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Resumo

RODRIGUES, J. O Conceito de Tensao Superficial em Mecanica Estatistica. 2023.Disser-
tagdo (Mestrado) - Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo,
2023.

Nesta dissertagao foram estudados dois artigos, [BKLS83| e
[GHMMST77], relacionados a existéncia e cotas para a tensao superficial 7. Em [BKL83|, a teo-
ria de Pirogov-Sinai é utilizada para obter uma cota inferior estritamente positiva para a tensao
superficial, mas a existéncia do limite que define 74 nao ¢ discutida. No caso especial de interacoes
ferromagnéticas para modelos do tipo Ising, onde os acoplamentos J4 sao todos nao negativos,
[GHMMST77| assegura a existéncia e uma cota superior uniforme em cada retangulo d-dimensional
de lados (L1, ..., Lg—1,2M) para o limite que define 75, por meio de um argumento de superaditivi-
dade. Seguindo o trabalho de [MGT72], realizamos um estudo aprofundado das relagoes de dualidade

entre modelos do tipo Ising, necessarias para compreender o argumento.

Palavras-chave: mecénica estatistica, transformagoes de dualidade, modelos de contornos, tensao

superficial, teoria de Pirogov-Sinai.
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Abstract

RODRIGUES, J. The Concept of Surface Tension in Statistical Mechanics. 2023. Masters
degree - Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, 2023.

In this thesis two papers, [BKLS83| and
[GHMMST77|, were studied, concerning the existence and bounds for the surface tension 73. In
[BKL83|, Pirogov-Sinai theory is employed to yield a strictly positive lower bound to the surface ten-
sion, but the existence of the limit defining 75 is not discussed. In the special case of ferromagnetic in-
teractions for Ising-like models, where the couplings J4 are all non-negative, [GHMMS77| guarantees
the existence and a uniform upper bound in each d-dimensional rectangle of sides (L1, ..., Lg—1,2M)
to the limit defining 75, by a superadditivity argument. Following the work of [MG72|, we make an

in-depth study of duality relations between Ising-like models, necessary to understand the argument.

Keywords: statistical mechanics, duality transformations, contour models, surface tension, Pirogov-

Sinai theory.
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Introduction

Rigorous Statistical Mechanics is a branch of physics that aims to provide a mathematically
rigorous foundation for understanding the behavior of systems with a large number of interacting
components, such as particles in a gas or atoms in a solid. Diverging from the empirical nature
of thermodynamics, which predominantly addresses macroscopic phenomena, statistical mechanics
provides the framework for understanding those macroscopic properties of matter starting from its
microscopical constituents. Equilibrium Statistical Mechanics constitutes the branch of the theory
dedicated to systems wherein macroscopic properties remain constant over time. It stands out as
the most comprehensively understood aspect of the broader framework. If this is the case, then
the appropriate distributions for the microscopic states w of the system are given by the Gibbs
distributions, which heuristically take the form

_ exp(=AH )

ps(w) Zns

where 7 is the Hamiltonian, giving the microscopical energy of the states, 5 = ]%B is the inverse
temperature with the Boltzmann factor kg and Zg is the partition function, a normalization factor
obtained by integrating over all possibilities of states. In this thesis, however, the focus is restricted
to lattice spins, where one may think that in each point x € Z¢ lies a fixed particle with spin values
belonging to a given set E. Therefore, the microscopical states of the system are just the elements
of EZd, that is, an assignment of a spin value for each point of the lattice Z.

The determination of the partition function can be used in turn to derive important thermody-
namic objects, such as the specific heat and free energy. The surface tension, the main topic of this
thesis, is yet another example of a quantity related to the partiton function and is defined as the
free energy per unit area of the separation interface perpendicular to a unit vector n between two
distinct phases of the system, like liquid and vapor. The definition adopted for the surface tension
between phases, say, 1 and 2 in this thesis is discussed in section 1.2.2 and equals

=%

ef

1 zZn
Tﬁ(fl) = — lim log _ A8 A ’
Az BTa(A)] (Z§ 5)°®)(Z3 5)(1-al®)

where A is a finite region, Z/q\7 s the partition function restricted to A with boundary condition
q, that is, one considers the spins outside A are all equal to ¢, II; denotes the separation plane
between the phases, a(n) is the fraction of A in contact with phase 1 and Z};‘ﬂ is the partition
function with boundary condition given by

Ma (i) == . .
q2, if otherwise.

In the special case of Ising-like models, [GHMMS77| proved that the surface tension for ferro-
magnetic lattice systems is well-defined, in the sense that the limit exists, and uniformly bounded
above (note that the definition presented here differs from |[GHMMS77] by a sign, so up to this
sign a lower bound will be proved) in A using an approach based on group theory and duality
transformations. The first objective of the thesis was to understand this approach. Next, an effort
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to leave the scope of the ferromagnetic Hamiltonian was made by reading and understanding the
approach made by [BKL83|, where the author used Pirogov-Sinai theory and estimates on the par-
tition function to give the uniform bound to the surface tension with the less restrictive hypothesis
of Pirogov-Sinai theory (although the existence of the limit is not discussed).

The thesis is divided into two chapters, each dedicated to the exploration of one of the referenced
papers. The initial chapter is specifically centered on the examination of
[GHMMS77| and comprises of the following parts:

e Section 1.1.1 lays the groundwork by introducing and defining the fundamental concepts of
rigorous statistical mechanics, used for the entire thesis. Drawing mainly from [FV17], section
1.1 introduces the measurable spaces in which the Gibbs measures are defined upon and ends
with the notion of a local function.

Building upon the groundwork laid in the preceding section, section 1.1.2 introduces interac-
tions and their associated Hamiltonians. Various models are provided as concrete examples,
including a long-range model for greater generality. Concepts such as the finite volume Gibbs
measures, partition function and pressure are defined.

In Section 1.1.3, the focus shifts to the study of infinite volume Gibbs measures. Following the
definition of a specification, we present these measures as a class that is compatible, in the
sense of definition 1.10, with the specification defined by the finite volume Gibbs measures.
Furthermore, critical temperatures and thermodynamical limits are discussed.

e Section 1.2.1 introduces the basic terminology of Pirogov-Sinai theory. Within this context the
assumptions of the theory are discussed and perturbed Hamiltonians are introduced. Contour
models are defined as probability measures on contours with some fixed boundary condition
and their relation to a fixed model is given in proposition 1.18.

In Section 1.2.2, the central theme of the thesis, surface tension, is motivated and discussed.
It is conceptualized as the contribution to the free energy per unit of area arising from the
presence of an interface that separates two coexisting phases. Notably, this interface is localized
at sufficiently low temperatures in certain models, and the surface tension quantifies the free
energy associated with this localized interface. It is expected to be zero below the spontaneous
magnetization range and positive otherwise, and we point that it is indeed the case for the
Ising model. A general formula for the surface tension is derived, encompassing the special
case of Ising-like models, which is the one used in Chapter 2.

The main theorem of Chapter 1 is proved in section 1.2.3 and it consists of the fact that the
surface tension between two ground states is strictly positive given that the ground states are
dominant, as in corollary 1.19, and given that the defining limit exists (although its existence
is not discussed). This result is established through the theoretical framework developed
throughout the entirety of Chapter 1.

Chapter 2 is dedicated to establishing the existence of surface tension in ferromagnetic systems.
To achieve this result, the chapter is split in several sections.

e In section 2.1 we define a group structure on the configuration space 2 suitable for ferromag-
netic systems and we study some of its properties, primarily referencing
[GHM77]. We then proceed to rewrite the partition function with + boundary conditions
in two distinct ways with the help of some distinguished subgroups of 2.

e Building on the observed similarities in the expressions of the partition function, Section 2.2
introduces the duality transformation between two models in a natural manner. Emphasis is
then given to derive the relations between the ratio of the partition functions and between
the correlation functions. Following the approach of [MG72|, Section 2.2.1 presents a general
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approach to constructing dual systems for finite A, with three illustrative examples. In prepa-
ration for the main theorem of the chapter, Section 2.2.2 discusses the definition of duality in
infinite systems.

Finally, in section 2.3 we show that the limit defining the surface tension is uniformly bounded
above by some positive constant and prove that the limit exists using a superadditivity argu-
ment.
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Chapter 1

Statistical Mechanics on the Lattice

1.1 Initial Considerations

1.1.1 Configuration Space

Configurations in classical lattice statistical mechanics are defined by first specifying a spin state
space together with a a-priori measure po. This is a Polish probability space (E, 1) whose elements
of E are the possible values the individual spins can attain and pg represents the probability of
finding each of those values when the spin is isolated, that is, assuming it does not interact with
any other spins. We will give three examples.

e B ¥ {=1,1} corresponds to the case where spins can only admit "up" or "down" states,

represented by —1 and 1 respectively;

e« EL {1,2,...,n} corresponds to a generalization of the state space defined above, where spins

can attain n distinct possible values;

o £ ¥ S" 1 which are associated with the O(n) models. Note that for n = 1 we recover the

first example, but for all n > 2 the state space is of continuum spin values. The O(2) model
is known as the XY model and O(3) is known as Heisenberg model.

