• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Patricia Neves de Araujo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Pereira, Marcone Corrêa (Presidente)
Gomez, Silvia Sastre
Pereira, Antonio Luiz
Título en portugués
Comportamento assintótico de problemas de difusão não locais e semilineares do tipo Neumann
Palabras clave en portugués
Blow-up
Comportamento assintótico
Equações não locais
Problemas do tipo Neumann
Resumen en portugués
Neste trabalho abordamos dois exemplos de equações de difusão não locais do tipo Neumann: o problema linear homogêneo e um semilinear com termo de reação representado pela função f(u) = u|u|^(p-1). Em ambos os casos, apresentamos condições de existência e unicidade de soluções e analisamos seu comportamento em relação ao tempo. Estudamos uma discretização para o problema linear e a utilizamos para realizar simulações numéricas nas quais podemos verificar algumas das propriedades demonstradas. Também simulamos o problema semilinear observando o comportamento de suas soluções mesmo em casos em que as hipóteses dos teoremas apresentados não são todas satisfeitas.
Título en inglés
Asymptotic behavior of nonlocal and semilinear diffusion problems of Neumann type
Palabras clave en inglés
Asymptotic behavior
Blow-up
Nonlocal equations
Problems of Neumann type
Resumen en inglés
In this work we approach two examples of nonlocal diffusion equations of Neumann type: the homogeneous linear problem and a semilinear with a reaction term represented by the function f(u) = u|u|^(p-1). In both cases, we present conditions of existence and uniqueness of solutions and we analyze their behavior with respect to time. We study a discretization to the linear problem and use it to perform numerical experiments in order to illustrate some of the demonstrated properties. We also simulate the semilinear problem observing the behavior of its solutions even in cases where the hypothesis of the presented theorems are not all satisfied.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
versaofinal.pdf (1.63 Mbytes)
Fecha de Publicación
2019-09-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.