
1
2

𝑖,𝑗+ 1
2

that are required by the advection fluxes when using PPM, as
discussed in Chapters 3 and 5. One could utilize second-order extrapolation to obtain these
centered at time C-grid winds, using two time levels, namely:

𝑢𝑛+
1
2

𝑖+ 1
2 ,𝑗

=
3
2
𝑢𝑛𝑖,𝑗+ 1

2
−
1
2
𝑢𝑛−1𝑖,𝑗+ 1

2
, (6.29)

𝑣𝑛+
1
2

𝑖,𝑗+ 1
2
=

3
2
𝑣𝑛𝑖,𝑗+ 1

2
−
1
2
𝑣𝑛−1𝑖,𝑗+ 1

2
. (6.30)

This approach is very popular in Semi-Lagrangian methods. However, as pointed out
by Lin and Rood (1997), this extrapolation introduces 2Δ𝑥 numerical noise, which may
degrade the solution in presence of sharp bottom topography. Therefore, Lin and Rood
(1997) proposes solving the SWE on a C-grid for a half-time step to provide the winds
centered at time 𝑛 + 1

2 . To make this half-time step cheaper, upwind fluxes are going to be
used. Our goal now is to describe the details of this C-grid wind solver. We are going to
describe everything that is needed to advance the C-grid winds given by Equations (6.23)
and (6.24).

Wind interpolation

We are given the D-grid covariant wind, that is, we have 𝑈 𝑛
𝑖,𝑗+ 1

2
for 𝑖 = 0, … , 𝑁 , 𝑗 =

1, … , 𝑁 , and 𝑉 𝑛
𝑖+ 1

2 ,𝑗
𝑗 = 0, … , 𝑁 , 𝑖 = 1, … , 𝑁 . We may then use the duo-grid interpolation

(Section 4.3.3) to get the values on the duo-grid. After that, we have all the values 𝑈 𝑛
𝑖,𝑗+ 1

2
for 𝑖 = 0, … , 𝑁 + 𝜈, 𝑗 = 1, … , 𝑁 + 𝜈, and 𝑉 𝑛

𝑖+ 1
2 ,𝑗
𝑗 = 0, … , 𝑁 + 𝜈, 𝑖 = 1, … , 𝑁 + 𝜈.

We define the average operator in the 𝑥 direction as:

𝑞𝑖𝑗 𝑥 =

{
0.5(𝑞𝑖+ 1

2 ,𝑗
+ 𝑞𝑖− 1

2 ,𝑗
), if 𝑖 = −𝜈 + 1 or 𝑖 = 𝑁 + 𝜈,

9
16(𝑞𝑖+ 1

2 ,𝑗
+ 𝑞𝑖− 1

2 ,𝑗
) − 1

16(𝑞𝑖+ 3
2 ,𝑗

+ 𝑞𝑖− 3
2 ,𝑗
), otherwise,

(6.31)

for any integer 𝑖 and integer or half integer 𝑗 , and

𝑞𝑖+ 1
2 ,𝑗

𝑥 =

{
0.5(𝑞𝑖+1,𝑗 + 𝑞𝑖𝑗), if 𝑖 = −𝜈 + 1 or 𝑖 = 𝑁 + 𝜈,
9
16(𝑞𝑖+1,𝑗 + 𝑞𝑖𝑗) − 1

16(𝑞𝑖+2,𝑗 + 𝑞𝑖−1,𝑗), otherwise,
(6.32)

for any integer 𝑖 and integer or half integer 𝑗 . The average operator 𝑞𝑖𝑗 𝑦 in the 𝑦 direction
is defined analogously.

We may interpolate the normalized covariant component 𝑈 from the D-grid to A-grid
by using the average in the 𝑦 direction:

𝑈 𝑛
𝑖𝑗 = 𝑈 𝑛

𝑖𝑗
𝑦 , (6.33)
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for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the 𝑉 component:

𝑉 𝑛
𝑖𝑗 = 𝑉 𝑛

𝑖𝑗
𝑥 , (6.34)

for 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈.

Moreover, using the A-grid covariant wind, we may convert the wind from covariant
to contravariant on the A-grid representation using Equation (4.47):

𝑢𝑛𝑖𝑗 =
1

sin2 𝛼𝑖𝑗(
𝑈 𝑛
𝑖𝑗 − cos 𝛼𝑖𝑗𝑉 𝑛

𝑖𝑗), (6.35)

for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the 𝑣 component:

𝑣𝑛𝑖𝑗 =
1

sin2 𝛼𝑖𝑗(
𝑉 𝑛
𝑖𝑗 − cos 𝛼𝑖𝑗𝑈 𝑛

𝑖𝑗), (6.36)

for 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈.

Using the A-grid covariant wind, we may interpolate it to the C-grid covariant wind
as:

𝑈 𝑛
𝑖+ 1

2 ,𝑗
= 𝑈 𝑛

𝑖+ 1
2 ,𝑗

𝑥 , (6.37)

for 𝑖 = −𝜈 + 2,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the 𝑉 component:

𝑉 𝑛
𝑖,𝑗+ 1

2
= 𝑉 𝑛

𝑖,𝑗+ 1
2

𝑦 , (6.38)

for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 2,… , 𝑁 + 𝜈.

Then, we may get the C-grid covariant wind using the original D-grid contravariant
wind:

𝑢𝑛𝑖+ 1
2 ,𝑗

=
1

sin2 𝛼𝑖+ 1
2 ,𝑗
(𝑈

𝑛
𝑖+ 1

2 ,𝑗
− cos 𝛼𝑖+ 1

2 ,𝑗
𝑉 𝑛
𝑖+ 1

2 ,𝑗), (6.39)

for 𝑖 = −𝜈 + 2,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the 𝑣 component:

𝑣𝑛𝑖,𝑗+ 1
2
=

1
sin2 𝛼𝑖,𝑗+ 1

2
(𝑉

𝑛
𝑖,𝑗+ 1

2
− cos 𝛼𝑖,𝑗+ 1

2
𝑈 𝑛
𝑖,𝑗+ 1

2), (6.40)

for 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 2,… , 𝑁 + 𝜈.

And similarly, we obtain the D-grid contravariant wind:

𝑣𝑛𝑖+ 1
2 ,𝑗

=
1

sin2 𝛼𝑖+ 1
2 ,𝑗
(𝑉

𝑛
𝑖+ 1

2 ,𝑗
− cos 𝛼𝑖+ 1

2 ,𝑗
𝑈 𝑛
𝑖+ 1

2 ,𝑗), (6.41)
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for 𝑖 = −𝜈 + 2,… , 𝑁 + 𝜈, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the 𝑢 component:

𝑢𝑛𝑖,𝑗+ 1
2
=

1
sin2 𝛼𝑖,𝑗+ 1

2
(𝑈

𝑛
𝑖,𝑗+ 1

2
− cos 𝛼𝑖,𝑗+ 1

2
𝑉 𝑛
𝑖,𝑗+ 1

2), (6.42)

Fluid depth

The fluid depth is update using the upwind scheme, expressed as:

ℎ𝑛+
1
2

𝑖𝑗 = ℎ𝑛𝑖𝑗 + 𝐅𝑈𝑃𝑊𝑖𝑗 [ℎ𝑛, 𝑢𝑛] + 𝐆𝑈𝑃𝑊
𝑖𝑗 [ℎ𝑛, 𝑣𝑛], (6.43)

for 𝑖, 𝑗 = 0, … , 𝑁 + 1, where the upwind update operators are given by

𝐅𝑈𝑃𝑊𝑖𝑗 [ℎ𝑛, 𝑢𝑛] = −
1

|Ω̂𝑖𝑗 |(
𝑥

𝑖+ 1
2 ,𝑗
𝑈𝑃𝑊 ,𝑥
𝑖+ 1

2 ,𝑗
[ℎ𝑛, 𝑢𝑛] −𝑥

𝑖− 1
2 ,𝑗
𝑈𝑃𝑊 ,𝑥
𝑖− 1

2 ,𝑗
[ℎ𝑛, 𝑢𝑛]), (6.44)

and

𝐆𝑈𝑃𝑊
𝑖𝑗 [ℎ𝑛, 𝑣𝑛] = −

1
|Ω̂𝑖𝑗 |(

𝑦
𝑖,𝑗+ 1

2
𝑈𝑃𝑊 ,𝑦
𝑖,𝑗+ 1

2
[ℎ𝑛, 𝑣𝑛] −𝑦

𝑖,𝑗− 1
2
𝑈𝑃𝑊 ,𝑦
𝑖,𝑗− 1

2
[ℎ𝑛, 𝑣𝑛]), (6.45)

where

𝑥
𝑖+ 1

2 ,𝑗
=

Δ𝑡
2

×

{
Δ𝑦√g𝑖+ 1

2 ,𝑗
u𝑛𝑖+ 1

2 ,𝑗
= 𝛿̂𝑦𝑖+ 1

2 ,𝑗
sin 𝛼𝑖+ 1

2 ,𝑗
𝑢𝑛𝑖+ 1

2 ,𝑗
for mt0,

Δ𝑦u𝑛𝑖+ 1
2 ,𝑗

for mt1,
(6.46)

and

𝑈𝑃𝑊 ,𝑥
𝑖+ 1

2 ,𝑗
[ℎ𝑛, 𝑢𝑛] =

{
F𝑈𝑃𝑊 ,𝑥
𝑖+ 1

2 ,𝑗
[√gℎ𝑛, 𝑢𝑛], for mt0,

F𝑈𝑃𝑊 ,𝑥
𝑖+ 1

2 ,𝑗
[ℎ𝑛, 𝑢𝑛], for mt1,

(6.47)

where the 1D upwind flux in the 𝑥 direction is defined by:

F𝑈𝑃𝑊 ,𝑥
𝑖+ 1

2 ,𝑗
[𝜓𝑛, 𝑢𝑛] =

{
𝜓𝑛𝑖𝑗 if 𝑢𝑛𝑖+ 1

2 ,𝑗
> 0,

𝜓𝑛𝑖+1,𝑗 if u𝑛𝑖+ 1
2 ,𝑗

≤ 0,
(6.48)

for 𝑖 = 0, … , 𝑁 , 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈. The terms, 𝑦
𝑖,𝑗+ 1

2
and 𝑈𝑃𝑊 ,𝑦

𝑖,𝑗+ 1
2

are defined similarly
using 𝑣.

We recall the metric term discussion of PPM presented in Section 5.3.1 is also valid
for the upwind flux, and therefore the same methods of metric term formulation, mt0 and
mt1, presented there are valid in this context.
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Geopotential gradient

Once we have computed ℎ𝑛+
1
2

𝑖𝑗 , we are able to estimate the time-averaged geopotential
(Equation (6.26)) on the A-grid as:

Φ𝑛
𝑖𝑗 = Δ𝑡𝑔(ℎ𝑛+

1
2

𝑖𝑗 + 𝑏𝑖𝑗), (6.49)

for 𝑖, 𝑗 = 0, … , 𝑁 + 1. We use ℎ𝑛+
1
2

𝑖𝑗 instead of ℎ𝑛𝑖𝑗 so the C-grid scheme becomes backward-
forward in time; otherwise, the C-grid scheme would be unconditionally unstable (Lin &
Rood, 1997). Following that, we estimate the geopotential gradient on the edge midpoints
by using centered differences:

𝛿𝑖Φ𝑛
𝑖+ 1

2 ,𝑗
= Φ𝑛

𝑖+1,𝑗 − Φ𝑛
𝑖𝑗 , 𝑖 = 0, … , 𝑁 , 𝑗 = 1, … , 𝑁 , (6.50)

𝛿𝑗Φ𝑛
𝑖,𝑗+ 1

2
= Φ𝑛

𝑖,𝑗+1 − Φ𝑛
𝑖𝑗 , 𝑖 = 1, … , 𝑁 , 𝑗 = 0, … , 𝑁 . (6.51)

Absolute vorticity fluxes

Using the C-grid covariant winds (𝑈 𝑛
𝑖+ 1

2 ,𝑗
, 𝑉 𝑛

𝑖,𝑗+ 1
2
), we may compute the relative vorticity

(Equation (6.7)) at the B-grid using a centered finite difference:

𝜁 𝑛𝑖+ 1
2 ,𝑗+

1
2
=

1
√
g𝑖+ 1

2 ,𝑗+
1
2
[

V𝑛
𝑖+1,𝑗+ 1

2
−V𝑛

𝑖,𝑗+ 1
2

Δ𝑥
−
U𝑛
𝑖+ 1

2 ,𝑗+1
− U𝑛

𝑖+ 1
2 ,𝑗

Δ𝑦 ]

=
1

|Ω̂𝑖+ 1
2 ,𝑗+

1
2
| [
(𝛿̂𝑦𝑖+1,𝑗+ 1

2
𝑉 𝑛
𝑖+1,𝑗+ 1

2
− 𝛿̂𝑦𝑖,𝑗+ 1

2
𝑉 𝑛
𝑖,𝑗+ 1

2
) − (𝛿̂𝑥𝑖+ 1

2 ,𝑗+1
𝑈 𝑛
𝑖+ 1

2 ,𝑗+1
− 𝛿̂𝑥𝑖+ 1

2 ,𝑗
𝑈 𝑛
𝑖+ 1

2 ,𝑗)],

(6.52)

for 𝑖, 𝑗 = −1,… , 𝑁 + 1. Then, we obtain the absolute vorticity on the B-grid as:

𝜉𝑛𝑖+ 1
2 ,𝑗+

1
2
= 𝑓𝑖+ 1

2 ,𝑗+
1
2
+ 𝜁 𝑛𝑖+ 1

2 ,𝑗+
1
2
, (6.53)

for 𝑖, 𝑗 = −1,… , 𝑁 + 1. Thus, it follows from Equation (6.8) that absolute vorticity may be
updated on the B-grid as follows using the upwind flux:

𝜉𝑛+1𝑖+ 1
2 ,𝑗+

1
2
= 𝜉𝑛𝑖+ 1

2 ,𝑗+
1
2
+ 𝐅𝑈𝑃𝑊𝑖+ 1

2 ,𝑗+
1
2
[𝜉𝑛, 𝑢𝑛] + 𝐆𝑈𝑃𝑊

𝑖+ 1
2 ,𝑗+

1
2
[𝜉𝑛, 𝑣𝑛], (6.54)

for 𝑖, 𝑗 = 0, … , 𝑁 . The upwind update operators on the B-grid are given by

𝐅𝑈𝑃𝑊𝑖+ 1
2 ,𝑗+

1
2
[𝜉𝑛, 𝑢𝑛] =

−1
|Ω̂𝑖+ 1

2 ,𝑗+
1
2
|(

𝑥
𝑖+1,𝑗+ 1

2
𝑈𝑃𝑊 ,𝑥
𝑖+1,𝑗+ 1

2
[𝜉𝑛, 𝑢𝑛] −𝑥

𝑖,𝑗+ 1
2
𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑢𝑛]), (6.55)

and

𝐆𝑈𝑃𝑊
𝑖+ 1

2 ,𝑗+
1
2
[𝜁 𝑛, 𝑣𝑛] =

−1
|Ω̂𝑖+ 1

2 ,𝑗+
1
2
|(

𝑦
𝑖+ 1

2 ,𝑗+1
𝑈𝑃𝑊 ,𝑦
𝑖+ 1

2 ,𝑗+1
[𝜉𝑛, 𝑣𝑛] −𝑦

𝑖+ 1
2 ,𝑗
𝑈𝑃𝑊 ,𝑦
𝑖+ 1

2 ,𝑗
[𝜉𝑛, 𝑣𝑛]), (6.56)
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where

𝑥
𝑖,𝑗+ 1

2
=

Δ𝑡
2

×

{
Δ𝑦√g𝑖,𝑗+ 1

2
u𝑛𝑖,𝑗+ 1

2
= 𝛿̂𝑦𝑖,𝑗+ 1

2
sin 𝛼𝑖,𝑗+ 1

2
𝑢𝑛𝑖,𝑗+ 1

2
for mt0,

Δ𝑦u𝑛𝑖,𝑗+ 1
2

for mt1,
(6.57)

and

𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑢𝑛] =

{
F𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
[√g𝜉𝑛, 𝑢𝑛], for mt0,

F𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑢𝑛], for mt1,

(6.58)

where the 1D upwind flux in the 𝑥 direction is defined by:

F𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
[𝜓𝑛, 𝑢𝑛] =

{
𝜓𝑛𝑖− 1

2 ,𝑗+
1
2

if 𝑢𝑛𝑖,𝑗+ 1
2
> 0,

𝜓𝑛𝑖+ 1
2 ,𝑗+

1
2

if 𝑢𝑛𝑖,𝑗+ 1
2
≤ 0.