Given our initial data (F, y19), the configuration space of the d-dimensional lattice is € & g2,
If we agree that each vertex of Z% represents a particle with spin values given by the elements of
E, then a configuration can be seen as a function o : Z¢ — E assigning to each particle some spin
value. Similarly we define the configurations inside some set S C Z% as Qg < ES. If the set is finite,
we adopt the notation S € Z?. The models correspond to a choice of (E, jig) together with a local
Hamiltonian, to be defined shortly.

Consider a finite subset A € Z% and some family of configurations inside A, say, A C Q4. The
event "some configuration of A is seen inside A" can be written as IT,'(A) = {w € Q : wp € A},

where
II, : Q — QA

W — WA

is the canonical projection. In general, we say that some collection of configurations Hxl(A),
for A € Z4 and A € P(Q,) is a cylinder with base A. Here, 2(X) and ;(X) will always denote
the power set of X and Z7¢(X) denotes the collection of all finite subsets of X.

For example, the set {w € Q : wg = —1} may be written as Hgol (A), where A consists of the
configuration admitting —1 at the origin, and hence is a cylinder. '}he collection of all cylinders
with base A is defined by

O (A): A e 2(0),

5



6 STATISTICAL MECHANICS ON THE LATTICE 1.1

and has a structure of an algebra of sets. Moreover, for any S C Z% not necessarily finite, we
define the family

s = ]
AES
of local events inside S. By a local event (inside S), we mean any event depending only on
finitely many spins in S. This notion is better explained by proposition 1.2 below. The og-algebra
of local events in S is therefore .Fg & o(€s). In the special case S = Z% we use the notation
Fya = F and €ya = €. We remark that, as is easily seen, Fg C .Z for any S C Z¢, and hence any
Fg—measurable function is .# —measurable.

For any S C Z® not necessarily finite and for any A € S, consider the projection ﬁs, A Qs — Qp
and define

Con = {Hgh(4) : Ae 2()},

= | G

AES

We always endow g with the o-algebra .Z¢ e o(%%). Note that the only difference between
the cylinder events € and € is the base space the configurations live in: .Z¢ is a o-algebra in Qg,
while .Zg is one in Q. With respect to these c—algebras, Ilg is measurable for every S C Z% and so
is the map (g X Qge, FL @ Fie) 3 (ws, Nge) — wsnge.

The next lemma will we useful for the subsequent proposition:

Lemma 1.1 (Doob-Dynkin’s Lemma). Let Q1,89 be two measurable spaces and consider maps
f:Q1 > Randg: Q1 — Qo. If f is measurable with respect to the o-algebra generated by g then
there is some measurable map ¢ : Qo — R such that f = pog.

Proof. In short, f contains all measurable-theoretic information about g, so it must be a measurable
function of g. For a proof, see Lemma 1.13 of [Kal21]. O

The following proposition characterizes .#g—measurability:

Proposition 1.2. A function g : Q@ — R is Fg-measurable if and only if there is a F§-measurable
function ¢ : Qg — R such that g(w) = p(wg) for every w € Q.

Proof. First, we will prove that #g = o(Ilg). Since IIg is measurable, we already have o(Ilg) C Fg.
For the other inclusion, note that any event of % is of the form IT,'(A), for some A € Z(Qy)
and A € S, and we may write IT,* (A) = Hgl(Hg,k(A)) € o(Ilg). Therefore €s C o(Ilg) and hence
Fg C o(llg), completing the proof that o(Ilg) = Fg. By Doob-Dynkin’s Lemma, there exists a
Z-measurable ¢ : Qg — R such that g = ¢ o Ilg. O

The next corollary formalizes the notion that events on .%g depend only on finitely many spins
inside S:

Corollary 1.3. Given A € Z%, the following two conditions are equivalent:
1. g:Q — R is Fp-measurable;
2. For any two configurations w,® € §2, then g(w) = g(@) if wan = Wx.

Proof. (1) = (2): Suppose g : @ — R is #j-measurable. By Proposition 1.2, there is some
¢ : Qp — R such that g(w) = p(wa). Hence, if wy = @p, we have g(w) = @(wp) = p(@r) = g(@).

(2) = (1): If condition (2) is met, then the image of g is finite and consists of Im(g) =
{g(wp) : wp € Qp}. Therefore, one may write
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9= Z 9(M)Xr1 (fun )

WA EQA

Since each cylinder IT ' ({wp }) is .#x —measurable, then each characteristic function x : (2, %) —
R is #x-measurable. Since the summation above is finite and finite sums of measurable functions
is again measurable, then ¢ is . %, —measurable. O

A function g : © — R satisfying any of the two items of the previous corollary is called a A-local
function or simply local function if A is clear from the context. Item (2) of the previous corollary
is the main way of identifying if a given function is local, and item (1) is of importance when
one wishes to integrate local functions with measures defined on the measurable space (2,.%), the
theory of which we will explore shortly.

1.1.2 Interactions and Hamiltonians

Consider the set .#;(2) of all probability measures defined on the measurable space (€2,.7).
The expected value of any local function f : Q@ — R with respect to some p € #1(€Q) will be
denoted by (f), and we will omit the subscript when it is implicit by context. Moreover, given a
family of local functions (®4) 4ez4, called an interaction, we formally define the local Hamiltonian
A, : Q — R of this interaction with boundary condition n € 2, on A € Z%, by the quantity

W) E D Ba(wanae). (1.1)

A€zd
ANA£D

Note that there is no guarantee that the sum above converges with no extra conditions on the
interactions. However, we note that

Y@ <) [|@all, (1.2)

zeEN Acz?
A>dzx

where ||® 4] & sup, e, |Pa(04)]. An interaction ® = (®4)4eza is called regular if the right-

hand side of 1.2 is finite for every x € Z%, which is enough to ensure convergence. As for examples,
we have

e (Long-range Ising model with polynomial decay). This model is defined by the interactions

®; (o) = Jlfi(;f?’ i # 7, and zero otherwise, where J > 0 and o > d. Denoting [n] &

{1,2,...,n}, we note that

d

2 (fia] + - +|2d| ]Z: Z 2 Z (liky [ + - +\Zk\)

0#4i€Zd ik, 70
X= {k‘h kit \ik, €2 zk]eZ

e

d_oj 27 1
DS Z > —Z T Z > 2=
= Xl =1 i1 (k) (i, xcld \n>1"
X={k1,...k;} |X =4

SO <

J=1
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where in the first line we decomposed the sum over all non-zero i € Z% into sums where
each chosen j-uple (k1,...,k;) of coordinate indexes of 7 is non-zero and the others are null,
then summed over all choices X C [d], X = {ki,...,k;} of those coordinate indexes, in the
second line we used the AM-GM (Arithmetic-Geometric) inequality and ¢ is the Riemann
zeta function.

Since o > d, ¢ (%) is finite, and one can show that the regularity condition fails for all o < d.
Here, J controls the amount of energy the alignment (or disalignment) of spins yield and «
regulates the strength of the interactions. An external magnetic field may be added, which is
a function h : Z% — R. For non-zero external fields, we can consider an additional interaction
(®;);eza given by ®;(0) = —Jo;h;. The Hamiltonian is then given by

JZ O'iO'.j Z 0-7,77] _Jzaz . (13)

a
ZGA ‘7‘ €A
JEA ]EAC

e (Short-range multi-body Ising models). Given some fixed A C Z¢, the non-zero interactions
of this model are given by ®4(0) & _ Juo4 and its translations Dpip(0) = —Jg0 a4, for
x € Z%. Moreover, we assume J4 > 0 for every A and o4 o [L;c4 0i is the product of spins
inside A. External magnetic fields can also be considered, just as in the last example. Since
only finitely many translates of A contain a single vertex of Z%, the interactions are regular.
The Hamiltonian is, then,

f%i\n,h(d) =—-J Z JAO'AQA’UAQAC —J Z O‘ihi (1.4)
ANA#£D i€Z4
e (O(n) models). The interactions of the long-range models with polynomial decay are given
by ®; (o) = —J ﬁi?‘ﬁ, where J > 0 and a > d as before, and - denotes the usual euclidean
1
scalar product of R%. By the Cauchy-Schwarz inequality, |o; - oj] <1 for all i # j, so that
the regularity follows in the same way as for the long-range Ising model. The first-neighbor
variant is defined by ®; (o) & Jo; - o; for all pairs 4, j with |i — j|1 = 1 and zero otherwise.
With an external magnetic field, the Hamiltonians are given by, respectively,

JZ ‘a —~ (1.5)
zEA —J 1€EA
JEA ]EAC
U):_ngi'aj_JZUi‘nj_Jzaihi- (1.6)
€A 1EA 1€EA
JEA JEAC

One of the main objects' of Statistical Mechanics is the partition function zZ) 5 with inverse
temperature 3 associated with an interaction. With respect to the a-priori measure pyg, it is defined

by

205 [ PR i ), (1.7)
A

where we define ué\ = @ica Mo as the product measure of the single spin measure pg. Of course,
if there is an external field then one may insert it as an argument for the partition function. An
important associated quantity is the pressure, defined by

! Apart from being used to derive important thermodynamic quantities like free energy and entropy, the partition
function plays a central role in the expression for the Gibbs measures, which give the appropriate probabilities of
finding given configurations of spins. In fact, the partition function is the normalization factor for those measures.
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def

1
h) = lim ——logZ] 5,, 1.8
Y(B, h) Aza A € LA B,k (1.8)
and it is possible to show that this quantity exists for all sequence of boxes converging to Z? in the
sense of van Hove (for example, the sequence A, S [—n, n]¢NZ4 satisfies the van Hove convergence
property), which is defined below:

Definition 1.4 (Convergence in the sense of van Hove). A sequence of subsets (Ap)n>1 of Z¢
converges to Z¢ in the sense of Van Howe if the conditions below are satisfied:

e The sequence is crescent, that is, Ay, C Ap1q for everyn > 1;

e The sequence invades®; Z% in the sense that U A, = VAR
n>1

o The limit lim 12Anl

18 zero.
n—oo |Anl

Moreover, the limit is independent of the choice of boxes and of the boundary condition, where
we also assume a regular interaction. For a proof, see [Isr79].

A class of important measures on .#(f2) are the finite volume Gibbs measures

o =873 (@nnne) B
i y(A) / La(wame) e N (duon) = / O ) (dw),  (19)
' Qa Zz A Zyg

for all A € .7, fo : Qp — Q is given by fa(wy) &t wanAe and fA*(;Lé\) is the push-forward
measure of 1} by f. Note that, by definition 1.9 and the definition of the Radon-Nikodym derivative
we have

d“?\”@’ e_ﬁjflg(w)

dfn. (i) Zigs

Given a finite volume Gibbs measure p} 5> the expectation value of a given local function
g : 2 — Ris denoted by (g)} 5. Note that we have

dp
n o _ T - B g . A 1.10
ko= [ otk = | o tosdin. i) (1.10)
e~ By (W) A e~ BAY (wanae) A
_ / ) (i) () = / glwonme) N (o). (1.11)
Q ZA,B QA ZA,B

In the special case of a finite spin values and pg uniform, this yields

—BAY (wanac)
W= D glwame) —m—. (1.12)
WAEQA AB
The finite volume Gibbs measures give the appropriate probability distribution of configurations
wp € Q. The infinite volume analogue of these measures should be, intuitively, be taken as some
sort of thermodynamic limit of the finite volume measures (F‘Xn 5)n21, where A,, 7 Z% converges
in the sense of van Hove, so that we get a measure capable of giving those probabilities for configu-
rations w € ). We will provide a construction of the infinite volume Gibbs measures which reflects
this desired limiting definition as a theorem.
Before the introduce the infinite volume Gibbs measures, however, we shall note some properties
of the finite-volume Gibbs measures. The first one is the following compatibility condition:

2The notation A, ya 7% will be used if the sequence (An)n>1 is crescent and invades 7.
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Lemma 1.5. Given A, A € Z¢ such that A C A, then for any bounded and local function f :  — R
one has the following compatibility condition:

(A= UHUT 4

Proof. We will start with the right-hand side and work our way to the left-hand side of the equality.
By definition of expectation with respect to the finite Gibbs measures, one has

e~ BAn(wanac)

(NERs= D NP (1.13)
(JJAEQA A7ﬂ
—BIN (wW\w c
<f wA77AC _ Z f( wWhw ) pAACawmanse) (1.14)
A A\AT]AC ZUJA’nAc ° :
wAEQA AB

On equation 1.13, we can use equation 1.14 and replace wy = wawp\a and sum over wa and
wa\a- The result is

e PAN(Wrwa\aTAC) o—BHN(WawA\ANAC)

(DRahe= 2 > X Swhumam) gz Zn . (115)
AB

WA ENA WA\AEQA\A w’AGQA AB

We now observe that

S (wawpalae) — Ha(wawpanae) = Y Palwawpanae) = Y Palwawnanae) (1.16)

AczZ4 A€z
ANA£D ANA£D

= ) Palwawnaia) (1.17)

Aez?
AN(A\A)£2
ANA=>

Note that every term ®4 is an A-local function, and hence depends only on the spins inside
A (see corollary 1.3), which is disjoint of A. Therefore, the values of wa are irrelevant for the left
hand side in 1.16 and we may interchange wa with w/y. The end result is

HN(Wawa\ATIA) — HA(WAWA\ATIAC) = HA(WAWN\ATIAC) — HA(WAWA\ ATIAC)-

Rearranging the above equation, alternatively one has

HA(WAWA\ATAC) + HA (WAWA\ATIAC) = HA(WAWN\ATIAC) + H4 (Wawp\ ATIAC)- (1.18)

Substituting this result in the last equation of 1.15, we finally get

—BAN(wawp\aTAC) o= BHAN(WawA\ATIAC)

) e
W= 2 X X fhwnam)—zme 7
WAEQRA ‘-‘)A\AGQA\A W/AEQA AB A,B
—BHAA(wawA\ATIAC) e~ BAN(Wawa\aTAC)

= Z Z Z = ZWAWAC f(wlAwA\AnAc) Zn
AB A,B

wAAEQA\A WL EQA \WAEQA )

6 BfA(wAnAC)

Z f( WM?AC Zn = <f>7\7ﬂ7

UJAEQA
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o / /
where we have made the substitution wy\awx = wjy.

Before we state the next Lemma, we’ll need two definitions.

Definition 1.6 (7 and A systems). Let £ C Z(Q) be any non-empty collection of subsets of a
measurable space . Then

o & is a m-system if is closed under finite intersections;

o £ is a A-system if it is closed under countable disjoint unions, complements and if Q € £.

The A\-system generated by £, that is, the intersection of all A-systems containing &, is denoted
by §(E).

Theorem 1.7 (Dynkin’s 7 — A theorem). If &€ C Z(Q) is a w-system, then o(E) = §(E).
Proof. See theorem 1.19 of [Klel4]. O
The properties of the finite volume Gibbs measures we are going to use are following:

Lemma 1.8. Let A € Z¢ be any. Then:

1. For any n € Q, the map F > A — ,U,KB(A) € R is a measure on (2,.%), and moreover if
B € Fpc then ,uj{’ﬁ(B) =15(n);

2. For any A € F, the map Q > n— p} ﬁ(A) € R is Fpc-measurable;

3. For any two finite sets A, A € Z such that A C A, the consistency condition given by lemma
1.5 is satisfied.

Proof. 1. The first affirmation is straightforward. Let Z be the set of all B C  such that
wA 5(B) =1p(n). Note that 2 is a A-system: trivially @ € &, now if (Bp)n>1 is a collection
of disjoint sets of 2 all belonging to %, then

oo
“Xﬁ(U > Z“A/B ZﬂBn ) =Ty, B, (n).

n=1

— Un:an € f%

Finally, if B € % then:

i 5(B) =1p(n) = 1—u} 4(B)=1-15(n)

= ip 5(BY) =1pe(n) = B € %.

Moreover, % contains all union of cylinders of Gpc : given 51, ..., S, € Aand Ay, ..., A;, ..., Ay €
P(Qs,), wehave Iyn 14, (Wanae) = maxi<icn{La, (s, (Wanae)) } = maxi<i<n{l4;(ns,)}-

Hence
—BAY (wanae)
— [ A
A (U g (A)) = ) ——r—— max {14, (ns,)} = max {T4,(ns,)}
wAEQ A
N 1@?31{]1 5 Han (M} = ]luyzlngil(Ai)(Tl)-

Therefore, €re C HB. Since Gpc is a m-system, the conclusion follows from Dynkin’s w-A
theorem.
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2. Let A € .Z be fixed. Note that each map 1 +— ®4(wanac), with A € Z? is A N A°—local: if
NAnAc = TAnAe then (Wanac) A = WANANANA = WANATIANAe = (WATAc) 4. Since P 4 is A-local,
we get P 4(wpanpe) = Pa(wanace), finishing the proof of A N Ac-locality. Since |A N A€ < oo,
we may use corollary 1.3 to get that n — ®4(wanac) is Fanac-measurable and hence Fpe-
measurable.

Now, the map 1 — %’j\” (wamae) can be expressed as a convergent pointwise limit of par-
tial sums of the corresponding maps for the ®4. Since finite sums of ®4’s are again Fpec-

measurable and pointwise limits of measurable functions are measurable, we get .%#c-measurability

—BA (wanpC)
z
N+ La(wanae) (for fixed wy), it can be written as a composition

e

for the map above. Hence, the map n — is Fpc-measurable. As for the map

N = Nae = (WA, MAe) = WanAe = XA(wWAnAe)

(©Q,.F) = (A, Fp) = (W X e, i © Fpe) = (A, F) 2 R
All the maps above are measurable. This ensures that

6_5%/{7 (WAnAC )

1 a(wanae)
Z} s

n— M?\,ﬁ(A) = Z

BINS N
is a sum of .#c—measurable maps, and hence .%c-measurable.