(6.59)

The terms 𝑦
𝑖+ 1

2 ,𝑗
and 𝑈𝑃𝑊 ,𝑦

𝑖+ 1
2 ,𝑗

are defined similarly using 𝑣. Notice that the D-grid con-
travariant winds (𝑢𝑛𝑖,𝑗+ 1

2
, 𝑣𝑛𝑖+ 1

2 ,𝑗
) are needed for the upwind flux on the B-grid.

Finally we point out that we do not need to update the absolute vorticity using Equation
(6.54), instead, we only need to compute the terms and 𝑥

𝑖,𝑗+ 1
2

and 𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
for 𝑖 = 0, … , 𝑁 ,

𝑗 = 1, … , 𝑁 , and 𝑦
𝑖+ 1

2 ,𝑗
and 𝑈𝑃𝑊 ,𝑦

𝑖+ 1
2 ,𝑗

for 𝑖 = 1, … , 𝑁 , 𝑗 = 0, … , 𝑁 , to update the C-grid winds
using the momentum equations (6.23) and (6.24). That is, we only need to compute the
terms:

𝐹𝑖,𝑗+ 1
2
[𝜉𝑛, 𝑢𝑛] = 𝑥

𝑖,𝑗+ 1
2
𝑈𝑃𝑊 ,𝑥
𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑢𝑛], (6.60)

𝐺𝑖+ 1
2 ,𝑗
[𝜉𝑛, 𝑣𝑛] = 𝑦

𝑖+ 1
2 ,𝑗
𝑈𝑃𝑊 ,𝑦
𝑖+ 1

2 ,𝑗
[𝜉𝑛, 𝑣𝑛]. (6.61)

Kinetic energy fluxes

To estimate the kinetic energy fluxes, we need to estimate the temporal integrals
in Equation (6.25). In Lin and Rood (1997) and in the current FV3 implementation, it is
assumed that the 𝑢 and 𝑈 obeys:

𝜕𝑡𝑈 + 𝜕𝑥(𝑢𝑈)(𝑥, 𝑦𝑗 , 𝑡) = 0, (6.62)

then, using an 1D finite-volume numerical flux 𝐹 𝑥𝑖+ 1
2 ,𝑗

(recall Problem 2.4), we may approxi-
mate

𝐹 𝑥𝑖+ 1
2 ,𝑗
[𝑈 𝑛, 𝑢𝑛] ≈

1
0.5Δ𝑡 ∫

𝑡𝑛+ 1
2

𝑡𝑛
𝑢𝑈(𝑥𝑖+ 1

2
, 𝑦𝑗 , 𝑡) 𝑑𝑡 (6.63)

Similarly for 𝑣 and 𝑉 , we use 𝐹 𝑦𝑖,𝑗+ 1
2
[𝑉 𝑛, 𝑣𝑛] an then we have an estimation for the time-

averaged kinetic energy. Of course, Equation (6.62) is not true, but it is used to advected
the wind on a upwind direction.

Therefore, the time-averaged kinetic on the A-grid is computed using the for-
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mula:

𝐾 𝑛
𝑖𝑗 =

0.5Δ𝑡
2 (𝑢

𝑛
𝑖𝑗F

𝑈𝑃𝑊 ,𝑥
𝑖𝑗 [𝑈 𝑛, 𝑢𝑛] + 𝑣𝑛𝑖𝑗F

𝑈𝑃𝑊 ,𝑦
𝑖𝑗 [𝑉 𝑛, 𝑣𝑛]), (6.64)

for 𝑖, 𝑗 = 0, … , 𝑁 + 1, where we have the 1D upwind flux in the 𝑥 direction

F𝑈𝑃𝑊 ,𝑥
𝑖𝑗 [𝑈 𝑛, 𝑢𝑛] =

{
𝑈 𝑛
𝑖− 1

2 ,𝑗
if 𝑢𝑛𝑖𝑗 > 0,

𝑈 𝑛
𝑖+ 1

2 ,𝑗
if 𝑢𝑛𝑖𝑗 ≤ 0,

(6.65)

and the 1D upwind flux in the 𝑦 direction

F
𝑈𝑃𝑊 ,𝑦
𝑖𝑗 [𝑉 𝑛, 𝑣𝑛] =

{
𝑉 𝑛
𝑖,𝑗− 1

2
if 𝑣𝑛𝑖𝑗 > 0,

𝑉 𝑛
𝑖,𝑗+ 1

2
if 𝑣𝑛𝑖𝑗 ≤ 0.

(6.66)

In this step, we use the A-grid contravariant winds 𝑢𝑛𝑖𝑗 , 𝑣𝑛𝑖𝑗 obtained in Equations (6.35)
and (6.36). We also use the C-grid covariant winds obtained in Equations (6.37) and (6.38).
Thus, we estimate the kinetic energy gradient using a centered difference:

𝛿𝑖𝐾 𝑛
𝑖+ 1

2 ,𝑗
= 𝐾 𝑛

𝑖+1,𝑗 − 𝐾 𝑛
𝑖𝑗 , 𝑖 = 0, … , 𝑁 , 𝑗 = 1, … , 𝑁 , (6.67)

𝛿𝑗𝐾 𝑛
𝑖,𝑗+ 1

2
= 𝐾 𝑛

𝑖,𝑗+1 − 𝐾 𝑛
𝑖𝑗 , 𝑖 = 1, … , 𝑁 , 𝑗 = 0, … , 𝑁 . (6.68)

Hence, we have completed the description of the C-grid wind update on a half-step using
Equations (6.23) and (6.24).

6.2.2 D-grid step

Now we are going to describe how we can advance the D-grid scheme, given by
Equations (6.17) and (6.18), using the C-grid winds 𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗
and 𝑉 𝑛+ 1

2
𝑖,𝑗+ 1

2
centered at time obtained

by the C-grid solver.

Wind interpolation

We are given the normalized covariant wind components on a C-grid that is, we have
𝑉 𝑛+ 1

2
𝑖,𝑗+ 1

2
for 𝑖 = 0, … , 𝑁 , 𝑗 = 1, … , 𝑁 , and 𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗
𝑗 = 0, … , 𝑁 , 𝑖 = 1, … , 𝑁 , obtained in the

C-grid intermediate step. We may then use the duo-grid interpolation (Section 4.3.3) to
get the values on the duo-grid. After that, we have all the values 𝑉 𝑛+ 1

2
𝑖,𝑗+ 1

2
for 𝑖 = 0, … , 𝑁 + 𝜈,

𝑗 = 1, … , 𝑁 + 𝜈, and 𝑈 𝑛+ 1
2

𝑖+ 1
2 ,𝑗
𝑗 = 0, … , 𝑁 + 𝜈, 𝑖 = 1, … , 𝑁 + 𝜈.

We may interpolate the covariant wind 𝑉 from D-grid points to C-grid points as

𝑉 𝑛+ 1
2

𝑖+ 1
2 ,𝑗

=
1
4(
𝑉 𝑛+ 1

2
𝑖,𝑗+ 1

2
+ 𝑉 𝑛+ 1

2
𝑖+1,𝑗+ 1

2
+ 𝑉 𝑛+ 1

2
𝑖,𝑗− 1

2
+ 𝑉 𝑛+ 1

2
𝑖+1,𝑗− 1

2
), (6.69)

for 𝑖 = −1,… , 𝑁 + 2, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the covariant wind 𝑈 from
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C-grid points to D-grid points as

𝑈 𝑛+ 1
2

𝑖,𝑗+ 1
2
=

1
4(
𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗
+ 𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗+1
+ 𝑈 𝑛+ 1

2
𝑖− 1

2 ,𝑗
+ 𝑈 𝑛+ 1

2
𝑖− 1

2 ,𝑗+1
), (6.70)

for 𝑗 = −1,… , 𝑁 + 2, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈.

Thus, we obtain and similarly to the contravariant wind 𝑢 at C-grid points applying
Equation (4.47):

𝑢𝑛+
1
2

𝑖+ 1
2 ,𝑗

=
1

sin2 𝛼𝑖+ 1
2 ,𝑗
(𝑈

𝑛+ 1
2

𝑖+ 1
2 ,𝑗

− cos 𝛼𝑖+ 1
2 ,𝑗
𝑉 𝑛+ 1

2
𝑖+ 1

2 ,𝑗), (6.71)

for 𝑖 = −1,… , 𝑁 + 2, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the contravariant wind 𝑣 at
D-grid points:

𝑣𝑛+
1
2

𝑖,𝑗+ 1
2
=

1
sin2 𝛼𝑖,𝑗+ 1

2
(𝑉

𝑛+ 1
2

𝑖,𝑗+ 1
2
− cos 𝛼𝑖,𝑗+ 1

2
𝑈 𝑛+ 1

2
𝑖,𝑗+ 1

2). (6.72)

for 𝑗 = −1,… , 𝑁 + 2, 𝑖 = −𝜈 + 1,… , 𝑁 + 𝜈. Hence, we have the C-grid contravariant
time-averaged winds that are needed for the flux operators.

For the kinetic energy fluxes, we require B-grid winds. For this reason, we compute
the B-grid covariant wind using:

𝑈 𝑛+ 1
2

𝑖+ 1
2 ,𝑗+

1
2
=

1
2(
𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗+1
+ 𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗
), (6.73)

for 𝑖 = −1,… , 𝑁 + 2, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and

𝑉 𝑛+ 1
2

𝑖+ 1
2 ,𝑗+

1
2
=

1
2(
𝑉 𝑛+ 1

2
𝑖,𝑗+ 1

2
+ 𝑉 𝑛+ 1

2
𝑖+1,𝑗+ 1

2
), (6.74)

and then we convert the winds from covariant to contravariant as

𝑢𝑛+
1
2

𝑖+ 1
2 ,𝑗+

1
2
=

1
sin2 𝛼𝑖+ 1

2 ,𝑗+
1
2
(𝑈

𝑛+ 1
2

𝑖+ 1
2 ,𝑗+

1
2
− cos 𝛼𝑖+ 1

2 ,𝑗+
1
2
𝑉 𝑛+ 1

2
𝑖+ 1

2 ,𝑗+
1
2), (6.75)

for 𝑖 = −1,… , 𝑁 + 2, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈, and similarly to the contravariant wind 𝑣 at
D-grid points:

𝑣𝑛+
1
2

𝑖+ 1
2 ,𝑗+

1
2
=

1
sin2 𝛼𝑖+ 1

2 ,𝑗+
1
2
(𝑉

𝑛+ 1
2

𝑖+ 1
2 ,𝑗+

1
2
− cos 𝛼𝑖+ 1

2 ,𝑗+
1
2
𝑈 𝑛+ 1

2
𝑖+ 1

2 ,𝑗+
1
2). (6.76)

Fluid depth

The fluid depth is updated using the dimension-splitting method with PPM, as given
by Equations (5.26). This yields the values of ℎ𝑛+1𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑁 . Then, we may generate
its ghost cell values using the duo-grid interpolation.
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Geopotential gradient

Once we have computed ℎ𝑛+1𝑖𝑗 , we are able to estimate the time-averaged geopotential
on the A-grid as:

Φ𝑛
𝑖𝑗 = Δ𝑡𝑔(ℎ𝑛+1𝑖𝑗 + 𝑏𝑖𝑗), (6.77)

for 𝑖, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈. Then, the time-averaged geopotential on the B-grid (Equation
(6.20)) may be using interpolation:

Φ𝑛
𝑖+ 1

2 ,𝑗+
1
2
=

Φ𝑛
𝑖+ 1

2 ,𝑗+
1
2

𝑥𝑦 + Φ𝑛
𝑖+ 1

2 ,𝑗+
1
2

𝑦𝑥

2
. (6.78)

Again, we use ℎ𝑛+1𝑖𝑗 instead of ℎ𝑛𝑖𝑗 so the D-grid scheme also becomes backward-forward in
time, avoiding numerical instability. Following that, we estimate the geopotential gradient
on the D-grid and C-grid points, respectively, by using centered differences:

𝛿𝑖Φ𝑛
𝑖,𝑗+ 1

2
= Φ𝑛

𝑖+ 1
2 ,𝑗+

1
2
− Φ𝑛+1

𝑖− 1
2 ,𝑗+

1
2
, 𝑖 = 1, … , 𝑁 , 𝑗 = 0, … , 𝑁 , (6.79)

𝛿𝑗Φ𝑛
𝑖+ 1

2 ,𝑗
= Φ𝑛

𝑖+ 1
2 ,𝑗+

1
2
− Φ𝑛

𝑖+ 1
2 ,𝑗−

1
2
, 𝑖 = 0, … , 𝑁 , 𝑗 = 1, … , 𝑁 . (6.80)

Absolute vorticity fluxes

Using the D-grid covariant winds (𝑈 𝑛
𝑖,𝑗+ 1

2
, 𝑉 𝑛

𝑖+ 1
2 ,𝑗
), we may compute the relative vorticity

(Equation (6.7)) at the A-grid points using a centered finite difference:

𝜁 𝑛𝑖𝑗 =
1

√
g𝑖𝑗 [

V𝑛
𝑖+ 1

2 ,𝑗
−V𝑛

𝑖− 1
2 ,𝑗

Δ𝑥
−
U𝑛
𝑖,𝑗+ 1

2
− U𝑛

𝑖,𝑗− 1
2

Δ𝑦 ]

=
1

|Ω̂𝑖𝑗 | [
(𝛿̂𝑦𝑖+ 1

2 ,𝑗
𝑉 𝑛
𝑖+ 1

2 ,𝑗
− 𝛿̂𝑦𝑖− 1

2 ,𝑗
𝑉 𝑛
𝑖− 1

2 ,𝑗) − (𝛿̂𝑥𝑖,𝑗+ 1
2
𝑈 𝑛
𝑖,𝑗+ 1

2
− 𝛿̂𝑥𝑖,𝑗− 1

2
𝑈 𝑛
𝑖,𝑗− 1

2
)], (6.81)

for 𝑖, 𝑗 = −𝜈 + 1,… , 𝑁 + 𝜈. Then, we obtain the absolute vorticity on the A-grid as:

𝜉𝑛𝑖𝑗 = 𝑓𝑖𝑗 + 𝜁 𝑛𝑖𝑗 , (6.82)

for 𝑖, 𝑗 = −𝜈+1,… , 𝑁 +𝜈. Using again that the relative vorticity is advected, we may use the
PPM fluxes  𝑃𝑃𝑀,𝑥

𝑖+ 1
2 ,𝑗

, 𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
(Equations (5.22) and (5.25)) to compute the relative vorticity

fluxes at the edges. Then, its follows from Equation (5.26) that we need to compute the
terms:

𝐹𝑖+ 1
2 ,𝑗
[𝜉𝑛, 𝑢𝑛] =

1
2
𝑥

𝑖+ 1
2 ,𝑗(

𝑃𝑃𝑀,𝑥
𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑐𝑥,𝑛] +  𝑃𝑃𝑀,𝑥

𝑖,𝑗+ 1
2
[𝜉𝑛 + 𝐠(𝜉𝑛, 𝑐𝑦,𝑛), 𝑐𝑥,𝑛]), (6.83)

𝐺𝑖,𝑗+ 1
2
[𝜉𝑛, 𝑣𝑛] =

1
2
𝑦

𝑖,𝑗+ 1
2(

𝑃𝑃𝑀,𝑦
𝑖,𝑗+ 1

2
[𝜉𝑛, 𝑐𝑦,𝑛] +  𝑃𝑃𝑀,𝑦

𝑖,𝑗+ 1
2
[𝜉𝑛 + 𝐟(𝜉𝑛, 𝑐𝑥,𝑛), 𝑐𝑦,𝑛]), (6.84)

where 𝑥
𝑖+ 1

2 ,𝑗
and 𝑦

𝑖,𝑗+ 1
2

are given by Equations (5.21) and (5.24), respectively. The inner
operators 𝐟 and 𝐠 are given in (5.1) and the terms 𝑐𝑥,𝑛 and 𝑐𝑦,𝑛 are the time-averaged CFL
numbers described in Section 5.3.3. When using the duo-grid, these fluxes are computed
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twice. However, we do not employ flux averaging at the cube interfaces (Section 5.3.4) as
we achieved better results without it.

Kinetic energy fluxes

To estimate the integrals in Equation (6.19), we assume again that:

𝜕𝑡𝑈 + 𝜕𝑥(𝑢𝑈)(𝑥, 𝑦𝑗+ 1
2
, 𝑡) = 0, (6.85)

and a similar equation is assumed to hold for 𝑣 and 𝑉 , and therefore the integrals of
Equation (6.19) may estimated again using finite-volume fluxes. In this case, we are going
to consider the PPM fluxes F𝑃𝑃𝑀,𝑥

𝑖+ 1
2 ,𝑗+

1
2

and F
𝑃𝑃𝑀,𝑦
𝑖+ 1

2 ,𝑗+
1
2

(Equation (5.17)), and the kinetic energy
on B-grid is given by:

𝐾 𝑛
𝑖+ 1

2 ,𝑗+
1
2
=

Δ𝑡
2 (𝑢̃

𝑛+ 1
2

𝑖+ 1
2 ,𝑗+

1
2
F𝑃𝑃𝑀,𝑥
𝑖+ 1

2 ,𝑗+
1
2
[𝑈 𝑛, 𝑢̃𝑛] + 𝑣̃𝑛+

1
2

𝑖+ 1
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for 𝑖, 𝑗 = 0, … , 𝑁 .