3. Already proven.

1.1.3 DLR Equations and Gibbs States

The conditions on lemma 1.8 can be generalized by the following definition:

Definition 1.9. Let A € Z¢ be any. A map 75 : F x Q — [0,1] is called a probability kernel from
Fae to F if the following properties are satisfied:

1. For every w € Q, the map A — wp(A|w) is a probability measure on (0, F);
2. For every A € F, the map w — mA(A|w) is Fac-measurable.

If moreover mp(Alw) = 14(w) for all A € Fpe and w € Q, then the kernel is called proper.

If a probability kernel 7 is proper, then the measure 7 (+|n7) depends only on the configurations
in Q) = {w € Q:wpe = nac} up to a null set. In fact, since Q) € Fpe, then 77 (Q}|n) = 1. The
composition of two probability kernels is defined by the formula

(ama) (Aln) = [ ma(Alo)malditn) = (A (A sy(ia

Definition 1.10. A specification is a family of probability kernels m = (mp)agza satisfying the
compatibility condition:

TATA = TA,

for every A, A € Z¢ such that A C A. Moreover, a probability measure u € .#,() is compatible
with the specification 7 if the condition

PN = fu

holds for all A €@ Z2, where pm is the measure given by (ump)(A) < Joma(A,w)u(dw). The set of
all such measures is called 4 ().
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def

By Lemma 1.5, the family mp g(Aln) = ;/j\ﬁ(A) defines a specification, called Gibbsian specifica-
tion. A measure p € .#1(Q2) compatible with the Gibbsian specification is called an infinite-volume
Gibbs measure.

As we already know, the finite volume Gibbs measures giving rise to the Gibbsian specification
are dependent on a Hamiltonian. This Hamiltonian is itself dependent on a choice of interactions
® = (Pp)peza- Hence, the Gibbsian specification is denoted by ﬂ'g) = (Trj{\)ﬁ)A@Zd, and we also put
G3(®) = G (nh).

It can be shown (see [FV17]) that p is compatible with a specification 7 if, and only if the
conditional expectation of y with respect to %ac equals my, that is,

p(A[Fpe) () = ma(Al-).

In this sense, a specification can be understood as a prescription of conditional expectations
outside of every finite box A and the DLR (Dobrushin-Lanford-Ruelle) equations pumy g = p for p
translate to the usual invariance property for conditional expectations.

An equivalent way of expressing infinite volume Gibbs measures is by the notion of thermody-
namical limit. For this, consider the weak* limits

n def

pp = w* — lim g g, (1.19)

n—0o0

whenever they exist, where n € Q is a boundary condition and the sequence (A,,)p>1 invades ze.

From now on, the fact that a sequence A,, invades Z¢ will be denoted by A,, ,* Z%. The weak* limits

in equation 1.19 mean, by definition, that lim fQ fd;/]\ s exists for every continuous f : 2 — R
d that B N

an a

no_ 7 n
/Qfduﬁ = nlggo/ﬂfdmmﬁ
for all such f. These will be called phases associated with the boundary condition 7, whenever the

limit exists. It can be proven that these thermodynamical limits coincide with the DLR measures
in the sense of the next theorem.

Theorem 1.11. For all B > 0 and regular interactions (Pa) qeze¢ one has

G3(P) = E{,ug Dy = w' — li_>m [y, g>1 € Q and A, Zd}, (1.20)
n o0 ny

where the finite volume Gibbs measures Nzg are defined with respect to the interaction ® and
‘co means the closed convex hull.

For a proof, see [Sim93|.

For Ising-like models we define the critical inverse temperature as . <= inf{3 : m*(8) > 0},

where we set m*(53) o <O'Q>EO as the spontaneous magnetization. By definition, 3. is the unique
value for which m*(8) = 0 for all 8 < 8. and m*(3) > 0 for 8 > B,. It can be shown that |93(®)| =1
if, and only if A = 0 and m*(5) = 0, so the spontaneous magnetization m*(f) can detect phase
transitions.

As a consequence of this fact and restricting only to the first neighbours Ising model, since
there is no phase transition for the one dimensional case, then at the critical inverse temperature
B. we have m*(3.) = 0. For the two dimensional case, [Yan52| proved an explicit formula for the
spontaneous magnetization, which also shows m*(8.) = 0 for d = 2. Corollary 1.5 of [ADCS14]| also
proves this result both for the short-range case and long-range in the regularity region o > d for
d > 3 and for the one-dimensional long-range model for 1 < a < 2.
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For d =1 and a = 2, [ACCNSS]| proved that m*(5.) > 0, even though it is again zero for o > 2
since there is no phase transition for this region (see [Rue68]).

1.2 Pirogov-Sinai Theory

S. Pirogov and Y. Sinai developed their theory (see for example [PS75] and its continuation
[PS76]) as an extension to the classical Peierls argument - an argument to show phase transition
for the Ising model - but not requiring any symmetries for the Hamiltonian, like the Ising model
has. The theory is also robust enough to give some information regarding phase diagrams and
their evolution with the temperature, which we will say more below. Although we will not make
use of these specific results from Pirogov Sinai theory, their treatise of contour models will be of
importance, which we explore in the next section. For now, we will give a basic exposition of the
core concepts of the theory.

As initial data, we consider a finite spin system with single spin state space given by E =
{1,2,...,n}, anumber 1 < r < n labeling the ground states (to be defined just below) of the system
and a model with those ground states specified by a short range interaction ® = (®4)4eza. The
starting point of the theory is the determination of the periodic ground states of the system, which
we now define.

Definition 1.12. Two configurations w,& are said to be equal at infinity if there is a finite set
A €@ Z% such that wae = GOpe and we write w = @ if this is the case. The relative Hamiltonian
H(w|@) between two configurations such that w = & is defined by

H(w|@) €Y {Da(w) — 2a(@)}-
A€zd

Note that the quantity above is well defined for short range systems. A ground state of the model
is some configuration n € Q such that 7 (w|n) > 0, for all w = 1n. A ground state n is periodic in
the direction ey, if there is a number ly, such that nite.e, = ni, for every i € 74, and the period in
this direction is the smallest such €. Finally, a configuration n is periodic if it is periodic in every
direction, and its period is the smallest coordinate-wise vector ({1, ...,4q) making the configuration
periodic. The set of all periodic configurations is denoted by QP" and the set of ground states (resp.
periodic ground states) is denoted by g(®) (resp. gPe"(P)).

The relative Hamiltonian measures the difference of global energy (that is, summing over all
interactions not necessarily intersecting some finite box A) between two configurations. Of course,
there is no hope for this energy difference to converge to a finite number in the general case, but
it does converge if both configurations are equal at infinity and the interactions are of short-range
type. If this is the case, then referring to the energy difference intuition we get that a ground state
is a configuration that minimizes the energy of the system if local changes (i.e, changes made in a
finite region) are made to it. In other words, 7 is a ground state if the energy of 7 is less or equal
than the energy of w for every configuration w differing from 7 only in a finite region.

We define the energy density e : QP°" — R, by

def 4. 1
e(w) = lim — 4 (w). 1.21
(@) lim, 21 (1.21)
It is then a result (see [FV17]|, chapter 7) that a periodic configuration 7 is a periodic ground
state if, and only if e(n) = inf,ecqper e(w). This means that a periodic configuration is a ground
state if, and only if it minimizes the energy density of the system. This result is compatible and
should be compared with the local minimizing configuration intuition for the ground states above.

For example, for the two dimensional Ising model with no external field, if a configuration w
is not identically equal to + or —, then there is at least two neighboring points ig, jo such that
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wi, # wj, and hence wj,wj, = —1. Let A; denote the box of sizes ({1,¢2), where ¢; are periods
of w chosen big enough so that ig, jo € A;. This defines a tessellation of Z? with tilings given by
translates of Ay, where the configuration repeats itself inside each copy of A;. We define a sequence
(Ap)n>1 of boxes invading 72 by the procedure shown in the next figure:

A | > A —> Ay

o
A3

Figure 1.1: Construction of the sequence A, . Note that Ao consists of 8 neighbouring copies of Ay sur-
rounding it, Az is given by gluing extra translations of A1 on the boundary of Ay and so on.

In this way, there are (2i —1)2 copies of A; in A;, and in special at least (2i — 1)? first neighbors
with different spins in A;. Since |A;| = (2i — 1)?|A1], then:

1 1
e(w) = lim — 4, (w) = —J lim — 0,0, = —J lim —(2i — 1 0x0
i—00 \A | i—oo |Ay] m,yze:AZ i—oo |Ay] yze:A
> J > 1> Z —+e(il) (1.22)
\A1| i—o0 |A | i—00 ]A | |Aq]

T, yEN; yeEA

where 3" means that the sum is over all first neighbors 4, j minus the translations of ig, jo present
in each tiling of A; inside of A;. This implies that e(w) > e(41), so the only possibilities for periodic
ground states are the configurations either equal to +1 or —1. These are indeed ground states, since
for every w = 41 one has

Hwlxl)= > (~wwi+1)= >  (1-ww;)>0,
{i,j}ycz? {i,j}cz?
so in this case gP*"(®) = {+1,—1}. The condition of a model having only finitely many periodic
ground states is one of the requirements of Pirogov-Sinai theory. The full requirements are:

1 @40 (Th(w)) = Ba(w), for all z € Z4, where A4z % {a+z:a € A} and (Tp(w)) (i) = wi_y;
2. The interactions are of short range type;

3. 0 < [gP"(D)| < o0, i.e, there are finitely many ground states.