The time-averaged B-grid winds 𝑢̃𝑛 and 𝑣̃𝑛 are computed using the DP1 scheme or the
scheme DP2. In this step, we use the B-grid contravariant winds 𝑢𝑛+

1
2

𝑖+ 1
2 ,𝑗+

1
2
, 𝑣𝑛+

1
2

𝑖+ 1
2 ,𝑗+

1
2

obtained
in Equations (6.75) and (6.76). If we use the DP2 scheme, we need 𝑢𝑛𝑖+ 1

2 ,𝑗+
1
2
, 𝑣𝑛𝑖+ 1

2 ,𝑗+
1
2
, which

may obtained just as Equations (6.75) and (6.76). We also utilize the D-grid covariant winds
obtained at time level 𝑛.

Finally, on the cubed-sphere using the duo-grid, these PPM fluxes are computed twice.
Therefore, we average them at the cube interfaces to obtain a unique value, as described
in Section 5.3.4. Thus, we estimate the kinetic energy gradient using a centered differ-
ence:

𝛿𝑖𝐾 𝑛
𝑖,𝑗+ 1

2
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2 ,𝑗+

1
2
− 𝐾 𝑛

𝑖− 1
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1
2
, 𝑖 = 1, … , 𝑁 , 𝑗 = 0, … , 𝑁 , (6.87)

𝛿𝑗𝐾 𝑛
𝑖+ 1

2 ,𝑗
= 𝐾 𝑛

𝑖+ 1
2 ,𝑗+

1
2
− 𝐾 𝑛

𝑖+ 1
2 ,𝑗−

1
2
, 𝑖 = 0, … , 𝑁 , 𝑗 = 1, … , 𝑁 . (6.88)

Hence, we have completed the description of the D-grid wind update using Equations
(6.17) and (6.18).
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6.2.3 Divergence damping

The divergence on B-grid points may be computed using the D-grid contravariant
winds, using centered finite-differences as:
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This is straightforward from the definition of divergence in terms of a cubed-sphere
mapping (Equation (5.2)). We may then compute the gradient of this divergence at the
edge midpoints, namely:
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Notice that we can apply the divergence operator 𝐷𝑖+ 1
2 ,𝑗+

1
2

again to the inputs 𝐷𝑢
𝑖,𝑗+ 1

2
and

𝐷𝑣
𝑖+ 1

2 ,𝑗
. and we may repeat this procedure as many times as we want. This process results in

divergence damping (dd) operator which is an explicit dissipation mechanism. Dissipation
mechanisms are commonly used in dynamical cores to ensure numerical stability and
avoid accumulation of energy at the smallest grid scale. There are many other ways of
introducing dissipation besides divergence damping (see Jablonowski and Williamson
(2011) for a review) For an comprehensive analysis of the divergence damping operator,
refer to Whitehead et al. (2011).

In FV3, the number of times we apply the divergence operator is denoted by nord
(Harris et al., 2021). We are considering a divergence damping coefficient:

𝜈𝐷 = (𝑑4 min
𝑖,𝑗

|Ω𝑖𝑗 |)𝑛𝑜𝑟𝑑+1, (6.91)

where 𝑑4 ≥ 0 is a given constant. The obtained results of after applying the divergence
operator 𝑛𝑜𝑟𝑑 times are multiplied by 𝜈𝐷 and added in Equations (6.17) and (6.18).

We point out that there are other numerical dissipation mechanisms available in FV3,
such as vorticity damping and frictional heating (Harris et al., 2021). We are considering
only the divergence damping for simplicity. We also point out that monotonic scheme that
we are using (MONO) has implicit diffusion.
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6.3 Proposed modifications
As we have seen in Section 6.2.1, there are two options for using the upwind fluxes,

which depend on the treatment of the metric term to be considered, namely, mt0 or mt1.
FV3 utilizes mt0. We are going to use the same option, and the C-grid solver is not modified.
This choice is made because no significant improvements were observed when using mt1.
Therefore, we are going to propose modifications only to the D-grid scheme.

Notice that, for the D-grid solver, the kinetic energy flux computed in Equation (6.86)
using PPM may be computed using DP1 or DP2. Also, observe that this term does not have
the metric term

√
g to be considered. However, we find that using DP2 does not improve

the results; actually, they get worse. We believe that the DP2 scheme does not improve
the kinetic energy flux because the advection hypotheses assumed by FV3 for the wind
components (Equation (6.85)) are not true. Therefore, improving the advection flux in this
step does not necessarily improve the kinetic energy flux computation. Thus, we are going
to use the DP1 scheme for the kinetic energy flux (Equation (6.86)).

There are two parts of the D-grid scheme where we may use the LT advection scheme
from Chapter 5: the fluid depth update and the vorticity fluxes (Equations (6.83) and (6.84)).
Currently, these parts are solved using the PL advection scheme, and we propose assessing
the impact of using the LT advection scheme for both parts. The shallow-water solver that
uses PL for these fluxes is referred to simply as the PL scheme, and when LT is used, we
refer to it as the LT scheme.

6.4 Numerical experiments
In this Section, we are going to compare the PL and LT shallow-water schemes described

(6.3) using classical shallow-water tests presented in the literature. These schemes shall be
tested with the monotonic PPM scheme (MONO).

The D-grid output (𝑈 𝑛
𝑖,𝑗+ 1

2
, 𝑉 𝑛

𝑖+ 1
2 ,𝑗
) is interpolated to the A-grid as

𝑈 𝑛
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2
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2
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2
, (6.92)

𝑉 𝑛
𝑖𝑗 =

(𝑉 𝑛
𝑖+ 1

2 ,𝑗
+ 𝑉 𝑛

𝑖− 1
2 ,𝑗
)

2
, (6.93)

and then converted to latitude-longitude winds using Equations (4.47) and (4.41), where we
obtain (𝑢𝜆)𝑛𝑖𝑗 , (𝑣𝜙)𝑛𝑖𝑗 on the A-grid. This facilitates plotting and reference solution calculation.
We point out that this does not impact the error check, provided our schemes are at best-
case second-order, as this averaging is second-order accurate and the wind conversion is
an exact transformation.

Then, the errors are computed using a reference solution on the A-grid, denoted by
(ℎ𝑅𝐸𝐹 )𝑛, (𝑢𝑅𝐸𝐹𝜆 )𝑛 and (𝑣𝑅𝐸𝐹𝜙 )𝑛. The reference solution shall be assumed to be computed exactly
or we follow the approach of Peixoto (2016) and use the ENDGame (Even Newer Dynamics
for General atmospheric modelling of the environment) shallow-water solver developed
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by Thuburn et al. (2010), which is the current UK MetOffice operational dynamical core
(https://www.metoffice.gov.uk/research/foundation/dynamics/endgame, last accessed on
April 3rd, 2024). This model is semi-Lagrangian and semi-implicit on a latitude-longitude
grid. As suggested by Peixoto (2016), we use a grid size of 2048×1024 with a time step
of 50 seconds whenever we employ it. This grid has a 20km resolution at the equator.
The outputs of ENDGame are interpolated to the cubed-sphere A-grid from the latitude-
longitude grid using cubic interpolation, giving us the reference solutions (ℎ𝑅𝐸𝐹 )𝑛, (𝑢𝑅𝐸𝐹𝜆 )𝑛,
and (𝑣𝑅𝐸𝐹𝜙 )𝑛. All the test cases (TCs) that we are going to consider are presented in Table
6.1.

To compute the error convergence, we consider cubed-sphere grids with values of
𝑁𝑘 = 48 × 2𝑘, and dt_atmos(𝑘) = 𝑑𝑡_𝑎𝑡𝑚𝑜𝑠(0)

2𝑘 for 𝑘 = 0,… , 4, where the value of dt_atmos(0) is
taken from Table 5.3. The value of n_split is the same regardless of the value of 𝑁𝑘. We
are going to consider both the equi-edge grid (g0) and the equiangular grid (g2) with the
spherical midpoint formulation, and it will always be made clear whether the divergence
damping is being used or not (Section 6.2.3). Whenever we use divergence damping, we
consider 𝑑4 = 0.12 and 𝑛𝑜𝑟𝑑 = 2, as used in Mouallem et al. (2023). In this case, the
dissipation is a fourth-order operator and therefore is more scale selective. Additionally,
we shall use the dg1 duo-grid interpolation method (Section 4.3.2) as in Mouallem et al.
(2023) to keep our analysis consistent with their results.

Test case Description Reference dt_atmos(0) n_split Total time
TC2 Geostrophic balance Williamson et al. (1992) 3600 s 7 5 days
TC5 Flow over a mountain Williamson et al. (1992) 1800 s 7 15 days
TC6 Rossby-Haurwitz wave Williamson et al. (1992) 1200 s 1 100 days

Table 6.1: The test case considered in the numerical experiments, including descriptions, references,
initial atmospheric time step dt_atmos(0), the number of times that the horizontal dynamics are solved
on each atmospheric time step (n_split) and the total time of integration.

https://www.metoffice.gov.uk/research/foundation/dynamics/endgame
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6.4.1 Global steady geostrophic flow
We will consider the global steady geostrophic flow test case from Williamson et al.

(1992). This test initializes the depth using Equation (4.51) (Figure 4.9) and the winds using
Equation (4.52). We set 𝛼 = 𝜋

4 so that the flow is oriented with the corners of a cube. In
this setup, the Coriolis parameter (Equation (6.6)) is modified as

𝑓 = 2Ω(− cos 𝜙 cos 𝜆 sin 𝛼 + sin 𝜙 cos 𝛼), (6.94)

and therefore, the initial condition does not change over time, allowing us to compute the
exact solution at any time instant. Additional information about the simulation is given in
Table 6.1. This test is performed with and without divergence damping.

Figure 6.1: Geostrophic balanced flow test: 𝐿∞ relative error evolution for the fluid depth on the
equi-edge grid (left) and on the equiangular grid (right) for 5 days and 𝑁 = 192. Blue lines indicate
the use of the LT scheme, while green lines represent the PL scheme. All schemes use the monotonic
PPM (MONO). Light colors do not use divergence damping (dd), whereas dark color use divergence
damping coefficient of 0.12.

Figure 6.2: As Figure 6.1 but using the 𝐿2 norm.
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In Figure 6.1, we present the evolution of the 𝐿∞ error in fluid depth over 5 days. We
can observe that for the equi-edge grid, before day 1, both schemes LT and PL become
numerically unstable when no divergence damping is employed. This behavior does not
occur on the equiangular grid though. Both schemes are numerically stable on both grids
when divergence damping is included. When the schemes are numerically stable, the
errors of LT are only slightly smaller. On the other hand, Figure 6.2 shows that the 𝐿2
error evolution of both schemes is similar for the equiangular grid, with PL being slightly
smaller. On the equi-edge grid, the 𝐿2 error of LT is slightly smaller.

(a) PL scheme, max= 6.76 × 10−2. (b) LT scheme max= 6.40 × 10−2.

Figure 6.3: Geostrophic balanced flow test: depth error distribution after 5 days using the monotonic
PPM (MONO) with PL (left) and LT schemes (right) on the equi-edge grid (g0) with 𝑁 = 192. These
results uses a divergence damping coefficient equal to 0.12.

(a) PL scheme, max= 6.18 × 10−2. (b) LT scheme, max= 5.91 × 10−2.

Figure 6.4: As Figure 6.3 but using the equiangular grid (g2).
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(a) PL scheme, max= 6.37 × 10−2. (b) LT scheme, max= 6.01 × 10−2.

Figure 6.5: As Figure 6.4 but using no divergence damping.

In Figures 6.3 and 6.4 we show the final errors for both grids with divergence damping.
The errors distribution is very similar for both schemes, and grid imprinting is still present,
although the maximum errors, which occur at corners, are smaller for LT, indicating again
that LT is slightly less sensitive to the corners. In Figure 6.5, we show the errors of PL
and LT on the equiangular grid without divergence damping. Again, the errors of LT are
slightly smaller. It is interesting to notice that in this case (no divergence damping), we
can see some spurious waves being generated by the corners and affecting the solution at
a cube edge, which does not occur when divergence damping is used. At last, the errors
without divergence damping on the equi-edge grid are not shown because the schemes
are numerically unstable in that case.

Figure 6.6: 𝐿∞ error of the fluid depth component for the geostrophic flow test case after 5 days for the
equi-edge grid (left) and the equiangular grid (right) considering the schemes LT (dark and light blue
lines) and the PL (dark and light green lines). Light colors uses no divergence damping (dd) whereas
dark colors use divergence damping.
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In Figure 6.6, we show the convergence of the error in the 𝐿∞ for the fluid depth for
all schemes and grids. The results on the equi-edge grid without divergence damping are
not shown because the scheme becomes numerically unstable in this case. We can see
that when using divergence damping, both the LT and PL schemes achieve second-order
accuracy on both the equi-edge and equiangular grids. However, we can see that, when
no divergence damping is employed, both schemes develop a very large error at a high
resolution (𝑁 = 768). This result indicates that the equiangular grid may also develop
numerical stability when there is divergence damping. However, this result shows that
the equiangular grid is much more resilient to numerical instabilities than the equi-edge
grid.

Finally, in Table 6.2, we show the times needed by each scheme for different grids and
values of 𝑁 . The results reflect the total execution time of the code on the ybytu machine
from IME-USP (see Appendix B), with the total number of MPI processes fixed at 6 due
to processor limitations. It is clear that the LT scheme adds a very small cost, showing
that this scheme does not degrade the computational performance of the shallow-water
solver.

𝑁 Total runtime (seconds)
PL-g0 LT-g0 PL-g2 LT-g2

48 2.7762 2.9247 2.8379 2.8775
96 12.2006 13.0276 12.5094 13.1665
192 89.2555 95.9484 90.1434 96.4775
384 719.8602 759.0486 705.6963 743.4566
768 7308.6683 7529.9261 7190.8789 7418.2488

Table 6.2: Total runtime for the LT and PL schemes using the equi-edge grid (g0) and the equiangular
grid (g2) for different values of 𝑁 . The additional cost of the LT scheme is due to the computation of a
second-order estimate of 1D departure points. These results are obtained on the ybytu machine (refer
to Appendix B), employing just one MPI process per cube face, resulting in a total of 6 MPI processes.
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6.4.2 Flow over a mountain
In this section, we present the flow over a mountain test case of Williamson et al.

(1992). This test uses the same initial condition as the geostrophic balance test case, where
ℎ follows Equation (4.51) with ℎ0 = 5960 meters, and the winds follow Equation (4.52).
The rotation parameter 𝛼 is set to 0, so the initial wind is purely zonal. This test consider
a bottom topography given by:

𝑏(𝜆, 𝜙) = 2000(1 −
𝑟
𝑟0)

, (6.95)

where

𝑟 =

{√
(𝜆 − 𝜆0)2 + (𝜙 − 𝜙0)2 if

√
(𝜆 − 𝜆0)2 + (𝜙 − 𝜙0)2 ≤ 𝑟0,

𝑟0 otherwise,
(6.96)

𝜆0 = −𝜋
4 , 𝜙0 = 𝜋

6 and 𝑟0 = 𝜋
9 . These parameters define the mountain over a cube corner

(Figure 6.7a).

(a) Initial depth ℎ. (b) Day 5.

(c) Day 10. (d) Day 15.

Figure 6.7: Flow over a mountain: fluid depth initial condition (a) and after 5 (b), 10 (c), and 15
days (d). We are using the LT scheme on the equi-edge grid with 𝑁 = 192 and a divergence damping
coefficient equal to 0.12. The black circle shows the mountain’s location.

We ran this test for 15 days. In Figures 6.7, we show the evolution of fluid depth over
time, specifically after 5, 10, and 15 days, using the LT scheme on an equi-edge grid with
𝑁 = 192 and divergence damping. Figures 6.8 is similar but shows the meridional wind,
illustrating the formation of a Rossby wave. In Figure 6.9 we show the wind divergence
at days 10 and 15. It is clear from this last figure that we have a small amount of wind
divergence, with a maximum absolute value equal to 6.7 × 10−6, over to the mountain.
Hence, we expect that LT and PL should yield similar results.
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(a) Initial meridional wind 𝑣𝜙. (b) Day 5.

(c) Day 10. (d) Day 15.

Figure 6.8: Flow over a mountain: meridional wind initial condition (a) and after 5 (b), 10 (c), and 15
days (d). We are using the LT scheme on the equi-edge grid with 𝑁 = 192 and a divergence damping
coefficient equal to 0.12. The black circle shows the mountain’s location.

(a) Day 10. (b) Day 15.

Figure 6.9: Flow over a mountain: illustration of the wind divergence at days 10 and 5. The maximum
absolute value of the divergence is 6.7 × 10−6.

To assess the accuracy of LT and PL schemes, we compute the errors using the
ENDGame solution as a reference. We are going to consider simulations with and without
divergence damping on the equi-edge and equiangular grids with 𝑁 = 192. We shall
investigate the error evolution over time. In fact, in Figures 6.10 and 6.11 we show the
relative error evolution for the fluid depth on the 𝐿∞ and 𝐿2 norms. It is clear that both PL
and LT yield very similar results. When divergence damping is employed, the errors do
not grow very much. Otherwise, the errors may become much larger after day 12 at the
equi-edge grid but not on the equiangular grid. This simulation agrees with the previous
simulation (geostrophic balance flow), showing that the equiangular grid seems to be less
susceptible to numerical instability.
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Figure 6.10: Flow over a mountain test case: 𝐿∞ relative error evolution for the fluid depth on the
equi-edge grid (left) and on the equiangular grid (right) for 5 days and 𝑁 = 192. Blue lines indicate
the use of the LT scheme, while green lines represent the PL scheme. All schemes use the monotonic
PPM (MONO). Light colors do not use divergence damping (dd), whereas dark color use divergence
damping coefficient of 0.12. The error is computed with a spacing of 1 day using ENDGame as the
reference solution.

Figure 6.11: As Figure 6.10 but using the 𝐿2 norm.



6.4 | NUMERICAL EXPERIMENTS

135

6.4.3 Rossby-Haurwitz wave
The test considered in this section is the Rossby-Haurwitz wave case, as suggested

by Williamson et al. (1992). The initial conditions are exact solutions to the barotropic
vorticity equation. Thus, the wind is divergence-free in this case. The expressions of the
initial fields may be found in Williamson et al. (1992); we will omit them here. The solutions
should propagate the wave to east and maintain its shape. Therefore, our goal in this test
is to investigate the ability of the PL and LT schemes to preserve the wave shape.

(a) PL at day 60. (b) PL at day 65.

(c) LT at day 60. (d) LT at day 65.

Figure 6.12: Rossby-Haurwitz wave test case: Fluid depth on the equiangular grid, with 𝑁 = 96 and
without divergence damping. PL scheme results are shown in (a) and (b) on days 60 and 65, respectively.
LT scheme results are shown in (c) and (d) on days 60 and 65, respectively.

We ran this test for 100 days on the equi-edge and equiangular grids with 𝑁 = 96.
When we did not employ divergence damping, the results of the equi-edge grid became
unstable for both schemes before day 60. However, the equiangular grid could perform
this test without divergence damping. We show the wave shapes at days 60 and 65 in both
schemes in Figure 6.12, for the PL scheme (Figures 6.12a and 6.12b) and for the LT scheme
(Figures 6.12c and 6.12d). It is clear that the LT scheme can maintain the wave for 60 days,
but the wave breaks at day 65. However, PL can preserve the shape of the wave for more
than 65 days. In fact, it maintains the wave for approximately 100 days, as reported by
Mouallem et al. (2023).

When we use divergence damping, the equi-edge grid achieves numerical stability,
and we depict the wave in Figure 6.13. We can see that the addition of divergence damping
anticipates the wave break for the LT scheme, which occurs at 55 days, as shown in Figures
6.13c and 6.13d. The PL scheme, again, maintains the wave (Figures 6.13a and 6.13b).
However, in this case, the wave breaks earlier as well, at approximately day 95 (not shown).
Similar results are observed for the equiangular grid with divergence damping and we
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will omit them here.

The PL ability to keep the wave for 100 days is remarkable. The Rossby-Haurwitz wave
is known for being a dynamically unstable test case, as investigated by Thuburn and Li
(2000). Although our scheme has reduced the wave shape, it is similar, for instance, to the
spectral model breaking time, as reported by Thuburn and Li (2000), which is between 50
and 55 days.

(a) PL at day 55. (b) PL at day 60.

(c) LT at day 55. (d) LT at day 60.

Figure 6.13: Rossby-Haurwitz wave test case: Fluid depth on the equi-edge grid, with 𝑁 = 96 and
divergence damping. PL scheme results are shown in (a) and (b) on days 55 and 60, respectively. LT
scheme results are shown in (c) and (d) on days 55 and 60, respectively.

6.5 Conclusions
In this Chapter, we provided a detailed description of the FV3 shallow-water solver

on the cubed-sphere. This solver begins with the shallow water equations written in the
vector invariant form and considers their C and D-grid discretization. We presented a
general discretization of the shallow water equations on the C and D-grids and showed
that they can be solved using finite-volume fluxes. The C-grid solver is computed for a
half time step, and the finite-volume fluxes use the classical upwind scheme, providing
the winds centered at time. This part of the scheme is designed to be computationally
cheap.

Following that, the D-grid solver can use the time-centered winds from the C-grid
solver and apply the PPM fluxes to update the fluid depth, as well as absolute vorticity and
kinetic energy fluxes. Then we discussed how our advection scheme from Chapter 5 can
be used in the shallow-water solver. Since the C-grid is supposed to be computationally
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inexpensive and our scheme uses PPM, we decided to leave it unchanged. We consider our
new finite-volume advection scheme to compute the fluid depth and the absolute vorticity
fluxes on the D-grid.

We then ran the geostrophic balance flow test case for 5 days with and without
divergence damping. We observed that both advection schemes become numerically
unstable for the equi-edge grid when no divergence damping is used, which is not observed
on the equiangular grid. With divergence damping, both schemes are numerically stable
on both grids. Additionally, we noticed that our scheme helps to slightly reduce the 𝐿∞
errors when the scheme is numerically stable. We analyzed the runtime and found that
our advection scheme adds a very small additional computational burden.

We also analyzed the flow over a mountain test case and showed that our scheme yields
very similar results to the current FV3 advection scheme. Since this test case does not have
an exact solution known, we have used the semi-Lagrangian semi-implicit shallow-water
model ENDGame, which is used in the current operational UK Met Office dynamical core,
as the reference solution. Additionally, the equiangular grid managed to run this test
without divergence damping, while the equi-edge grid required divergence damping to
run this test without creating large errors.

The Rossby-Haurwitz wave test case was also investigated. The goal of this test is to
assess the ability of a scheme to propagate the wave to the east and maintain the shape of
the wave. However, this test is dynamically unstable and the wave eventually breaks. We
showed that our scheme keeps the wave for 55-60 days, while the FV3 scheme keeps the
wave for 95-100 days. Although we have reduced the wave breaking time, we pointed out
that it is a little better than, for instance, the spectral model.

The goal of this chapter was to describe the shallow-water solver, demonstrate how
our scheme may be used and compare the computational performance. However, a more
comprehensive analysis of the shallow-water model using our scheme is certainly needed.
We point out that most of the classical shallow-water tests available in the literature
(Galewsky et al., 2004; Williamson et al., 1992) have no or small divergence. Therefore,
we expect that our scheme would introduce similar results in these tests because, as we
have seen in Chapter 5, our advection is slightly better for divergence-free winds and
significantly better only for divergent winds.
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Chapter 7

Conclusions

The FV3 dynamical core has become very popular in the atmospheric modeling com-
munity. It has received more attention, especially after being adopted as the new Global
Forecast System (GFS) of the USA. The objective of this thesis is to investigate all the
details of the FV3 advection scheme, as the horizontal dynamics of FV3 are solved using
only advection finite-volume fluxes, thus playing a key role in FV3. The major outcome of
this thesis is a more accurate 2D advection scheme than the current FV3 advection scheme,
as demonstrated in numerous numerical simulations.

The motivation for the new advection scheme method started in Chapter 2, where
we provide a proof that the time-averaged fluxes of 1D finite-volume methods for the 1D
advection equation require two tasks: a departure point calculation and the reconstruction
of the solution using the average values. The average values are reconstructed using PPM,
just as in FV3. We note that the FV3 scheme uses a first-order departure point scheme. We
demonstrate how we can compute the departure point using a second-order Runge-Kutta
scheme, which provides us with second-order accuracy. Then, we observed in numerical
tests that this scheme improves accuracy significantly, even with monotonicity constraints,
with only minor extra computational efforts. Namely, we only need to perform one linear
interpolation for each edge per time step. We could only observe this improvement because
we considered a variable wind test for the 1D linear advection equation. Most 1D tests
in the literature use a constant wind, and therefore a first-order departure point is exact.
This oversimplifies matters, as the departure point issue does not arise.

Next, we moved to the 2D advection equation on the plane in Chapter 3. The 2D
advection scheme of FV3 consists of combining 1D flux PPM operators. This combination
is made in such a way that when the scalar field is constant and the wind is divergence-free,
the scheme is exact. We observed that this scheme is second-order for divergence-free
winds; however, in a numerical simulation for a divergent wind, we showed that the
FV3 scheme is only first-order. We then demonstrated how we may modify the FV3
scheme to achieve second-order accuracy for both divergence-free and divergent winds.
This modification involves a slight change of the inner 1D flux operators, as well as the
incorporation of the second-order departure point scheme outlined in Chapter 2. Although
we lost the preservation of a constant scalar field, the error is only second-order accurate for
this case. We show that the new scheme has slightly improved performance for divergence-
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free winds, but for divergent winds, the results are significantly better. Then, we proposed
a scheme that is second-order in general, whereas the FV3 scheme is second-order only
for divergence-free winds.

Following that, our next objective was to study the advection equation on the sphere.
We provided all the tools needed in Chapter 4, where we presented the duo-grid, which
consists of extending the gridlines of the cubed sphere mapping. We may then use 1D
Lagrangian interpolation to fill the ghost cell values. In this Chapter, we also introduce
the equiangular cubed sphere, which is the most uniform cubed-sphere available in the
literature. We also introduce the equi-edge grid, which is less uniform than the equiangular
grid in general but offers more uniformity near to the cube edges, aiming to avoid grid
imprinting in these regions. Additionally, we show that Lagrange interpolation based on
geodesic distances is much less accurate than using Lagrange interpolation based on local
cubed sphere mapping coordinates.

Using all these tools, we could solve the advection equation on the sphere in Chapter 5.
We presented the advection scheme of FV3 and introduced our new scheme. We observed
that our new scheme requires a different treatment of the metric terms in the flux 1D
computation. Essentially, we extended the results from the plane to the cubed-sphere. Our
scheme is second-order accurate on the cubed-sphere, while the FV3 scheme is second-
order only for divergence-free winds and first-order for divergent winds. This was observed
on both equi-edge and equiangular grids. Additionally, the equi-edge grids yielded smaller
errors. Furthermore, the new scheme was slightly less sensitive to the corners, as it did
not show slightly smaller errors at these locations. This was observed in tests where we
evaluated a Gaussian hill, cosine bell, and a cylinder over the corners.

As an application of our new scheme, in Chapter 6, we provide a comprehensive
description of the FV3 shallow-water solver. This solver utilizes the shallow-water equa-
tions in vector form and employs only advective finite volume fluxes to compute the
fluid depth, kinetic energy, and absolute vorticity fluxes. We consider our scheme only to
solve the continuity equation and the absolute vorticity fluxes. We observe that for the
geostrophic balanced flow test case, our scheme helps to reduce the maximum error slightly.
Additionally, we analyze the total runtime for each method at different grid resolutions,
and we conclude that our scheme adds a very small extra cost. Another major conclusion
of this chapter is that the equiangular grid is less susceptible to numerical instability, being
able to perform better without the requirement of divergence damping. This was observed
for both advection schemes. Finally, for the Rossby-Haurwitz wave test, the new scheme
maintains the wave shape for 55-60 days, which is similar to the spectral model. The FV3
scheme, on the other hand, preserves the wave for approximately 95-100 days.

7.1 Future work ideas
A possible extension of this work would be to consider the non-hydrostatic solver

of FV3 to assess the new advection scheme’s ability in three dimensions and conduct
more realistic simulations, as we have only analyzed idealized test cases in this work.
Furthermore, we could also investigate the new scheme’s performance on the stretched
grids available in FV3.
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Our modified advection scheme is slightly better for divergence-free flows in some
situations, but for divergent winds, our new scheme is significantly better. We expect
that our scheme would perform similarly to the current FV3 method in processes where
there is small divergence/convergence of the wind, and it should yield better results for
processes where divergence plays a key role.

Horizontal wind divergence plays a pivotal role in many phenomena on the atmosphere
such as in tropical cyclones, hurricanes and in the Intertropical Convergence Zone (Holton
& Hakim, 2012). For example, hurricanes are fueled by strong horizontal wind convergence
at the Earth’s surface, with strong horizontal wind divergence occurring at high altitudes.
We could perform a study based on Gao et al. (2021), where the authors investigated
the impact of using different PPM schemes of FV3 on hurricane intensity prediction.
Their study highlights how modifying the advection scheme may improve hurricane
intensity prediction and affect the eyewall convection location. Therefore, we could use
our advection scheme in these simulations and observe its effect on hurricane intensity
prediction.
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Appendix A

Numerical Analysis

A.1 Lagrange interpolation
Given real numbers, called nodes, 𝑥0 < 𝑥1 < … < 𝑥𝑚, we define the 𝑘-th Lagrange

polynomial by

𝐿𝑘(𝑥) =
𝑚

∏
𝑗=0,𝑗≠𝑘

𝑥 − 𝑥𝑗
𝑥𝑘 − 𝑥𝑗

.

They satisfy 𝐿𝑘(𝑥𝑗) = 𝛿𝑘𝑗 , where 𝛿𝑘𝑗 is the Kronecker delta. Given a function 𝑓 defined at
the nodes 𝑥𝑗 , its interpolating polynomial of degree 𝑚 is given by:

𝑃𝑚(𝑥) =
𝑚

∑
𝑘=0

𝑓 (𝑥𝑘)𝐿𝑘(𝑥).

Indeed, this polynomial interpolates 𝑓 since 𝑃𝑚(𝑥𝑗) = 𝑓 (𝑥𝑗). It is well known that 𝑃𝑚
always exists and is unique. Besides that, we have the following error formula for Lagrange
interpolation.

Theorem A.1. Let 𝑓 ∈ 𝑚+1(ℝ). Then, then there is 𝜉 in the smallest interval containing
𝑥0, … , 𝑥𝑚, 𝑥 such that:

𝑓 (𝑥) − 𝑃𝑚(𝑥) = 𝜔(𝑥)
𝑓 (𝑚+1)(𝜉)
(𝑚 + 1)!

, (A.1)

where 𝜔(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑚).

Proof. See Stoer and Bulirsch (2002, Theorem 2.1.4.1. on p. 49).

A.2 Numerical integration
The following mean value theorem for integrals is a very useful tool when working

with numerical integration errors.

Theorem A.2 (Mean value theorem for integrals). If 𝑓 ∈ ([𝑎, 𝑏]), and 𝑔 is a integrable
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function in [𝑎, 𝑏] whose sign does not change in [𝑎, 𝑏], then there exists 𝑐 ∈]𝑎, 𝑏[ such that

∫
𝑏

𝑎
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 = 𝑓 (𝑐) ∫

𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

Proof. See Courant and John (1999, p. 143).

Theorem A.3 (Leibniz integral rule). If 𝑓 ∈ 1, then

𝑑
𝑑𝑠 ∫

𝑠

𝑠0
𝑓 (𝑠, 𝜃) 𝑑𝜃 = 𝑓 (𝑠, 𝑠) + ∫

𝑠

𝑠0
𝜕𝑠𝑓 (𝑠, 𝜃) 𝑑𝜃.

Proof. Let us define

𝐹(𝑠) = ∫
𝑠

𝑠0
𝑓 (𝑠, 𝜃) 𝑑𝜃,

and take a sequence ℎ𝑛 of real numbers such that ℎ𝑛
𝑛→∞⟶ 0. Then

𝐹(𝑠 + ℎ𝑛) − 𝐹(𝑠)
ℎ𝑛

=
1
ℎ𝑛 ∫

𝑠+ℎ𝑛

𝑠0
𝑓 (𝑠 + ℎ𝑛, 𝜃) 𝑑𝜃 −

1
ℎ𝑛 ∫

𝑠

𝑠0
𝑓 (𝑠, 𝜃) 𝑑𝜃 (A.2)

=
1
ℎ𝑛(∫

𝑠+ℎ𝑛

𝑠
𝑓 (𝑠 + ℎ𝑛, 𝜃) 𝑑𝜃 + ∫

𝑠

𝑠0
𝑓 (𝑠 + ℎ𝑛, 𝜃) 𝑑𝜃 − ∫

𝑠

𝑠0
𝑓 (𝑠, 𝜃) 𝑑𝜃).