The first condition is usually expressed by saying that the interactions are translation invariant.
Note that we can always normalize the interactions by some ground state by defining new interac-
tions @ 4(w) & d4(w) — D4(n), with n € gP(P). Since the definition of ground state takes only
into account differences between interactions, the ground states of the model ® are the same as of
the model ®. In this new model we have ‘:DA(TI) =0, for every A € Z¢, implying that eg(n) =0
and hence all periodic ground states also have zero energy density. To summarize, one can always
assume in Pirogov-Sinai theory that all periodic ground state have zero energy density.
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If the conditions above are satisfied and the interactions are all non-negative, then n € QP is a
ground state if, and only if ®4(n) = 0, for all A € Z¢. To see this, assume for simplicity that d = 2
and that 7 is a ground state. Choose the sequence of boxes A; defined by neighboring translates
of Ay = (41,/2), where ¢; are the periods of 7, just like in the development leading to equation
1.22. Now, if there was some A € Z? such that ®4(n) > 0, then by translation invariance and the

periodicity of n there would be at least Ilj\\ill other sets A € A such that ®4(n) > 0, where ¢ is

large enough to contain A. Moreover, by Lemma 1.13 the positivity of those ® 4(n) yields a uniform
bound ® (1) > c over all A € Z? such that ®4(n) > 0. Hence

P > .
Z A(77) |A1|

However, recall that there is no loss of generality in assuming that all periodic ground states
have zero energy density. By definition of the energy density, this implies that for all large enough

Cc Az
AEN; !

a contradiction. Therefore, the only possibility is to have ®4(n) = 0, for all A € Z2. If now
®4(n) =0 for all A € Z?, then for all w = 5 we have

Al = Y daw) 20,

AE€z4

since the interactions are all non-negative. Note that the expression above is also finite, since
w =7 and ®4(n) = 0 for all A € Z%. Therefore, by re-defining the interactions, we see that there
is no loss of generality to assume the following conditions in Pirogov-Sinai theory:

e 4 >0,forall A e Zd;
e The interactions are translation invariant;

e The interactions are of short range type;

0 < [gP"(®)| < o0, i.e, there are finitely many ground states;

e 1) € QP is a ground state if, and only if ®4(n) = 0, for all A € Z%.

These hypothesis are enough to prove, for example, the following result:

Lemma 1.13. If the conditions of Pirogov-Sinai theory above are satisfied, then there is a constant
¢ > 0 such that all configurations w and interactions ® 4 satisfying @ a(w) > 0 also satisfy P a(w) >
c.

Proof. Let R > 0 be the radius of the short-range interactions. If we consider the box Ag := [0, R]?,
then every A € Z? such that |A| < R is a translation of some subset of Ag.

Fixing ¢ := mingca: mig ® 4(wy), then ¢ is a minimum of finitely many positive real numbers
D >0 wAESA
and therefore is positive. By the last observation, any non-zero potential ¢ 4 can be translated to

another potential ® 4+ with A" C Ar. Then ® 4(w) = Pa/(was) > c. O

Let us now show how the re-definition of the interactions take place in the nearest neighbour
Ising model (with empty boundary conditions) and with external field h. First, since we are working
with translation invariant interactions, the external field must be constant everywhere and equal to
some real number h. To get the Hamiltonian in the desired form, we will normalize it in the o =1
ground state, as follows:
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Fp(0) = — Z Jogoy — hZO'z = A\ n(oy) — HAp(oy) — Z Jogoy — hZO'x
{z,y}CA zeA {z,y}CA zeA
|lz—y|=1 lz—y|=1

= pn(04)+J Z {I—Uxay}—i-hZ{l—J;E}
{z,y}CA xEA
|lz—y|=1
= %\7}1(04_) +2J Z ﬂ{aﬁéay} + 2h Z ]l{o-z;ﬁl}.
{z,y}CA €A
|lz—y|=1

Note that the new interactions are now non-negative. To simplify the discussions up to the end of
this section, we will assume that the ground states of the unperturbed Hamiltonian are the constant
configurations o, = i, for 1 < ¢ < r and that the support A of every non-zero interaction ® 4 has
cardinality bounded by p. As we argued before, there is a constant ¢ > 0 such that, uniformly in
A and in w, ®4(w) > ¢ whenever ®4 is strictly positive. Since this happens if and only if w is not
equal to some ground state 1,2, ...,r, then ®4(w) > ¢ if w is not equal to some ground state in A.

Let n be such that the single spin state space is given by {1,2,...,n} and let £ : {1,2,....,n} - R
be a function satisfying

c
E(0) 1r§r}€1£1nE(k:) =% and 1r§n/~cH§1rE(k) 0, (1.23)

for £ =1,2,...,r. Of course, every r—uple pu = (1, ..., itr) is sufficient to define some such function
by setting E(i) = j; (and the other values can be chosen as to satisfy condition 1.23), from which
we define the perturbed Hamiltonian by

S p(w) = A (w) + > Elw). (1.24)

z€EA

This new perturbed Hamiltonian has as new interactions the ones from the unperturbed Hamil-
tonian plus the new external fields ®,(w) = E(w,), and we denote this new set of interactions by

®,,. For every ground state i and any w = different from i we let B denote the smallest region
where wge = igc. Then

H(wli) =Y @a(w) + Y {E(ws) — E()}

AEB reB
zc\{A@B:wA#i}|—%\{x€3:wx7§i}|.

Note that

D Tzt SO Mz < DD Lz

zeEB AEBzeA AEBzeA
=D Moz D 1= D LuartlA <0 Y Doy,
AEB z€EA AEB AEB

where, for clarification, 1y,,.; equals 1 if all spins inside A are different from ¢ and zero otherwise.
This implies that [{A €@ B : w4 # i}| > % and, in special,

Aoy (wli) > i\{xGB:wx#iH > 0. (1.25)

Hence, the relative energy of a periodic configuration w in relation to a ground state ¢ grows with
the amount of points different to the ground state. Moreover, this result implies that the periodic
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ground states of the unperturbed Hamiltonian are still periodic ground states of the perturbed
Hamiltonian, i.e, g°?*"(®) C gP*"(P,). Therefore, one can add a small perturbation u = (u1, ..., tin)
of the magnetic field without removing any unperturbed ground states from the new system. One
of the main results of Pirogov-Sinai theory is that the phase diagram - that is, a plot describing the
phase distribution for the perturbed system- has a particular shape at low temperatures. To better
explain the phase diagram, let us define the parameter space G, by

def

Ge = {p=(u1, o)+ min g5 =0 and |p| = max || < e} (1.26)
Then, for all sufficiently small ¢ > 0 and all big enough 3 > 0:

1. There is an r-dimensional bounded hypersurface v, C G¢ for each ¢; € {1,...,r}, where all
phases® uf with v € ~,, satisfy ¢ = qi;

2. There is an r — 1-dimensional bounded hypersurface 74 4, C Ge for each pair {qi,¢2} C
{1,...,r}, where all phases u} with ¢ € {q1,¢2} and v € 74 4, are distinct, i.e, the phases
q1, q2 coexist inside g, 405

In general,

3. There exists a r — k-dimensional bounded hypersurface y4 C G¢, k < r — 1 for each A C
{1,...,7} and |A| = k + 1, where all phases u7, with ¢ € {q1, ..., qx+1} and v € 4 are distinct,
i.e, the phases qi, ..., qx+1 coexist inside ~y4;

4. There exists a point 7 such that all phases uZ with ¢ € {1,2, ...,r} are distinct;
5. Finally, G, = UAC{1,2,...,r} YA-

Moreover, it can be shown that the boundary of some 4 consists of certain hypersurfaces
VB, ---, YB; Where the dimension of each vp, is one less than 4. The hypersurfaces v4 are known
as the coexistence hypersurfaces. The next figure illustrates the objects 1 - 5 given above.

B2\ N VA

Y+
)/_

Region 1and 3

Region 2

Region 2

Region 1 Region 3

|
|
|
|
|
|
€

<

0 f‘u 1

Figure 1.2: An example of a hypothetical model with two ground states (r = 2), + and —. The regions 1,2
and 3 describe the points where only one phase is present and the thick line represents the coexistence line
between both phases, where both phases are distinct.

3A phase in this context means an infinite volume Gibbs measure. Note that the choice of v is a choice of a
perturbative external magnetic field v = (u1, ..., ptr), which fixes a choice of local Hamiltonians (see 1.24).
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1.2.1 Contour Models

Here, we will work only on d = 2, but all the definitions and results naturally extend to higher
dimensions.