(A.3)

It follows from Theorem A.2 (with 𝑔 = 1) that there exists 𝜃𝑛 between 𝑠 and 𝑠 + ℎ𝑛 such
that:

1
ℎ𝑛 ∫

𝑠+ℎ𝑛

𝑠
𝑓 (𝑠 + ℎ𝑛, 𝜃) 𝑑𝜃 = 𝑓 (𝑠 + ℎ𝑛, 𝜃𝑛)

𝑛→∞⟶ 𝑓(𝑠, 𝑠), (A.4)

since 𝜃𝑛
𝑛→∞⟶ 𝑠. From the mean value theorem, there exists 𝑠𝑛 between 𝑠 and 𝑠 + ℎ𝑛 such

that:

∫
𝑠

𝑠0 (
𝑓 (𝑠 + ℎ𝑛, 𝜃) − 𝑓 (𝑠, 𝜃)

ℎ ) 𝑑𝜃 = ∫
𝑠

𝑠0
𝜕𝑠𝑓 (𝑠𝑛, 𝜃) 𝑑𝜃

𝑛→∞⟶ ∫
𝑠

𝑠0
𝜕𝑠𝑓 (𝑠, 𝜃) 𝑑𝜃, (A.5)

where the last limit can be jusitified using the Lebesgue’s dominated convergence theorem
(see Folland (1999, p. 54)) . Using Equations (A.4) and (A.5) in Equation (A.3), we get the
desired identity since the sequence ℎ𝑛 is any sequence that converges to 0.

A.2.1 Midpoint rule
When considering finite-volume schemes, it is useful to compare the average value

on a control volume of a function with its value at the control volume centroid. In the
following theorems, for the one and two dimensional cases, respectively, we show that the
value of a function at the centroid of a control volume given a second-order approximation
to its average value on the control volume.



A.2 | NUMERICAL INTEGRATION

145

Theorem A.4. If 𝑓 ∈ 2([𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
]), then

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑓 (𝑥) 𝑑𝑥 − 𝑓 (𝑥𝑖) = 𝐶1Δ𝑥2, (A.6)

where 𝐶1 is a constant that depends only on 𝑓 , and 𝑥𝑖 =
𝑥𝑖+ 1

2
+𝑥𝑖− 1

2
2 , Δ𝑥 = 𝑥𝑖+ 1

2
− 𝑥𝑖− 1

2
.

Proof. From Taylor’s expansion, it follows that, for 𝑥 ∈ [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
], we have:

𝑓 (𝑥) = 𝑓 (𝑥𝑖) + 𝑓 ′(𝑥𝑖)(𝑥 − 𝑥𝑖) + 𝑓 ′′(𝜉)
(𝑥 − 𝑥𝑖)2

2
, (A.7)

for some 𝜉 between 𝑥 and 𝑥𝑖. Therefore:

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑓 (𝑥) 𝑑𝑥 − 𝑓 (𝑥𝑖) =
1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(𝑓
′(𝑥𝑖)(𝑥 − 𝑥𝑖) + 𝑓 ′′(𝜉)

(𝑥 − 𝑥𝑖)2

2 ) 𝑑𝑥

=
1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑓 ′′(𝜉)
(𝑥 − 𝑥𝑖)2

2
𝑑𝑥.

Using the mean value theorem for integrals (see Theorem A.2), we have:

1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝑓 (𝑥) 𝑑𝑥 − 𝑓 (𝑥𝑖) = 𝑓 ′′(𝜂𝑖)
1
Δ𝑥 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

(𝑥 − 𝑥𝑖)2

2
𝑑𝑥 = 𝑓 ′′(𝜂𝑖)

Δ𝑥2

24

for some 𝜂𝑖 ∈ [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
], from which the proposition follows with

𝐶1 =
1
24
𝑓 ′′(𝜂𝑖). (A.8)

Theorem A.5. If 𝑓 ∈ 2([𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] × [𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
]), then

1
Δ𝑥Δ𝑦 ∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 − 𝑓 (𝑥𝑖, 𝑦𝑗) = 𝐶Δ𝑥2, (A.9)

where 𝐶1 is a constant that depends only on 𝑓 , where we assume 𝑥𝑖 =
𝑥𝑖+ 1

2
+𝑥𝑖− 1

2
2 , 𝑦𝑖 =

𝑦𝑗+ 1
2
+𝑦𝑗− 1

2
2 ,

Δ𝑥 = 𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2
, Δ𝑦 = 𝑦𝑗+ 1

2
− 𝑦𝑗− 1

2
and Δ𝑥 = Δ𝑦.

Proof. Applying Theorem A.4 in the 𝑦 direction, we have

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑓 (𝑥, 𝑦) 𝑑𝑦 = Δ𝑦𝑓 (𝑥, 𝑦𝑗) +
Δ𝑦3

24
𝜕2𝑦𝑓 (𝑥, 𝜂𝑗),
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for 𝜂𝑗 ∈ [𝑦𝑗− 1
2
, 𝑦𝑗+ 1

2
]. Hence:

∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = Δ𝑦 ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

𝑓 (𝑥, 𝑦𝑗) 𝑑𝑥 +
Δ𝑦3

24 ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

𝜕2𝑦𝑓 (𝑥, 𝜂𝑗) 𝑑𝑥.

Applying Theorem A.4 in the 𝑥 direction for 𝑦 = 𝑦𝑗 , we get

∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

𝑓 (𝑥, 𝑦𝑗) 𝑑𝑥 = Δ𝑥𝑓 (𝑥𝑖, 𝑦𝑗) +
Δ𝑥3

24
𝜕2𝑥𝑓 (𝜉𝑖, 𝑦𝑗) 𝑑𝑥,

for 𝜉𝑖 ∈ [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
]. From this, we obtain

∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = Δ𝑥Δ𝑦𝑓 (𝑥𝑖, 𝑦𝑗) +
Δ𝑥3

24 ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

𝜕2𝑥𝑓 (𝜉𝑖, 𝑦𝑗) 𝑑𝑥 +
Δ𝑦3

24 ∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

𝜕2𝑦𝑓 (𝑥, 𝜂𝑗) 𝑑𝑥.

Using Theorem A.2, we obtain the desired formula:

∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = Δ𝑥Δ𝑦𝑓 (𝑥𝑖, 𝑦𝑗) +
Δ𝑥2

24
Δ𝑥Δ𝑦𝜕2𝑥𝑓 (𝜈𝑖, 𝑦𝑗) +

Δ𝑦2

24
Δ𝑥Δ𝑦𝜕2𝑦𝑓 (𝜃𝑖, 𝜂𝑗),

where 𝜈𝑖, 𝜃𝑖 ∈ [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
], recalling that Δ𝑥 = Δ𝑦.

Corollary A.1. If 𝑓 ∈ 2([𝑎, 𝑏] × [𝑐, 𝑑]), and [𝑎, 𝑏] × [𝑐, 𝑑] is written as the union of the
uniformed-spaces control volumes [𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2
] × [𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
], 𝑖, 𝑗 = 1, … , 𝑁 , with lengths

Δ𝑥 = Δ𝑦, we have

∫
𝑏

𝑎
∫

𝑑

𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 −

𝑁

∑
𝑖,𝑗=1

𝑓 (𝑥𝑖, 𝑦𝑗)Δ𝑥Δ𝑦 = 𝐶1Δ𝑥2, (A.10)

where 𝐶1 depends only on 𝑓 .

Proof. Using Theorem A.5, we have:

1
Δ𝑥Δ𝑦 ∫

𝑏

𝑎
∫

𝑑

𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

1
Δ𝑥Δ𝑦

𝑁

∑
𝑖,𝑗=1

∫
𝑥𝑖+ 1

2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
𝑁

∑
𝑖,𝑗=1

𝑓 (𝑥𝑖, 𝑦𝑗) +
Δ𝑥2

24

𝑁

∑
𝑖,𝑗=1

(𝜕
2
𝑥𝑓 (𝜈𝑖, 𝑦𝑗) + 𝜕2𝑦𝑓 (𝜃𝑖, 𝜂𝑗)).

We notice that

Δ𝑥Δ𝑦
𝑁

∑
𝑖,𝑗=1

(𝜕
2
𝑥𝑓 (𝜈𝑖, 𝑦𝑗) + 𝜕2𝑦𝑓 (𝜃𝑖, 𝜂𝑗)) =

(𝑏 − 𝑎)(𝑑 − 𝑐)
𝑁 2

𝑁

∑
𝑖,𝑗=1

(𝜕
2
𝑥𝑓 (𝜈𝑖, 𝑦𝑗) + 𝜕2𝑦𝑓 (𝜃𝑖, 𝜂𝑗)),
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and we also point that from the inequality

min
𝑥,𝑢∈[𝑎,𝑏],𝑦,𝑣∈[𝑐,𝑑]

(𝜕2𝑥𝑓 (𝑥, 𝑦) + 𝜕2𝑦𝑓 (𝑢, 𝑣)) ≤
1
𝑁 2

𝑁

∑
𝑖,𝑗=1

(𝜕
2
𝑥𝑓 (𝜈𝑖, 𝑦𝑗) + 𝜕2𝑦𝑓 (𝜃𝑖, 𝜂𝑗))

≤ max
𝑥,𝑢∈[𝑎,𝑏],𝑦,𝑣∈[𝑐,𝑑]

(𝜕2𝑥𝑓 (𝑥, 𝑦) + 𝜕2𝑦𝑓 (𝑢, 𝑣)),

and with the aid of the intermediate value theorem, we have

1
𝑁 2

𝑁

∑
𝑖,𝑗=1

(𝜕
2
𝑥𝑓 (𝜈𝑖, 𝑦𝑗) + 𝜕2𝑦𝑓 (𝜃𝑖, 𝜂𝑗)) = 𝜕2𝑥𝑓 (𝑥, 𝑦) + 𝜕2𝑦𝑓 (𝑢, 𝑣),

for some (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑], (𝑢, 𝑣) ∈ [𝑎, 𝑏] × [𝑐, 𝑑], from which the claim follows.

A.3 Convergence of 1D FV-SL schemes

A.3.1 Consistency and convergence

Hereafter, we are going to use the notations introduced in Section 2.1.1. To move
towards the convergence of 1D-FV schemes, for Problem 2.4 we introduce the local
truncation error (LTE hereafter) 𝜏𝑛𝑖 following LeVeque (2002):

𝑄𝑖(𝑡𝑛+1) = 𝑄𝑖(𝑡𝑛) − 𝜆(𝐹
𝑛
𝑖+ 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖+ 1

2
) − 𝐹 𝑛𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
)) + Δ𝑡𝜏𝑛𝑖 . (A.11)

We the define 𝜏𝑛 ∈ ℙ𝑁𝜈 , which represent the LTEs at the time-step 𝑛. Notice the LTE is
obtained by replacing the exact solution in Equation (2.22). Since 𝑄𝑖(𝑡𝑛) is the exact solution
of Equation (2.10), the LTE may be rewritten as

𝜏𝑛𝑖 =
1
Δ𝑥 [(

1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖+ 1

2
, 𝑡) 𝑑𝑡 − 𝐹 𝑛𝑖+ 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖+ 1

2
))+

(
1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛
(𝑢𝑞)(𝑥𝑖− 1

2
, 𝑡) 𝑑𝑡 − 𝐹 𝑛𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
))].

(A.12)

The LTE gives a measure of how well the 1D-FV scheme approximates the integral form
of the considered conservation law. Another interpretation of the LTE is that the LTE
gives the error obtained after applying the scheme for a single time-step using the exact
solution. Now we can define consistency.

Definition A.1 (Consistency). Let us consider the framework of Problem 2.4. A 1D-FV scheme
is said to be consistency in the 𝑝-norm if for any sequence of (Δ𝑥(𝑘), Δ𝑡(𝑘), 𝜆)-discretizations,
𝑘 ∈ ℕ, with lim𝑘→∞ Δ𝑥(𝑘) = lim𝑘→∞ Δ𝑡(𝑘) = 0, we have:

lim
𝑘→∞ [ max

1≤𝑛≤𝑁 (𝑘)
𝑇

‖𝜏𝑛‖𝑝,Δ𝑥(𝑘)] = 0,
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and it is said to be consistent with order 𝑃 in the 𝑝−norm if

max
1≤𝑛≤𝑁 (𝑘)

𝑇

‖𝜏𝑛‖𝑝,Δ𝑥(𝑘) = (Δ𝑥𝑃).

From Equation (A.12), it follows that we basically need to ensure that the numerical
flux function  𝑛

𝑖+ 1
2

converges to the time-averaged flux at edges when Δ𝑥 → 0 in order to
guarantee consistency.

At last, we define the point-wise error at time-step 𝑛 by:

𝐸𝑛𝑖 = 𝑄𝑖(𝑡𝑛) − 𝑄𝑛
𝑖 , 𝑖 = 1, … , 𝑁 ,

and we define the vector of errors by 𝐸𝑛 ∈ ℙ𝑁𝜈 with entries 𝐸𝑛𝑖 .

Definition A.2 (Convergence). Let us consider the framework of Problem 2.4. A 1D-
FV scheme is said to be convergent in the 𝑝-norm if for any sequence of (Δ𝑥(𝑘), Δ𝑡(𝑘), 𝜆)-
discretizations, 𝑘 ∈ ℕ, with lim𝑘→∞ Δ𝑥(𝑘) = lim𝑘→∞ Δ𝑡(𝑘) = 0, we have:

lim
𝑘→∞ [ max

1≤𝑛≤𝑁 (𝑘)
𝑇

‖𝐸𝑛‖𝑝,Δ𝑥(𝑘)] = 0,

and it is said to converge with order 𝑃 in the 𝑝−norm if

max
1≤𝑛≤𝑁 (𝑘)

𝑇

‖𝐸𝑛‖𝑝,Δ𝑥(𝑘) = (Δ𝑥𝑃).

Subtracting Equation (2.22) from Equation (A.11) we get the following equation for
the error:

𝐸𝑛+1𝑖 = 𝐸𝑛𝑖 −𝜆[(𝐹
𝑛
𝑖+ 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖+ 1

2
) − 𝐹 𝑛𝑖+ 1

2
(𝑄𝑛, 𝑢̃𝑛𝑖+ 1

2
))

− (𝐹
𝑛
𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
) − 𝐹 𝑛𝑖− 1

2
(𝑄𝑛, 𝑢̃𝑛𝑖− 1

2
))] + 𝜏𝑛𝑖 Δ𝑡.

(A.13)

Notice that if 𝑞, 𝑢 ∈ 3, we can rewrite Equation (A.12) as:

𝜏𝑛𝑖 = [
1

Δ𝑥Δ𝑡 ∫
𝑡𝑛+1

𝑡𝑛
∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

𝜕(𝑢𝑞)
𝜕𝑥

(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 − (

𝐹 𝑛𝑖+ 1
2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
) − 𝐹 𝑛𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
)

Δ𝑥 )].

Using the midpoint rule for integration (Theorem A.4) and the mean value theorem for
integrals (Theorem A.2), we have:

𝜏𝑛𝑖 = [
1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛 (
𝜕(𝑢𝑞)
𝜕𝑥

(𝑥𝑖, 𝑡) +
Δ𝑥2

24
𝜕(𝑢𝑞)
𝜕𝑥

(𝜉 , 𝑡)) 𝑑𝑡 − (

𝐹 𝑛𝑖+ 1
2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖+ 1

2
) − 𝐹 𝑛𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
)

Δ𝑥 )]

= [
1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛

𝜕(𝑢𝑞)
𝜕𝑥

(𝑥𝑖, 𝑡) 𝑑𝑡 − (

𝐹 𝑛𝑖+ 1
2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖+ 1

2
) − 𝐹 𝑛𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
)

Δ𝑥 )] +
Δ𝑥2

24
𝜕3(𝑢𝑞)
𝜕𝑥3

(𝜉 , 𝑡),

(A.14)
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for 𝜉 ∈ 𝑋𝑖 and 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]. Therefore, if 𝑞, 𝑢 ∈ 3 the scheme is consistent, if and only
if,

1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛

𝜕(𝑢𝑞)
𝜕𝑥

(𝑥𝑖, 𝑡) 𝑑𝑡

is approximated by
𝐹 𝑛𝑖+ 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖+ 1

2
)) − 𝐹 𝑛𝑖− 1

2
(𝑄(𝑡𝑛), 𝑢̃𝑛𝑖− 1

2
)

Δ𝑥
.

This shall be very useful when we consider two-dimensional schemes, where we are going
to use the discrete operators to estimate the divergence of velocity fields.