Definition 1.14. A contour is a pair v = (¥, 05), where 7 is a finite connected subset of 72 and
oy is a configuration with support equal to 5. Moreover, we denote 5 by sp(7).

Given any connected A € Z?2, there is exactly one unbounded connected component Ext(A) of
A€, which we call the exterior of A, and a finite number of connected components I;(A), ..., I,,(A4),
called the interiors of A, such that

A =Ext(A)ULi(A) U ... UL, (A4).

The next figure gives a visual representation of the exterior and the interior of a contour +:

Ext(y)
B S
:
+ +
+
i T
+ _—— - = — = +
+ o +
I ++++++ R T
+ ++++++ sp(y) - __ +
+ ++++4++ 0 |- __CC i
+ +++ |- +
t +++ I
i
+ I "—{Y) +
+ AR H
+
b + I 1
+ 1 1 +
I + R
s o mwar

Figure 1.3: In the figure, the interior of v is the union of I1(y) and I_(vy). The support is the blank region
surrounded by the spins on the boundary and the exterior is the unbounded connected component encircling
the 4+ strip.

Now, let A € Z? be any. We say that a point 2 € A is g-correct for a configuration o € Qp
if g € {1,2,...,7} and o, = ¢, for all y € Bi(x) (where the ball is taken in the ¢;-norm). A point
x € A is incorrect if it is not g-correct for some ¢ = 1,2, ...;r

Given a configuration o € §2), we can associate to it a family of contours in the following way:
first, denote by I'(c) the collection of all incorrect points of A. Then, split this set in its connected

components, which we call 7y, ...,7%,,. The contours are then ~; o (7:» o57)- Then,

Figure 1.4: The ¢{1—norm closed ball on the left has as center a + correct point, but all other points in the
ball are incorrect. As for the closed ball on the right, the center is now an incorrect point, but the point just
above it is now — correct.
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Lemma 1.15. The map Q5 3 0 — I'(0) is injective.

Proof. Since we already know the configuration in each sp(v;), it is enough to prove that the
configurations in each support uniquely specifies the configuration in I'(¢)¢. In fact, since I'(o)
contains all irregular points in A, then I'(0)¢ contains all g-regular points, with ¢ varying over
{1,2,...,r}. After splitting I'(0)€ in disjoint connected components, it follows that in each of these
connected components the spin is identically equal to g, for some ¢ = 1,2, ...,r. Indeed, given any
two points x1,x2 in one of those connected components, there is a path ¢ = (c1, ¢a, ..., ¢;) joining
the points, where ¢y = z1 and ¢, = x5. We note that x; is equal to some ¢ since it is g-correct and
that co € Bi(x1), so that we also have cg = q. After iterating this argument, we see that all points
of the path ¢ must carry a spin of ¢, including x,.

Now, we note that knowledge of the (inner) boundary points of sp(+;) uniquely determine
the configurations of the connected components of I'(¢)¢. In fact, first note that d™sp(y;) can be
decomposed in a disjoint union of arcs, and the configuration is constant in any of these arcs.
See figure 1.3 for an example (in that figure, there are three arcs, one surrounding each interior
I (7),I_(v) and one surrounding the support of the contour).

To justify this fact, pick any two points x, 7 in some connected arc of d™sp(v;) and choose points
x1,y1 both in some connected component, say, A, of I'(c)¢ such that |z; — x| =1 and |y; —y| = 1.
Now, the configuration in A is identically equal to some ¢ € {1,2,...,r} and since z € B;(x1) and
x1 is g-correct, we must have o, = ¢. Analogously we have o, = ¢, finishing this argument. Hence,
we see that the constant configuration in each connected arc of 9™sp(+y;) matches the configuration
of the corresponding neighboring connected component of I'(¢)¢, so the connected components of
['(0)¢ are determined by the configuration in op(,) and the injectivity follows.

O

Note that there can be contours inside the interior of other contours. In any case, given some
contour 7, the proof of the last lemma reveals that the boundary of Ext(vy) neighboring sp(vy) has
constant spin values ¢ € {1,2,...,r}. We then say that v has ¢g-boundary conditions and we write ¢
to indicate this fact. In the same way, the connected components of the interior of « are encircled by
arcs of constant spin values, so we label the interiors in components with constant neighboring spins
g and denote them by Lgl) (), ...,I(gn) (7). For example, the contour shown in 1.3 has + boundary
conditions and there are two connected components of the interior, which we denoted by I_(y) and
I (7).

The following picture illustrates a configuration o € Q25 and the corresponding family of contours
I'(0), together with the labels for the interiors and the individual contours.
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Figure 1.5: An example of a family of contours I'(c) = {~v1,7v2,73}, for some configuration o. Here, y1 and
~v3 have boundary condition —, while vo has boundary condition +. Note that it is possible, as is shown here,
for a contour to be inside the interior of some other contour.

If all contours in some family of contours I'(0) have the same label ¢, we indicate this family
by I'Y(¢) or simply I'? if the configuration is already known.
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Now, given a family of contours I' C A not intersecting the boundary, we say that I" is compatible
if there is some configuration o € Q4 such that I' = I'(0). Moreover, we denote by D(A) the family
of all compatible families of contours in A and Dy(A) the subset of D(A) where every family of
contours has ¢g-boundary conditions. Note that we have a bijection between Q4 and D(A) given by
o T'(o).

As figure 1.5 suggests, not every configuration gives rise to a family of contours with uniform
boundary condition, as two distinct contours in the family can have different boundary conditions.
We are now ready to define contour models.

Definition 1.16. Given q € {1,2,...,7} and a positive real number T, a function Fy : Dy(A) —
[0,4+00) is called a T-functional if both conditions below are satisfied:

o F,(I'7) > 7|I';

o F,(T'7+a) = F,(T'9), for every T9 € Dy(A) and every a € Z? such that T9 + a € D,(A) (i.e,
F, is translation-invariant).

The contour model associated to a T-functional Fy is the probability measure Py given on col-

lections T = {T'1, ..., T%} C Dy(A) by

PAL & <‘ b Fq(rz))

. (1.27)
> exp (— > Fq(Fq)>
(1)

TaCD, TI'ael’e

The normalization factor of the last definition is denoted by

QAU:F)E D exp |- Y F(IY)

9CDy(A) reere

Now, let C denote the collection of all maps x : Dy(A) — N and let .# denote the collection of
all maps ¢ : C — R. We formally define their product as the convolution

(1) (@) = > a(an)a(a), (1.28)

(z1,22)C¥
xr1+xTo=2

where addition in C is defined pointwise. For each ¢ € %, the product above lets us quickly define
their logarithm as

oo n+1

¢'(z) = (log ) (x =°Z (z), (1.29)

def

with ¢o(z) = ¢(x) if z # 0 and zero otherwise. Moreover, we define ¢ € .F as ¢ (]l{l"el"q})
exp(— > _raera Fy(I'?)) for compatible families I'? and zero for all other z € 7.

We introduce the notation z 3 0 to indicate that z(I') # 0 for some I' containing zero and we
agree that x C A (resp. xt N A # @, for some A C A) means that z(I') = 0 unless I' C A (resp.
I'N A # @). Then, we have the following.

Lemma 1.17. For all sufficiently large T, we have

> @™ ()] < exp(—er) (1.30)

30

for some positive constant c. In addition, the expression Q°(A : F;) = exp (Zch goT(:U)) holds,
and
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S(Fy) = lim 1

log Q°(A, F, 1.31
A/‘Zd |A| Og ( Q) ( )

converges in the sense of van Hove. Finally, if A(A : Fy) = og QO(A F,) — S(F,)|A|, then
IAA, Fy)| < exp(—cr)[oA].

For a proof, see [GMS]. We introduce the parametric contour statistical sum as

QCAF)E D exp |- Y FM) | exp|a| | 1@9]], (1.32)
DaC Dy (A) racra raere

where I(I'?) is the union of all interiors of the family I'?. Bounding | |J I(T'?)| < |A|, we see that
raere

QA : F,) <exp(alA)Q°(A : F). Defining

Z{ = exp(BpqlA) ZE, (1.33)
then we have (see Lemma 4.1 of [PS75])

Proposition 1.18. There exists € > 0 and [y < oo such that for all p and B such that |u| < €

and B > By there is a family of T—functionals {F, ..., F,} with T proportional to 5 and a constant
a € R such that for all g € {1,2,...,r}

Z/q\ = Q" (A : F,), where (1.34)

al(F)* = By — S(Fy) + a. (1.35)

This proposition relates the original partition function to a partition function of a parametric
contour model. As a corollary, we have

Corollary 1.19. If a9(Fy) =0, then for allp € {1,2,...,7}

Z/z{ —cT

—q <exp(2e”T|0A]), (1.36)
ZA

where ¢ is a constant not depending on 3.

Proof. Using the previous proposition and the bound after equation 1.32, we have

7 zy Q9 (A : F)
78 = PP = ) Zy = xp(- BNy — 10} o oy
0 .
< exp(- 1A, 1)) expl@(F)IAD o 1

Now, since a?(Fy) = 0, we have Su, = S(Fy;) — a, so that

P 0 .
7 < (A=, = o+ S + (B g
QA Fp)

= exp(|A{S(Fy) — S(Fp)})m-

Now, by definition of A(A : F,), we have Q0(A : F,) = exp(A(A : F,)) exp(S(F,)|A]), so that

4Remember that a choice of 7-functionals fixes the contour model, and hence a? (the parameter of the parametric
contour statistical sum) depends on the choice of T—functionals {F1, ..., Fr}.
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P

g{% < exp(A(A: Fy) — A(A: Fp)) < exp(JA(A: Fy)| + [A(A 2 Fp)]) < exp(2e™T[0A]),

as we wanted.

Ground states ¢ satisfying the equality a?(F;;) = 0 are called dominant ground states.

1.2.2 Surface Tension: Heuristics

Let us consider again the general setup of Pirogov-Sinai theory for the rest of this section. To
better understand the importance of the surface tension and the form of its definition in the general
case, we need to study boundary and interface effects induced by some specific boundary conditions
in our spin systems.

In fact, if we consider boundary conditions consisting of two phases sharing a common boundary,
then the appearance of interfaces happen. To simplify the notation, we will fix two boundary
conditions ¢p, g2 from now on and denote them by 1 and 2 respectively. The 1—boundary (resp.
2-boundary) of the box is the part of A having 1 (resp. 2) as boundary condition. A more practical
way to denote this boundary condition is to consider a family (n4) with fi a unit vector of R?, given
by:

. q1, ifi-n>0;
Na(i) =

q2, if otherwise.

Note that there are always two incorrect points z;(c), z,(c) for any configuration o € Q* with
respect to this boundary condition, corresponding to the line separating the different ground states.

Definition 1.20. An interface X is a connected contour, for some configuration o € Q" containing
both incorrect points x;(o) and x,(o) described above.

Every configuration with the prescribed boundary condition admits an interface. To simplify the
proof, we will assume that i = 0. Note that it is enough to show that there is a connected path of
incorrect points connecting z;(o) to x, (o). If this was not the case, then there would be a family of

correct points p = (21, X2, ..., T, ) such that x;_1, 2,41 € B'l"H"“ax (x;) for every i and connecting the
1 and 2-boundaries of A. This family may not be a path, however z; lies at maximum diagonally to
xi+1. Eoven in this case, it is easy to see that any such family p has constant sign, which is impossible
since 1 = 1 and z,, = 2 by the boundary condition.

We should expect three boundary-effect contributions to the finite volume free energy: two
corresponding to the interaction of the phase ¢ with the i-boundary and one term corresponding
to the interactions of both phases with the interface. Since there are different interfaces for each
configuration, we account this term by considering a linear interface, as the next figure shows.

Pl bt

[

T TR AR R A E
NI S = = e e

Figure 1.6: The figure on the left represents a typical interface. Here, V;(\) means the portion outside the
interface in contact with the i’th phase and I(\) are the interiors of the interface . In some models, as
the temperature diminishes the typical configurations contain localized interfaces, like the ones on the right.
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This choice of linear interface makes sense in models where this interface is localized, at least
in low enough temperatures. For the Ising model, one example of this localization is due to the
following theorem from [Dob73].

Theorem 1.21. For d > 3 there is a constant Bq > 0 such that for all 8 > Bq and all choices of
je{1,2,...,d}, a€Z and 1 = 0,1 there are Gibbs states Né’a,@ such that

. ,u(;.’a,ﬁ(ax =-1)>1-g(B), foralx € Z% with z; < a, and
o 1), 5(0n=1)<g(B), forallz e 74 with z; > a,

and

o 1,5(00=—1)>1—g(B), foralzeZ withx;>a, and
o M}’aﬁ(aw =1) < g(B), for allz € Z¢ with z; < a,

where g(B) = 0 as f — .

The last theorem implies that in dimensions d > 3 there can be a phase separation phenomenon
in the interface x; = a, where positive spins are located at one side of the plane and negative spins
are in the other half-space, apart from small defects. The choice of | = 0, 1 simply reflects the spins
with respect to the interface.

As for d = 2, the interface is not localized. As in [FV17], consider A,, = [-n,n]? N Z? and
consider the Dobrushin boundary condition 7p, where the spins are +1 for (¢, 7) with j > 0 and —1
otherwise. For any configuration w, let A be the associated interface. There may be other contours
in A, so we let w(\) be the configuration whose only contour is A\. Then, for any i € Z define the
envelopes

M) € max{j € Z: wij(A) =—1}+1

Ay (1) E min{j € Z:w j(A) = -1} — L.

n

These functions depend on n, since the configurations have boundary condition np outside of
A, and of course they also depend on the configurations w € Q”Z , S0 they can be seen an random
variables. It can be shown that, relative to the scaling of A,,, A, and A\ are close to each other for
large n in the sense that

max X} ()~ A7 ()] < K log(n).
1EZ
for some constant K depending only on the inverse temperature at hand (see [CIV03]). Note
that the width of A,, grows with n and the bound above grows with log(n). Therefore, with large
values of n the interface is squeezed between the boundaries defined by A and A, and so are the
rescaled functions A¥ : [~1,1] — R given by

. 1
+ def +
S 2 X))
|GI05] showed that these functions converge in distribution to a Brownian motion with fixed
endpoints at zero. In special, the interface in this case is not rigid.
In the cases where the interface is localized, we can write the free energies ¥} (8) and 93 (8) of
definition® 1.8 of the isolated phases 1 and 2 as

SRemember that the free energy after the thermodynamic limit does not depend of the boundary condition, but
the finite volume free energies depend of them, so we keep track of the boundary conditions as a superscript.
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o) = = g (24 5) and
YR(8) = —(1—;(n)) log (Z3,5) »

where a(n) denotes the fraction of the box A consisting of the phase 1. The total contribution to
the free energy is given by

1 R
— log (Z“ ) .
3 AB

1

Note that the term 5 is not present in the definition 1.8, but it is present in physics textbooks.
We put the term here so that the surface tension, and the free energy as well, have the correct
dimensions. By subtracting the free energies from the isolated phases from the total free energy, the
remaining term is the free energy corresponding to the interaction of both phases with the interface.
Computing the difference explicitly, it is given by

1 Z}A\lyﬁ
R ((Zk’ﬁ)a(ﬁ)(zg’ﬁ)(la(ﬁ))) | (1.37)

Of course, this free energy may grow arbitrarily large as A 7 Z¢, so we compute the free energy
density instead of the total free energy. Letting II5(A) denote the interface (the support of the
interface, seen as a contour), then a very natural definition of surface tension can be given by the
limit

1 AN
7(0) := — lim log _TAB ] ’
Az BTTa(A)] (Z§ 5)°®) (23 5)(—alh)

whenever it exists. We show that the limit exists and is finite for Ising-like ferromagnetic models
in chapter two, and in the upcoming section we show that that the limit is finite whenever it exists
for every model satisfying the conditions of Pirogov-Sinai theory. Note that for Ising-like models
the Hamiltonians with £+ boundary conditions can be given by

(1.38)

<%0A+(0')= Z Ja0anp and
ANA£D

Ay (o)=Y ()40 00
ANA#D
for o € Qu. Note that for any finite set A such that AN A # @ we have, by flipping all the spins
in ANA,

Zyg= > exp|— Y (=D)AMgoan | =D exp = > (=) Js0ann |,

ey ANA#£D oEQA ANA#£D

since the spin flipping yields a symmetry transformation o4npn — (_1)‘AQA|0-A[‘]A. Noting that
every A such that J4 # 0 are translates of each other by the definition of these models, then these
sets have all the same cardinality. If this cardinality is even, then the computation above already
yields Z Ap = = Z) 4. If it is odd, then (-1 )‘A| = —1 for every A, and by flipping only one spin in
ANA at a time 1nstead of all the spins simultaneously we induce another symmetry transformation
TAnA — —0 AnA, Which cancels the other negative sign. In any case, we have established Z 7 Ag = Z/; P
for Ising-like models.
In terms of the surface tension, for these models we have
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+
75(0,1) := — lim ! log Ins (1.39)
T T e BRL+ 1) P\ Z), ) '
for a box A of length 2L + 1 in d dimensions. Moreover, it can be shown
(see [BLP80]) that 73(0,1) is increasing in the couplings Jpg. This, in particular, implies that the
surface tension of these models is increasing in the dimensions, since one can obtain a d-dimensional
model by turning off sufficiently many couplings (which are non-negative by hypothesis). Moreover,
by [BLP80| and [LP81], the inequalities

75(0,1) < 2(m*(8)) (1.40)
Wﬂ;g’” > 9(m* (8))’ (1.41)

hold. Hence, if there is no spontaneous magnetization, i.e 8 < ., then the first inequality implies
that 73(0,1) = 0, and for all 5 such that m*(5) > 0 one has that #75(0,1) is increasing in 3. In
special, 573(0,1) > 0 and hence 73(0,1) > 0 for all 5 > . and 75(0,1) = 0 for all § < f.. This is
the expected behaviour: for 5 > . the two phases in the same system induce the appearance of
interfaces, and for 8 < . the randomness of the system blocks most interfaces from appearing.