A.3.2 Stability

In order to define the concept of stability, it is useful to introduce an operator rep-
resentation of 1D-FV schemes. In the context of Problem 2.4, we define the operators
Δ𝑥,𝑛 ∶ ℙ𝑁𝜈 → ℙ𝑁𝜈 whose 𝑖-th entry is given by:

[Δ𝑥,𝑛(𝑄)]𝑖 = 𝑄𝑖 − 𝜆(𝐹
𝑛
𝑖+ 1

2
(𝑄, 𝑢̃𝑛𝑖+ 1

2
) − 𝐹 𝑛𝑖− 1

2
(𝑄, 𝑢̃𝑛𝑖− 1

2
)), (A.15)

for 𝑖 = 1, … , 𝑁 , 𝑛 = 0,… , 𝑁𝑇 − 1. Notice that the dependence on 𝑛 is due to the velocity
that may be allowed to vary with time. As it is usual, we are assuming periodicity in the
entries of 𝑄 when we apply the operator Δ𝑥,𝑛. Thus, Equation (2.22) may be rewritten in
a vector form by

𝑄𝑛+1 = Δ𝑥,𝑛(𝑄𝑛),

and Equation (A.11) in a vector form reads

𝑄(𝑡𝑛+1) = Δ𝑥,𝑛(𝑄(𝑡𝑛)) + Δ𝑡𝜏𝑛,

and the error equation (A.13) is given by

𝐸𝑛+1 = Δ𝑥,𝑛(𝑄(𝑡𝑛)) −Δ𝑥,𝑛(𝑄𝑛) + Δ𝑡𝜏𝑛. (A.16)

The stability theory focus on uniformly bounding the norm of Δ𝑥,𝑛(𝑄(𝑡𝑛)) −Δ𝑥,𝑛(𝑄𝑛)
(LeVeque, 2002). We define stability as follows.

Definition A.3 (Stability). In the context of Problem 2.4, a 1D-FV scheme is stable in the
𝑝−norm if for any (Δ𝑥, Δ𝑡, 𝜆)-discretization of [𝑎, 𝑏] × [0, 𝑇 ] we have:

‖Δ𝑥,𝑛(𝑄) −Δ𝑥,𝑛(𝑃)‖𝑝,Δ𝑥 ≤ (1 + 𝛼Δ𝑡)‖𝑄 − 𝑃‖𝑝,Δ𝑥 , (A.17)

for all 𝑄, 𝑃 ∈ ℝ𝑁
𝜈 and 𝛼 is a constant that does not depend neither on Δ𝑥 nor on Δ𝑡.

Assuming that the scheme is stable in the 𝑝−norm, then it follows from Equation
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(A.16) that:

‖𝐸𝑛+1‖𝑝,Δ𝑥 ≤ ‖Δ𝑥,𝑛(𝑄(𝑡𝑛)) −Δ𝑥,𝑛(𝑄𝑛)‖𝑝,Δ𝑥 + Δ𝑡 max
𝑛=1,…,𝑁𝑇

‖𝜏𝑛‖𝑝,Δ𝑥

≤ (1 + 𝛼Δ𝑡)‖𝐸𝑛‖𝑝,Δ𝑥 + Δ𝑡 max
𝑛=1,…,𝑁𝑇

‖𝜏𝑛‖𝑝,Δ𝑥

≤ (1 + 𝛼Δ𝑡)𝑛‖𝐸0‖𝑝,Δ𝑥 + Δ𝑡 max
𝑛=1,…,𝑁𝑇

‖𝜏𝑛‖𝑝,Δ𝑥
𝑛−1

∑
𝑘=0

(1 + 𝛼Δ𝑡)𝑘

≤ 𝑒𝛼𝑇 (‖𝐸0‖𝑝,Δ𝑥 + 𝑇 max
𝑛=1,…,𝑁𝑇

‖𝜏𝑛‖𝑝,Δ𝑥),

(A.18)

where we used 𝑛Δ𝑡 ≤ 𝑇 , 𝑇 = 𝑁Δ𝑡 and the inequality 𝑒𝑡 > 1 + 𝑡. When computing the
initial average values using the value at the cell centroid, the initial error 𝐸0 converges
to zero provided 𝑞 is twice continuously differentiable by Proposition 2.2. Therefore, it
follows that if the scheme is stable and consistent then it is convergent. Furthermore, if
it is stable and consistent with order 𝑃 , then the convergence order is at least equal to
min{𝑃, 2}. In the case where both the conservation law and Δ𝑥,𝑛 are linear, this result
is a particular case of the Lax-Ritchmyer stability and the convergence is guaranteed by
the Lax equivalence theorem (LeVeque, 2002). In this Chapter, we are interested only in
the linear advection equation. However, as pointed in Section 2.5, the operator Δ𝑥,𝑛 may
become non-linear when monotonicity constraints are activated.

Notice that, if Δ𝑥,𝑛 is linear, then stability is equivalent to require that

‖Δ𝑥,𝑛‖𝑝,Δ𝑥 ≤ 1 + 𝛼Δ𝑡,

where

‖Δ𝑥,𝑛‖𝑝,Δ𝑥 = sup
𝑄∈ℝΔ𝑥

‖Δ𝑥,𝑛(𝑄)‖𝑝,Δ𝑥
‖𝑄‖𝑝,Δ𝑥

,

is the operator 𝑝-norm.

For linear operators, we may use the discrete Fourier transform (Trefethen, 2000) to
estimate the 2-norm of Δ𝑥,𝑛. This approach is known as Von Neumann stability analysis.
We define the nodes 𝜃𝑖 = 𝑖 2𝜋𝑁 , 𝑖 = 1, … , 𝑁 , Δ𝜃 = 2𝜋

𝑁 , 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑁 ). The imaginary unit
is denoted by 𝚤. We define ℂ𝑁

𝜈 similarly as ℙ𝑁𝜈 . The Fourier modes 𝑒𝚤𝑘𝜃 ∈ ℂ𝑁
𝜈 for 𝑘 = 1,… , 𝑁 ,

have entries given by:
[𝑒𝚤𝑘𝜃]𝑖 = 𝑒𝚤𝑘𝜃𝑖 , for 𝑖 = 1, … , 𝑁 .

Each 𝑘 is referred to wavenumber and 𝜃𝑘 is called dimensionless wavenumber. The Fourier
modes form an orthogonal basis of ℂ𝑁

𝜈 with respect to the inner product

⟨𝑄, 𝑃⟩ =
1
𝑁

𝑁

∑
𝑖=1

𝑄𝑖𝑃𝑖,

for 𝑃, 𝑄 ∈ ℂ𝑁
𝜈 and 𝑧 denotes the complex conjugate of 𝑧. Given 𝑄 ∈ ℙ𝑁𝜈 , we may may

express it in terms of the Fourier modes

𝑄 =
𝑁

∑
𝑘=1

𝑎𝑘𝑒𝚤𝑘𝜃,
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where 𝑎𝑘 ∈ ℂ. The 2-norm of 𝑄 is then given by:

‖𝑄‖2,Δ𝑥 =

√

𝑁
𝑁

∑
𝑘=1

|𝑎𝑘 |2.

The idea of Von Neumann stability analysis is to apply the operator Δ𝑥,𝑛 on each Fourier
mode and analyze how it modifies its amplitude. For ease of analysis, we assume that the
velocity is constant, which implies that the operator Δ𝑥,𝑛 has constant coefficients and
does not depend on 𝑛. For the general case, where the velocity is not constant, the stability
can be ensured using the frozen coefficients method (Strikwerda, 2004, p. 59). This method
boils down to performing multiple times the stability analysis with a constant velocity
being equal to each one of the possible values of the velocity on the grid. If the scheme is
stable for all the possible constant velocities, then stability is ensured. Since the operator is
supposed to be linear with constant coefficients and we are assuming periodic boundaries
conditions, we may write:

Δ𝑥,𝑛(𝑒𝚤𝑘𝜃) = 𝜌(𝑘)𝑒𝚤𝑘𝜃,

where the term 𝜌(𝑘) is called amplification factor and it is an eigenvalue of Δ𝑥,𝑛. The
norm of Δ𝑥,𝑛(𝑄) is bounded by:

‖Δ𝑥,𝑛(𝑄)‖22,Δ𝑥 = 𝑁
𝑁

∑
𝑘=1

|𝑎𝑘 |2|𝜌(𝑘)|2 ≤ max
𝑘=1,…,𝑁

|𝜌(𝑘)|2‖𝑄‖22,Δ𝑥 .

Therefore:
‖Δ𝑥,𝑛‖2,Δ𝑥 ≤ max

𝑘=1,…,𝑁
|𝜌(𝑘)|.

If we show that max𝑘=1,…,𝑁 |𝜌(𝑘)| ≤ 1 + 𝛼Δ𝑡, with 𝛼 independent of Δ𝑡, 𝑁 and 𝑛, then we
ensure the stability of Δ𝑥,𝑛.

A.3.3 Flux accuracy analysis
With the PPM operator, we can compute the amplification factor by applying it on

each Fourier mode considering any PPM scheme without monotonization. We assume
a constant velocity equal to one and 𝑁 = 100 (number of control volumes). In Figure
A.1 we show the amplification factor for the unlimited PPM scheme (UNLIM). We can
observe that UNLIM damp most of the Fourier modes for larger 𝑘, regardless of the CFL
number. We point out that UNLIM is exact when the CFL number is equal to 1. From this
analysis, we can conclude that UNLIM satisfy the Von Neumann stability criteria when
the CFL restriction is respected. For an analysis of stability for larger time-steps, we refer
to Lauritzen (2007).

A.4 Convergence, consistency and stability of 2D-FV
schemes

The notions of convergence, consistency and stability for a 2D-FV schemes are straight-
forward from these notions for 1D-FV schemes (see Subsections A.3.1 and A.3.2). Indeed,
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Figure A.1: Amplification factor for the UNLIM scheme for different CFL numbers.

in the context of Problem 3.3, we define the operators Δ𝑥,Δ𝑦,𝑛 ∶ ℝ𝑁×𝑀 → ℝ𝑁×𝑀 whose
(𝑖, 𝑗) entry is given by:

[Δ𝑥,Δ𝑦,𝑛(𝑄)]𝑖𝑗 = 𝑄𝑖𝑗 − Δ𝑡𝔻𝑛
𝑖𝑗

for 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … ,𝑀 , 𝑛 = 0,… , 𝑁𝑇 − 1. The 2D-FV is then expressed as

𝑄𝑛+1 = Δ𝑥,Δ𝑦,𝑛(𝑄𝑛).

The local error truncation 𝜏𝑛 ∈ ℝ𝑁×𝑀 is given by

𝑄(𝑡𝑛+1) = Δ𝑥,Δ𝑦,𝑛(𝑄(𝑡𝑛)) + Δ𝑡𝜏𝑛.

The error equation is given by

𝐸𝑛+1 = Δ𝑥,Δ𝑦,𝑛(𝑄(𝑡𝑛)) −Δ𝑥,Δ𝑦,𝑛(𝑄𝑛) + Δ𝑡𝜏𝑛. (A.19)

The stability in the 𝑝-norm is defined as in the 1D case.

Definition A.4. A 2D-FV scheme is stable in the 𝑝−norm if

‖Δ𝑥,Δ𝑦,𝑛(𝑄) −Δ𝑥,Δ𝑦,𝑛(𝑃)‖𝑝,Δ𝑥×Δ𝑦 ≤ (1 + 𝛼Δ𝑡)‖𝑄 − 𝑃‖𝑝,Δ𝑥×Δ𝑦 , (A.20)

for all 𝑄, 𝑃 ∈ ℝ𝑁×𝑀 and 𝛼 is a constant that does not depend neither on Δ𝑥 , Δ𝑦, Δ𝑡 nor on 𝑛.

If a 2D-FV scheme is stable in the 𝑝−norm, similarly to Equation (A.18) we have:

‖𝐸𝑛+1‖𝑝,Δ𝑥×Δ𝑦 ≤ 𝑒𝛼𝑇 (‖𝐸0‖𝑝,Δ𝑥×Δ𝑦 + 𝑇 max
𝑛=1,…,𝑁𝑇

‖𝜏𝑛‖𝑝,Δ𝑥×Δ𝑦).

Again, we point out that from Proposition 3.1, we have that the initial error 𝐸0 shall be
second-order accurate. Consistency is defined as in Definition A.1 and convergence is
defined as in Definition A.2.

The Von Neumann analysis can be applied when Δ𝑥,Δ𝑦,𝑛 is linear, since we are con-
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sidering periodic boundary conditions. The idea is the same as in the one-dimensional
case, we just apply the operator Δ𝑥,Δ𝑦,𝑛 on the Fourier modes to obtain the amplifica-
tion factor. We introduce the nodes 𝜃𝑖 = 𝑖 2𝜋𝑁 , 𝑖 = 1, … , 𝑁 , Δ𝜃 = 2𝜋

𝑁 , 𝜃𝑖 = (𝜃1, 𝜃2, … , 𝜃𝑁 ),
𝜙𝑗 = 𝑗 2𝜋𝑀 , 𝑗 = 1, … ,𝑀 , Δ𝜙 = 2𝜋

𝑀 , 𝜙 = (𝜙1, 𝜙2, … , 𝜙𝑀). For 𝑘1 = 1,… , 𝑁 , 𝑘2 = 1,… ,𝑀 ,
the two-dimensional Fourier mode 𝒌 = (𝑘1, 𝑘2) from ℂ𝑁×𝑀 has its (𝑖, 𝑗) entry given by
[𝑒𝚤𝒌𝜃]𝑖𝑗 = 𝑒𝚤𝑘1𝜃𝑖𝑒𝚤𝑘2𝜙𝑗 . For an analysis of stability for the dimension splitting method, we refer
to Lauritzen (2007) and Lin and Rood (1996).

Notice that if 𝑞, 𝑢, 𝑣 ∈ 3, we can rewrite the LTE as:

𝜏𝑛𝑖𝑗 = [
1

Δ𝑥Δ𝑦Δ𝑡 ∫
𝑡𝑛+1

𝑡𝑛
∫

𝑥𝑖+ 1
2

𝑥𝑖− 1
2

∫
𝑦𝑗+ 1

2

𝑦𝑗− 1
2

∇ ⋅ (𝒖𝑞)(𝑥, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑥 𝑑𝑡 − 𝔻𝑛
𝑖𝑗].

Using the midpoint rule for integration (Theorem A.5), the mean value theorem for integrals
(Theorem A.2) and recalling the discrete divergence (Definition 3.5), we have:

𝜏𝑛𝑖𝑗 =
1
Δ𝑡 ∫

𝑡𝑛+1

𝑡𝑛
∇ ⋅ (𝒖𝑞)(𝑥𝑖, 𝑦𝑗 , 𝑡) 𝑑𝑡 − 𝔻𝑛

𝑖𝑗 + (Δ𝑥2) + (Δ𝑦2). (A.21)

Therefore, in order to investigate the consistency, we may compare how well the discrete
divergence approximates the divergence.

A.5 Finite-difference estimates

This Section aims to prove all finite-difference error estimations used throughout this
appendix. All the proves are very simple and consist of applying Taylor’s expansions, as it
is usual when computing the accuracy order of many numerical schemes.

Lemma A.1. Let 𝐹 ∈ 5(ℝ), 𝑥0 ∈ ℝ and ℎ > 0. Then, the following identity holds:

𝐹 ′(𝑥0) =
4
3(

𝐹(𝑥0 + ℎ) − 𝐹(𝑥0 − ℎ)
2ℎ ) −

1
3(

𝐹(𝑥0 + 2ℎ) − 𝐹(𝑥0 − 2ℎ)
4ℎ ) + 𝐶1ℎ4, (A.22)

where 𝐶1 is a constant that depends only on 𝐹 and ℎ.

Proof. Given 𝛿 ∈]0, 2ℎ], then 𝑥0 + 𝛿 ∈]𝑥0, 𝑥0 + 2ℎ] and 𝑥0 − 𝛿 ∈]𝑥0 − 2ℎ, 𝑥0]. Then, we get
using the Taylor expansion of 𝐹 :

𝐹(𝑥0 + 𝛿) = 𝐹(𝑥0)+𝐹 ′(𝑥0)𝛿 + 𝐹 (2)(𝑥0)
𝛿2

2
+ 𝐹 (3)(𝑥0)

𝛿3

3!
+ 𝐹 (4)(𝑥0)

𝛿3

4!
+ 𝐹 (5)(𝜃𝛿)

𝛿5

5!
𝜃𝛿 ∈ [𝑥0, 𝑥0 + 𝛿],

𝐹(𝑥0 − 𝛿) = 𝐹(𝑥0)−𝐹 ′(𝑥0)𝛿 + 𝐹 (2)(𝑥0)
𝛿2

2
− 𝐹 (3)(𝑥0)

𝛿3

3!
+ 𝐹 (4)(𝑥0)

𝛿4

4!
− 𝐹 (5)(𝜃−𝛿)

𝛿5

5!
, 𝜃−𝛿 ∈ [𝑥0 − 𝛿, 𝑥0].

Thus:

𝐹(𝑥0 + 𝛿) − 𝐹(𝑥0 − 𝛿)
2𝛿

= 𝐹 ′(𝑥0) + 𝐹 (3)(𝑥0)
𝛿2

3!
+ (𝐹

(5)(𝜃𝛿) + 𝐹 5(𝜃−𝛿))
𝛿4

2 ⋅ 5!
, (A.23)
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Applying Equation (A.23) for 𝛿 = ℎ and 𝛿 = 2ℎ, we get, respectively:

𝐹(𝑥0 + ℎ) − 𝐹(𝑥0 − ℎ)
2ℎ

= 𝐹 ′(𝑥0)+𝐹 (3)(𝑥0)
ℎ2

3!
+(𝐹

(5)(𝜃ℎ)+𝐹 5)(𝜃−ℎ))
ℎ4

2 ⋅ 5!
, 𝜃ℎ ∈ [𝑥0, 𝑥0+ℎ], 𝜃−ℎ ∈ [𝑥0−ℎ, 𝑥0],

(A.24)
and

𝐹(𝑥0 + 2ℎ) − 𝐹(𝑥0 − 2ℎ)
4ℎ

= 𝐹 ′(𝑥0) + 𝐹 (3)(𝑥0)
4ℎ2

3!
+ (𝐹

(5)(𝜃2ℎ) + 𝐹 (5)(𝜃−2ℎ))
16ℎ4

2 ⋅ 5!
, (A.25)

𝜃2ℎ ∈ [𝑥0, 𝑥0 + 2ℎ], 𝜃−2ℎ ∈ [𝑥0 − 2ℎ, 𝑥0].

Using Equations (A.24) and (A.25), we obtain:

4
3(

𝐹(𝑥0 + ℎ) − 𝐹(𝑥0 − ℎ)
2ℎ ) =

4
3
𝐹 ′(𝑥0) + 𝐹 (3)(𝑥0)

4ℎ2

3 ⋅ 3!
+ (𝐹

(5)(𝜃ℎ) + 𝐹 (5)(𝜃−ℎ))
ℎ4

2 ⋅ 5!
,

(A.26)

1
3(

𝐹(𝑥0 + 2ℎ) − 𝐹(𝑥0 − 2ℎ)
4ℎ ) =

1
3
𝐹 ′(𝑥0) + 𝐹 (3)(𝑥0)

4ℎ2

3 ⋅ 3!
+ (𝐹

(5)(𝜃2ℎ) + 𝐹 (5)(𝜃−2ℎ))
16ℎ4

3 ⋅ 2 ⋅ 5!
(A.27)

Subtracting Equation (A.27) from Equation (A.26) we get the desired Equation (A.22)
with

𝐶1 =
1
720(

3𝐹 (5)(𝜃ℎ) + 3𝐹 (5)(𝜃−ℎ) − 16𝐹 (5)(𝜃2ℎ) − 16𝐹 (5)(𝜃−2ℎ)), (A.28)

where 𝜃ℎ ∈ [𝑥0, 𝑥0 + ℎ], 𝜃−ℎ ∈ [𝑥0 − ℎ, 𝑥0], 𝜃2ℎ ∈ [𝑥0, 𝑥0 + 2ℎ], 𝜃−2ℎ ∈ [𝑥0 − 2ℎ, 𝑥0]. Using the
intermediate value theorem, we can express 𝐶1 in a more compact way as

𝐶1 =
1
720(

6𝐹 (5)(𝜂1) − 32𝐹 (5)(𝜂2)), (A.29)

where 𝜂1, 𝜂2 ∈ [𝑥0 − 2ℎ, 𝑥0 + 2ℎ], which concludes the proof.

Lemma A.2. Let 𝐹 ∈ 4(ℝ), 𝑥0 ∈ ℝ and ℎ > 0. Then, the following identity holds:

𝐹 ′′(𝑥0) =
−2𝐹(𝑥0 − 2ℎ) + 15𝐹(𝑥0 − ℎ) − 28𝐹(𝑥0) + 20𝐹(𝑥0 + ℎ) − 6𝐹(𝑥0 + 2ℎ) + 𝐹(𝑥0 + 3ℎ)

6ℎ2
+𝐶2ℎ2,

(A.30)
where 𝐶2 is a constant that depends only on 𝐹 and ℎ.
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Proof. From the Taylor’s expansion, we have:

𝐹(𝑥0 − 2ℎ) = 𝐹(𝑥0) − 2𝐹 ′(𝑥0)ℎ + 2𝐹 (2)(𝑥0)ℎ2 −
8
6
𝐹 (3)(𝑥0)ℎ3 +

16
24
𝐹 (4)(𝜃−2ℎ)ℎ4,

𝐹 (𝑥0 − ℎ) = 𝐹(𝑥0) − 𝐹 ′(𝑥0)ℎ +
1
2
𝐹 (2)(𝑥0)ℎ2 −

1
6
𝐹 (3)(𝑥0)ℎ3 +

1
24
𝐹 (4)(𝜃−ℎ)ℎ4,

𝐹 (𝑥0 + ℎ) = 𝐹(𝑥0) + 𝐹 ′(𝑥0)ℎ +
1
2
𝐹 (2)(𝑥0)ℎ2 +

1
6
𝐹 (3)(𝑥0)ℎ3 +

1
24
𝐹 (4)(𝜃ℎ)ℎ4,

𝐹 (𝑥0 + 2ℎ) = 𝐹(𝑥0) + 2𝐹 ′(𝑥0)ℎ + 2𝐹 (2)(𝑥0)ℎ2 +
8
6
𝐹 (3)(𝑥0)ℎ3 +

16
24
𝐹 (4)(𝜃2ℎ)ℎ4,

𝐹 (𝑥0 + 3ℎ) = 𝐹(𝑥0) + 3𝐹 ′(𝑥0)ℎ +
9
2
𝐹 (2)(𝑥0)ℎ2 +

27
6
𝐹 (3)(𝑥0)ℎ3 +

81
24
𝐹 (4)(𝜃3ℎ)ℎ4,

where 𝜃−2ℎ ∈ [𝑥0 −2ℎ, 𝑥0 −ℎ], 𝜃−ℎ ∈ [𝑥0 −ℎ, 𝑥0], 𝜃ℎ ∈ [𝑥0, 𝑥0 +ℎ], 𝜃2ℎ ∈ [𝑥0 +ℎ, 𝑥0 +2ℎ], 𝜃3ℎ ∈
[𝑥0 + 2ℎ, 𝑥0 + 3ℎ]. Multiplying these equations by their respective coefficients given in
Equation (A.30), one get:

−2𝐹(𝑥0 − 2ℎ) = −2𝐹(𝑥0) + 4𝐹 ′(𝑥0)ℎ − 4𝐹 (2)(𝑥0)ℎ2 +
16
6
𝐹 (3)(𝑥0)ℎ3 −

32
24
𝐹 (4)(𝜃−2ℎ)ℎ4,

15𝐹(𝑥0 − ℎ) = 15𝐹(𝑥0) − 15𝐹 ′(𝑥0)ℎ +
15
2
𝐹 (2)(𝑥0)ℎ2 −

15
6
𝐹 (3)(𝑥0)ℎ3 +

15
24
𝐹 (4)(𝜃−ℎ)ℎ4,

−28𝐹(𝑥0) = −28𝐹(𝑥0),

20𝐹(𝑥0 + ℎ) = 20𝐹(𝑥0) + 20𝐹 ′(𝑥0)ℎ + 10𝐹 (2)(𝑥0)ℎ2 +
20
6
𝐹 (3)(𝑥0)ℎ3 +

20
24
𝐹 (4)(𝜃ℎ)ℎ4,

−6𝐹(𝑥0 + 2ℎ) = −6𝐹(𝑥0) − 12𝐹 ′(𝑥0)ℎ − 12𝐹 (2)(𝑥0)ℎ2 − 8𝐹 (3)(𝑥0)ℎ3 −
96
24
𝐹 (4)(𝜃2ℎ)ℎ4,

𝐹 (𝑥0 + 3ℎ) = 𝐹(𝑥0) + 3𝐹 ′(𝑥0)ℎ +
9
2
𝐹 (2)(𝑥0)ℎ2 +

27
6
𝐹 (3)(𝑥0)ℎ3 +

81
24
𝐹 (4)(𝜃3ℎ)ℎ4.

Summing all these equations, we get the desired Formula (A.30) with 𝐶2 given by:

𝐶2 =
1
24(

32𝐹 (4)(𝜃−2ℎ) − 15𝐹 (4)(𝜃−ℎ) − 20𝐹 (4)(𝜃ℎ) + 96𝐹 (4)(𝜃2ℎ) − 81𝐹 (4)(𝜃3ℎ)). (A.31)

Using the intermediate value theorem, we can express 𝐶2 in a more compact way as

𝐶2 =
1
24(

128𝐹 (5)(𝜂1) − 116𝐹 (5)(𝜂2)), (A.32)

where 𝜂1, 𝜂2 ∈ [𝑥0 − 2ℎ, 𝑥0 + 3ℎ], which concludes the proof.
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Lemma A.3. Let 𝐹 ∈ 4(ℝ), 𝑥0 ∈ ℝ and ℎ > 0. Then, the following identity holds:

𝐹 (3)(𝑥0) =
𝐹(𝑥0 − 2ℎ) − 7𝐹(𝑥0 − ℎ) + 16𝐹(𝑥0) − 16𝐹(𝑥0 + ℎ) + 7𝐹(𝑥0 + 2ℎ) − 𝐹(𝑥0 + 3ℎ)

2ℎ3
+𝐶3ℎ,

(A.33)
where 𝐶3 is a constant that depends only on 𝐹 and ℎ.

Proof. From the Taylor’s expansion, we have:

𝐹(𝑥0 − 2ℎ) = 𝐹(𝑥0) − 2𝐹 ′(𝑥0)ℎ + 2𝐹 (2)(𝑥0)ℎ2 −
8
6
𝐹 (3)(𝑥0)ℎ3 +

16
24
𝐹 (4)(𝜃−2ℎ)ℎ4,

𝐹 (𝑥0 − ℎ) = 𝐹(𝑥0) − 𝐹 ′(𝑥0)ℎ +
1
2
𝐹 (2)(𝑥0)ℎ2 −

1
6
𝐹 (3)(𝑥0)ℎ3 +

1
24
𝐹 (4)(𝜃−ℎ)ℎ4,

𝐹 (𝑥0 + ℎ) = 𝐹(𝑥0) + 𝐹 ′(𝑥0)ℎ +
1
2
𝐹 (2)(𝑥0)ℎ2 +

1
6
𝐹 (3)(𝑥0)ℎ3 +

1
24
𝐹 (4)(𝜃ℎ)ℎ4,

𝐹 (𝑥0 + 2ℎ) = 𝐹(𝑥0) + 2𝐹 ′(𝑥0)ℎ + 2𝐹 (2)(𝑥0)ℎ2 +
8
6
𝐹 (3)(𝑥0)ℎ3 +

16
24
𝐹 (4)(𝜃2ℎ)ℎ4,

𝐹 (𝑥0 + 3ℎ) = 𝐹(𝑥0) + 3𝐹 ′(𝑥0)ℎ +
9
2
𝐹 (2)(𝑥0)ℎ2 +

27
6
𝐹 (3)(𝑥0)ℎ3 +

81
24
𝐹 (4)(𝜃3ℎ)ℎ4,

where 𝜃−2ℎ ∈ [𝑥0 −2ℎ, 𝑥0 −ℎ], 𝜃−ℎ ∈ [𝑥0 −ℎ, 𝑥0], 𝜃ℎ ∈ [𝑥0, 𝑥0 +ℎ], 𝜃2ℎ ∈ [𝑥0 +ℎ, 𝑥0 +2ℎ], 𝜃3ℎ ∈
[𝑥0 + 2ℎ, 𝑥0 + 3ℎ]. Multiplying these equations by their respective coefficients given in
Equation (A.33), one get:

𝐹(𝑥0 − 2ℎ) = 𝐹(𝑥0) − 2𝐹 ′(𝑥0)ℎ +
4
2
𝐹 (2)(𝑥0)ℎ2 −

8
6
𝐹 (3)(𝑥0)ℎ3 +

16
24
𝐹 (4)(𝜃−2ℎ)ℎ4,

−7𝐹(𝑥0 − ℎ) = −7𝐹(𝑥0) + 7𝐹 ′(𝑥0)ℎ −
7
2
𝐹 (2)(𝑥0)ℎ2 +

7
6
𝐹 (3)(𝑥0)ℎ3 −

7
24
𝐹 (4)(𝜃−ℎ)ℎ4,

16𝐹(𝑥0) = 16𝐹(𝑥0),

−16𝐹(𝑥0 + ℎ) = −16𝐹(𝑥0) − 16𝐹 ′(𝑥0)ℎ −
16
2
𝐹 (2)(𝑥0)ℎ2 −

16
6
𝐹 (3)(𝑥0)ℎ3 −

16
24
𝐹 (4)(𝜃ℎ)ℎ4,

7𝐹(𝑥0 + 2ℎ) = 7𝐹(𝑥0) + 14𝐹 ′(𝑥0)ℎ +
28
2
𝐹 (2)(𝑥0)ℎ2 +

56
6
𝐹 (3)(𝑥0)ℎ3 +

112
24

𝐹 (4)(𝜃2ℎ)ℎ4,

−𝐹(𝑥0 + 3ℎ) = −𝐹(𝑥0) − 3𝐹 ′(𝑥0)ℎ −
9
2
𝐹 (2)(𝑥0)ℎ2 −

27
6
𝐹 (3)(𝑥0)ℎ3 −

81
24
𝐹 (4)(𝜃3ℎ)ℎ4.

Summing all these equations, we have:

𝐹(𝑥0 − 2ℎ) − 7𝐹(𝑥0 − ℎ) + 16𝐹(𝑥0) − 16𝐹(𝑥0 + ℎ) + 7𝐹(𝑥0 + 2ℎ) − 𝐹(𝑥0 + 3ℎ) = 2𝐹 (3)(𝑥0)ℎ3 − 2𝐶3ℎ4,

we get the desired Formula (A.33) with 𝐶3 given by:

𝐶3 =
1
48(

− 16𝐹 (4)(𝜃−2ℎ) + 7𝐹 (4)(𝜃−ℎ) + 16𝐹 (4)(𝜃ℎ) − 112𝐹 (4)(𝜃2ℎ) + 81𝐹 (4)(𝜃3ℎ)). (A.34)
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Using the intermediate value theorem, we can express 𝐶3 in a more compact way as

𝐶3 =
1
48(

104𝐹 (5)(𝜂1) − 128𝐹 (5)(𝜂2)), (A.35)

where 𝜂1, 𝜂2 ∈ [𝑥0 − 2ℎ, 𝑥0 + 3ℎ], which concludes the proof.

A.6 PPM reconstruction accuracy analysis

In this Section, we are going to investigate the accuracy of the PPM reconstruction
process. As we pointed out in Section 2.4.1, the approximation of 𝑞 at the control volumes
edges given by Equation (2.48) is fourth-order accurate when 𝑞 ∈ 4(ℝ). This is proved as
a Corollary of the following Proposition A.1.

Proposition A.1. Let 𝑞 ∈ 4(ℝ), 𝑥 ∈ ℝ and ℎ > 0. Then, the following identity holds:

𝑞(𝑥) =
7
12(

1
ℎ ∫

𝑥+ℎ

𝑥
𝑞(𝑥) 𝑑𝑥+

1
ℎ ∫

𝑥

𝑥−ℎ
𝑞(𝑥) 𝑑𝑥)−

1
12(

1
ℎ ∫

𝑥+2ℎ

𝑥+ℎ
𝑞(𝑥) 𝑑𝑥+

1
ℎ ∫

𝑥−ℎ

𝑥−2ℎ
𝑞(𝑥) 𝑑𝑥)+𝐶1ℎ4,

(A.36)
where 𝐶1 is a constant that depends on 𝑞 and ℎ.

Proof. We define 𝑄(𝑥) = ∫ 𝑥
𝑎 𝑞(𝜉) 𝑑𝜉 for fixed 𝑎 ∈ ℝ as in Equation (2.39). It follows that:

∫
𝑥+ℎ

𝑥
𝑞(𝜉) 𝑑𝜉 + ∫

𝑥

𝑥−ℎ
𝑞(𝜉) 𝑑𝜉 = 𝑄(𝑥 + ℎ) − 𝑄(𝑥 − ℎ),

∫
𝑥+2ℎ

𝑥+ℎ
𝑞(𝜉) 𝑑𝜉 + ∫

𝑥−ℎ

𝑥−2ℎ
𝑞(𝜉) 𝑑𝜉 = 𝑄(𝑥 + 2ℎ) − 𝑄(𝑥 − 2ℎ) − (𝑄(𝑥 + ℎ) − 𝑄(𝑥 − ℎ)).

Using these identities, Equation (A.36) may be rewritten as:

𝑞(𝑥) =
4
3(

𝑄(𝑥 + ℎ) − 𝑄(𝑥 − ℎ)
2ℎ ) −

1
3(

𝑄(𝑥 + 2ℎ) − 𝑄(𝑥 − 2ℎ)
4ℎ ) + 𝐶1ℎ4, (A.37)

which consists of finite-difference approximations. Thus, Equation (A.36) follows from
Lemma A.1 with:

𝐶1 = 𝐶1(𝜇1, 𝜇2) =
1
720(

6𝑞(4)(𝜇1) − 32𝑞(4)(𝜇2)), (A.38)

where 𝜇1, 𝜇2 ∈ [𝑥 − 2ℎ, 𝑥 + 2ℎ], which concludes the proof.

Corollary A.2. It follows from Proposition A.1 with 𝑥 = 𝑥𝑖+ 1
2

and ℎ = Δ𝑥 that 𝑞𝑖+ 1
2

given by
Equation (2.48) satisfies:

𝑞(𝑥𝑖+ 1
2
) − 𝑞𝑖+ 1

2
= 𝐶1Δ𝑥4, (A.39)

with 𝐶1 given by Equation (A.38), whenever 𝑞 ∈ 4(ℝ).
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The parabolic function from (2.42) given with coefficients specified before approximates
𝑞 with order 3 when 𝑞 ∈ 4(ℝ). In order to check this, for 𝑥 ∈ 𝑋𝑖 we rewrite Equation
(2.42) as:

𝑞𝑖(𝑥; 𝑄) = 𝑞𝐿,𝑖 +
(Δ𝑞𝑖 + 𝑞6,𝑖)

Δ𝑥
(𝑥 − 𝑥𝑖− 1

2
) −

𝑞6,𝑖
Δ𝑥2

(𝑥 − 𝑥𝑖− 1
2
)2 (A.40)

and we write 𝑞 using its Taylor expansion assuming 𝑞 ∈ 4(ℝ):

𝑞(𝑥) = 𝑞(𝑥𝑖− 1
2
) + 𝑞′(𝑥𝑖− 1

2
)(𝑥 − 𝑥𝑖− 1

2
) +

𝑞′′(𝑥𝑖− 1
2
)

2
(𝑥 − 𝑥𝑖− 1

2
)2 +

𝑞(3)(𝜃𝑖)
6

(𝑥 − 𝑥𝑖− 1
2
)3, (A.41)

where 𝜃𝑖 ∈ 𝑋𝑖. Comparing Equation (A.40) with Equation (A.41), it is reasonable to seek to
some bound to the expressions:

𝑞′(𝑥𝑖− 1
2
) −

(Δ𝑞𝑖 + 𝑞6,𝑖)
Δ𝑥

, (A.42)

and:
𝑞′′(𝑥𝑖− 1

2
)

2
− ( −

𝑞6,𝑖
Δ𝑥2)

. (A.43)

We have seen that term 𝑞𝐿,𝑖 gives a fourth-order approximation to 𝑞(𝑥𝑖− 1
2
). The Corollary

A.3 shall prove that the term (A.42) has a bound proportional to Δ𝑥2, and the Corollary
A.4 shall prove that the term (A.43) is bounded by a constant times Δ𝑥 .

Before proving the desired bounds, it is useful to rewrite some terms explicitly as func-
tions of the values of the Δ𝑥-grid function 𝑄. Combining Equation (2.45) with Equations
(2.49) and (2.50), we may write 𝑞6,𝑖 as:

𝑞6,𝑖 =
1
4(

𝑄𝑖−2 − 6𝑄𝑖−1 + 10𝑄𝑖 − 6𝑄𝑖+1 + 𝑄𝑖+2). (A.44)

Recalling the definition of Δ𝑞𝑖 from Equation (2.43), and applying Equations (2.49) and
(2.50), we may express Δ𝑞𝑖 as:

Δ𝑞𝑖 =
1
12(

𝑄𝑖−2 − 8𝑄𝑖−1 + 8𝑄𝑖+1 − 𝑄𝑖+2). (A.45)

Finally, we combine Equations (A.44) and (A.45) and write their sum as:

(Δ𝑞𝑖 + 𝑞6,𝑖)
Δ𝑥

=
2𝑄𝑖−2 − 13𝑄𝑖−1 + 15𝑄𝑖 − 5𝑄𝑖+1 + 𝑄𝑖+2

6Δ𝑥
. (A.46)

The next Proposition A.2 proves that Equation (A.46) approximates 𝑞′(𝑥𝑖− 1
2
) with order

2.
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Proposition A.2. Let 𝑞 ∈ 3(ℝ), 𝑥 ∈ ℝ and ℎ > 0. Then, the following identity holds:

𝑞′(𝑥) =
1
6ℎ(

2
ℎ ∫

𝑥−ℎ

𝑥−2ℎ
𝑞(𝑥) 𝑑𝑥 −

13
ℎ ∫

𝑥

𝑥−ℎ
𝑞(𝑥) 𝑑𝑥 +

15
ℎ ∫

𝑥+ℎ

𝑥
𝑞(𝑥) 𝑑𝑥

−
5
ℎ ∫

𝑥+2ℎ

𝑥+ℎ
𝑞(𝑥) 𝑑𝑥 +

1
ℎ ∫

𝑥+3ℎ

𝑥+2ℎ
𝑞(𝑥) 𝑑𝑥) + 𝐶2ℎ2,

(A.47)

where 𝐶2 is a constant that depends on 𝑞 and ℎ.

Proof. We consider again 𝑄(𝑥) = ∫ 𝑥
𝑎 𝑞(𝜉) 𝑑𝜉 for 𝑎 ∈ ℝ fixed as in Equation (2.39). Like in

Proposition A.2, we have:

1
6ℎ(

2
ℎ ∫

𝑥−ℎ

𝑥−2ℎ
𝑞(𝑥) 𝑑𝑥 −

13
ℎ ∫

𝑥

𝑥−ℎ
𝑞(𝑥) 𝑑𝑥 +

15
ℎ ∫

𝑥+ℎ

𝑥
𝑞(𝑥) 𝑑𝑥 −

5
ℎ ∫

𝑥+2ℎ

𝑥+ℎ
𝑞(𝑥) 𝑑𝑥 +

1
ℎ ∫

𝑥+3ℎ

𝑥+2ℎ
𝑞(𝑥) 𝑑𝑥)

=
1
6ℎ(

2
ℎ(
𝑄(𝑥 − ℎ) − 𝑄(𝑥 − 2ℎ)) −

13
ℎ (𝑄(𝑥) − 𝑄(𝑥 − ℎ)) +

15
ℎ (𝑄(𝑥 + ℎ) − 𝑄(𝑥))

−
5
ℎ(
𝑄(𝑥 + 2ℎ) − 𝑄(𝑥 + ℎ)) +

1
ℎ(
𝑄(𝑥 + 3ℎ) − 𝑄(𝑥 + 2ℎ)))

=
1
6ℎ2(

− 2𝑄(𝑥 − 2ℎ) + 15𝑄(𝑥 − ℎ) − 28𝑄(𝑥) + 20𝑄(𝑥 + ℎ) − 6𝑄(𝑥 + 2ℎ) + 𝑄(𝑥 + 3ℎ)),

which consists of the finite-difference scheme from Lemma A.2. Therefore, Equation (A.47)
follows from Lemma A.2 with:

𝐶2 = 𝐶2(𝜇1, 𝜇2) =
1
24(

128𝑞(3)(𝜇1) − 116𝑞(3)(𝜇2)), (A.48)

where 𝜇1, 𝜇2 ∈ [𝑥0 − 2ℎ, 𝑥0 + 3ℎ], which concludes the proof.

Corollary A.3. It follows from Proposition A.2 with 𝑥 = 𝑥𝑖− 1
2

and ℎ = Δ𝑥 that Δ𝑞𝑖 given by
Equation (A.45) and 𝑞6,𝑖 given by Equation (A.44) satisfy:

𝑞′(𝑥𝑖− 1
2
) −

(Δ𝑞𝑖 + 𝑞6,𝑖)
Δ𝑥

= 𝐶2Δ𝑥2, (A.49)

with 𝐶2 given by Equation (A.48), whenever 𝑞 ∈ 3(ℝ).

Now, we analyse the following expression:

−
2𝑞6,𝑖
Δ𝑥2

= −
1

2Δ𝑥2(
𝑄𝑖−2 − 6𝑄𝑖−1 + 10𝑄𝑖 − 6𝑄𝑖+1 + 𝑄𝑖+2). (A.50)

deduced from Equation (A.44) and we prove in Proposition A.3 that Equation (A.50)
approximates 𝑞′′(𝑥𝑖− 1

2
) with order 1.
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Proposition A.3. Let 𝑞 ∈ 3(ℝ), 𝑥 ∈ ℝ and ℎ > 0. Then, the following identity holds:

𝑞′′(𝑥) =
1
2ℎ2(

−
1
ℎ ∫

𝑥−ℎ

𝑥−2ℎ
𝑞(𝑥) 𝑑𝑥 +

6
ℎ ∫

𝑥

𝑥−ℎ
𝑞(𝑥) 𝑑𝑥 −

10
ℎ ∫

𝑥+ℎ

𝑥
𝑞(𝑥) 𝑑𝑥

+
6
ℎ ∫

𝑥+2ℎ

𝑥+ℎ
𝑞(𝑥) 𝑑𝑥 −

1
ℎ ∫

𝑥+3ℎ

𝑥+2ℎ
𝑞(𝑥) 𝑑𝑥) + 𝐶3ℎ,

(A.51)

where 𝐶3 is a constant that depends on 𝑞 and ℎ.

Proof. Similarly to Proposition A.2 using the same function 𝑄, we have:

1
2ℎ2(

−
1
ℎ ∫

𝑥−ℎ

𝑥−2ℎ
𝑞(𝑥) 𝑑𝑥 +

6
ℎ ∫

𝑥

𝑥−ℎ
𝑞(𝑥) 𝑑𝑥 −

10
ℎ ∫

𝑥+ℎ

𝑥
𝑞(𝑥) 𝑑𝑥 +

6
ℎ ∫

𝑥+2ℎ

𝑥+ℎ
𝑞(𝑥) 𝑑𝑥 −

1
ℎ ∫

𝑥+3ℎ

𝑥+2ℎ
𝑞(𝑥) 𝑑𝑥)

=
1
2ℎ2(

−
1
ℎ(
𝑄(𝑥 − ℎ) − 𝑄(𝑥 − 2ℎ)) +

6
ℎ(
𝑄(𝑥) − 𝑄(𝑥 − ℎ)) −

10
ℎ (𝑄(𝑥 + ℎ) − 𝑄(𝑥))

+
6
ℎ(
𝑄(𝑥 + 2ℎ) − 𝑄(𝑥 + ℎ)) −

1
ℎ(
𝑄(𝑥 + 3ℎ) − 𝑄(𝑥 + 2ℎ)))

=
1
2ℎ3(

𝑄(𝑥 − 2ℎ) − 7𝑄(𝑥 − ℎ) + 16𝑄(𝑥) − 16𝑄(𝑥 + ℎ) + 7𝑄(𝑥 + 2ℎ) − 𝑄(𝑥 + 3ℎ)),

which consists of the finite-difference scheme from Lemma A.3. Therefore, Equation (A.51)
follows from Lemma A.3 with:

𝐶3 = 𝐶3(𝜇1, 𝜇2) =
1
48(

104𝑞(3)(𝜇1) − 128𝑞(3)(𝜇2)), (A.52)

where 𝜇1, 𝜇2 ∈ [𝑥0 − 2ℎ, 𝑥0 + 3ℎ], which concludes the proof.

Corollary A.4. It follows from Proposition A.3 with 𝑥 = 𝑥𝑖− 1
2

and ℎ = Δ𝑥 that 𝑞6,𝑖 given by
Equation (2.48) satisfies:

𝑞′′(𝑥𝑖− 1
2
) − ( −

2𝑞6,𝑖
Δ𝑥2)

= 𝐶3Δ𝑥, (A.53)

with 𝐶3 given by Equation (A.52), whenever 𝑞 ∈ 3(ℝ).

With the aid of Corollaries A.2, A.3, and A.4, we are able to prove that the PPM
reconstruction approximates 𝑞 with order 3. Indeed, we prove this on the follow up
Proposition A.4.

Proposition A.4. Let 𝑞 ∈ 4([𝑎, 𝑏]). Then, the Piecewise-Parabolic function given by Equa-
tion (2.42) with the parameters 𝑞𝑅,𝑖 and 𝑞𝐿,𝑖 obeying Equations (2.49) and (2.50) gives a
third-order approximation to 𝑞 on the control volume 𝑋𝑖. Namely, there exist constants 𝑀1
and 𝑀2 such that

|𝑞(𝑥) − 𝑞𝑖(𝑥; 𝑄)| ≤ 𝑀1Δ𝑥4 + 𝑀2Δ𝑥3, ∀𝑥 ∈ 𝑋𝑖.
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Proof. For 𝑥 ∈ 𝑋𝑖, from Equations (A.41) and (A.40), we have:

𝑞(𝑥) − 𝑞𝑖(𝑥; 𝑄) = (𝑞′(𝑥𝑖− 𝑖
2
) − 𝑞𝐿,𝑖) + (𝑞

′(𝑥𝑖− 1
2
) −

(Δ𝑞𝑖 + 𝑞6,𝑖)
Δ𝑥 )(𝑥 − 𝑥𝑖− 1

2
)

+(
𝑞′′(𝑥𝑖− 1

2
)

2
+

𝑞6,𝑖
Δ𝑥2)

(𝑥 − 𝑥𝑖− 1
2
)2 +

𝑞(3)(𝜃𝑖)
6

(𝑥 − 𝑥𝑖− 1
2
)3.

Using this fact with Corollaries A.2, A.3, and A.4, we have:

𝑞(𝑥) − 𝑞𝑖(𝑥; 𝑄) = 𝐶1Δ𝑥4 + 𝐶2Δ𝑥2(𝑥 − 𝑥𝑖− 1
2
) +

𝐶3

2
Δ𝑥(𝑥 − 𝑥𝑖− 1

2
)2 + 𝐶4(𝑥 − 𝑥𝑖− 1

2
)3,

where 𝐶1, 𝐶2 and 𝐶3 are given by Equations (A.38), (A.48) and (A.52), respectively, and

𝐶4 = 𝐶4(𝜃𝑖) =
𝑞(3)(𝜃𝑖)

6
. (A.54)

For 𝑥 ∈ 𝑋𝑖, we have |𝑥 − 𝑥𝑖− 𝑖
2
| ≤ Δ𝑥 , thus:

|𝑞(𝑥) − 𝑞𝑖(𝑥; 𝑄)| ≤ 𝑀1Δ𝑥4 + 𝑀2Δ𝑥3,

where
𝑀1 =

38
720

sup
𝜉∈[𝑎,𝑏]

|𝑞(4)(𝜉)|,

𝑀2 = (
244
24

+
232
96

+
1
6)

sup
𝜉∈[𝑎,𝑏]

|𝑞(3)(𝜉)| =
143
12

sup
𝜉∈[𝑎,𝑏]

|𝑞(3)(𝜉)|,

which concludes the proof.
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Appendix B

Code availability and technical
considerations

The codes needed for this work have been openly built on GitHub. The PPM imple-
mentation for the one-dimensional advection equation used in Chapter 2 is available at
https://github.com/luanfs/FV3_adv_1D.

The dimension splitting method implementation used in Chapter 3 is available at
https://github.com/luanfs/FV3_adv_2D.

The cubed-sphere code used in Chapter 4, 5 and 6 is available at https://github.com/
luanfs/FV3_container. This code was executed using Docker, utilizing the containerized
version of the SHiELD model developed by Cheng et al. (2022) (https://www.gfdl.noaa.
gov/shield-in-a-box/, last accessed on March 27th, 2024).

The ENDGame shallow-water solver used in Chapter 6 is available at https://github.
com/luanfs/endgame.

All these codes are written in Fortran, and the output graphs were generated using
Python3.

The numerical experiments conducted in this study were primarily performed on the
ybytu machine from Labmap (https://labmap.ime.usp.br, last accessed on March 27th, 2024)
with the following specifications:

• Processor: 2x Intel Xeon Gold 6144 (8c/16t) 3.50 GHz;

• Memory: 540 GB;

• Disk: 4TB;

• Operating System: Debian GNU/Linux.

https://github.com/luanfs/FV3_adv_1D
https://github.com/luanfs/FV3_adv_2D
https://github.com/luanfs/FV3_container
https://github.com/luanfs/FV3_container
https://www.gfdl.noaa.gov/shield-in-a-box/
https://www.gfdl.noaa.gov/shield-in-a-box/
https://github.com/luanfs/endgame
https://github.com/luanfs/endgame
https://labmap.ime.usp.br
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