Finally, we show an application of the surface tension in the context of phase separation. For
this, consider the functional

T (V)= / T5(R(2))Ag—1(dz), (1.42)
ov

defined for all smooth enough subsets V' C R? so that they admit an unit normal vector field

pointing outwards and Ay is the d-dimensional Lebesgue measure. The subset V, minimizing %, is

unique up to translations and can be given explicitly by Wulff shape®

Vi, = {z € R" : 74() > z - 1 for every unit vector f}. (1.43)

The model of interest for this result is the nearest neighbor lattice gas, whose Hamiltonian is
given by

HW)E = Y Jijwiw,
{i,j}CA

where the only difference from the Ising model is that the spin variables are such that the single spin
space is £ = {0,1} instead of {—1,1}. This is to represent occupation numbers, so that 0 means
absence of particles and 1 means the presence of one. Here, we consider the canonical ensemble,
where the total number of particles is fixed and equal to a prescribed number IN. The number of
particles, the partition function and the finite volume Gibbs measure for the model in this ensemble
are given by

Na(w) =) wi, (1.44)

€A
Iang =Y e Pk (1.45)
WA EQA
Np(wp)=N
ot exp(—B7 (w
pansw) = p(ZB Aw)) (1.46)
A7N7ﬁ

50ther names for this object in the literature are equilibrium shape or equilibrium crystal shape.
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In the grand canonical ensemble, the number of particles is allowed to change. The grand
canonical partition function depends on a parameter, the chemical potential p € R, and is given by

Onup = > exp(—B(H(ws) — uNA(wa))). (1.47)

wAEQA

The finite volume pressure is the function py g(p) = ﬁ log©4 5 and its thermodynamical

limit pg(p) always exists for all p. In the Ising model, the system can only exhibit phase transition
for zero external fields, and in the lattice gas the same logic holds, as there is some chemical potential
tt+« where phase transition can only occur for p # p.. The average densities gﬂiﬁ and g%ﬁ are well-
defined for every p, including p = p. (this property follows from the convexity of the pressure)
and when they coincide the common value is defined to be the grand canonical density pg. It can
be shown that the pressure in this model is actually analytic for every u # 4, but the pressure is

non-differentiable at u.. The gas and liquid densities pg, p; are hence defined by

def 8pﬂ

Pg = - and

Jox

def 8]9,8
=
out

s

respectively. If we let Bé’g denote the critical inverse temperature for this model, then the phase
separation result relating to the Wullf shape is given in the next result.

Theorem 1.22. For the two dimensional lattice gas in a square box A, of side length n, for 5 > Bé‘g,
p € (pg, p1) and N,, = p|Ay| one has
. 0 .
Jim gy, v, 5(7) = 1, (1.48)

where the event 9 is defined as: there are constants c1 = ¢1(8) and ca = ca(3) such that

e there exists a contour vy such that all other contours v satisfy diam(vy) < c1logn,

e the contour 7y is closely approximated by a dilatation and translation of the Wullf shape, that
18,

1 (&)
in_ —d av,) < 2\ /logn, 1.49
acer[](—nlr,lll2 n u(0, @ +0V:) < pd Vo8 (1.49)

where dy denotes the Hausdorff distances between sets.”

Moreover, it can be shown that there is a predominance of the phase 1 inside g and 0 outside
of it, so that the contour separating the phases is given by the Wullf shape.

More information about the surface tension can be found in [Pfi09].

1.2.3 Surface Tension: Pirogov-Sinai approach

Consider two dominant ground states ¢i,¢q2 < r and finite box A C Z2. For the rest of this
section, we will fix the boundary condition (g1, ¢2) given by o, ,) = q1 for all (z,y) € 72 with
y > 0 and o(,,) = g2 otherwise. We will abbreviate the boundary conditions ¢; and g2 by 1 and 2
respectively.

"With respect to the distance induced by the ¢; norm on Z¢, the Hausdorff distance is given by dm(X,Y) def

max{sup d(z,Y),sup d(X, y)} , where d(z,Y") 4 inf d(z,y).
reEX yey yey
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For any interface A as in definition 1.20, let A denote the set of all points 2 € A together with
interaction supports A C Z? with z > A. We split A as the union of ), the interiors I;(\) of A,
each with a boundary condition m; and the remaining volumes Vi (\), Va(A) neighboring the 1 and
2-boundaries of A, respectively (see image 1.6). If we denote

D Dalox) + D Ealon), (1.50)

APN£D zeX

where E,(0) = E(o0,), then one can recover the partition function by summing over all possibilities
of interfaces, volumes V;(A), Va(\) and the interiors I; (),

k
Z\% = Zexp M) Ziion Zeoy L2106 (1.51)

i=1
It is at this point that an important remark about Pirogov-Sinai theory should be made. Note
that in definition 1.50 we assumed implicitly that the configuration in X is determined by the con-
figuration only in A. This is possible to assume given that we change the definition of g-correct
points x to denote those points such that o; = ¢, for all i € Br(x) and we take R big enough.
The resulting effect is that the contours become far away from each other, since there are more
g-correct points separating them. If the interactions are of short-range type, one can then always
choose R big enough so that A N A # @& implies that A intersects at most A and those g-correct

points determined by the boundary of .

With this decomposition of the partition function, one gets

%y {-o (B - M50 VRO, 0

VZhsZis

where
Zl Zl Hk Zl k Zmz
i) ?van) Li=1 41,00 L
W) = 0 S exp (~am A [T 5 (1.53)
A i=1 "1; (A)
ZQ H k Zmi
Vi(A A 1 I A L\
() = 2n? <Z)2 = exp (-l T S5 (1.54)
i=1 "1; (A)
zZ1 Z2
Vi(A
Ws(X) = 7211( )Zg 2, (1.55)
Va(A)“Vi(A)

and we have omitted the inverse temperature for each term, for simplicity. Bounds for the relevant
terms in equation 1.52 are given in terms of |A| and By := {4 : AN\ # @ and ®4 # 0}.

Lemma 1.23. There exists a constant Cy > 0 such that for all sufficiently small € > 0 and each
lu| < € the bound E(X) — 5(pu1 + p2)|A| > C1|B,| holds.

Proof. Byﬁlemnrila 1.13, we have E(X\) > c|By| + [} ming<j<n i > ¢|Bx| + || minj<ij<p pi. By
splitting |A] = |A\ A| + |A|, one gets

B(Y) = 3+ )/ = cBy = 3N\ Al(an +2) = 3|\ + 2 — 2 i ).
1<i<n
Now we will show that there is a constant ¢; > 0 such that A\ A| < ¢1|By| and || < ¢1|By|.
In fact, note that by definition of A, one has |A\ A| < p|dA| < p|)|, where we remember that
p = max{|A| : ¢4 # I}. Hence, it is enough to find a bound of the form |A| < ¢;|B)|. Now, for
xr € 7% welet I(x) := |{A: ¢4 # 0 and A > z}|. By translation invariance, I(z) is independent of
z. Now,
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> () ZZ o =) > 1 (o) = > le A3

zeA zeN Aezd {6125} ZEA ANAAD {5375} APNAD TEA {6275
< > Hzex:ze A} <pBil
APAAD

Therefore I(0)|A] = - 5 1(x) < p|By|, so that |A] < |B>\\ and we see that one can take
c] = I(O) Let Ag be any interaction support with cardlnahty p contalmng 0. One can translate this

set p times in such a way that it still contains 0, so that I(0) > p and hence ¢; < 1.
We now note that for [u| < € we get —3[A\A|(11+p2) > —€|By| and, since p1j; —ming <;<p p1; < %
for all 1 < j <r, then

1 . 1 . . c
— M+ =2 min p) = —S[A({pn — min i} + {pp — min pi}) > —@\Bx\-

After regrouping all the terms, this yields

— 1 — 1
E(\) — 5(/“ + p2)[Al > (e — e — @C)’BAL

and we note that the overall constant is ¢(1 — i) > 0 for e < -, as we wanted.

Lemma 1.24. There is a function 51 = 61(8) decaying exponentially on B such that

max{Wi(A), Wa(A)} < exp(01(5)|Bal)-

Proof. To start, we rewrite the partition function in A by summing in each region V;i(\), Va(\) and
the interiors I;(\) separately, that is,

> X > oo Y e8> dal0) -8 Eulo)

IXET v () EQY (1) TV ER ) T VER () T VEDR ANA#Z vel

with o = 050V, (6)0v, ()01 (A) 01, () - We now split the sums > 4y, da(0) and 30,y E(0) into
sums over those A intersecting A and at most A€, but not V1(A) and Va(A) (we denote this family by
Ag(N)), {A: AnNVi(N) # 2}, {A: ANVa(A\) # @} and in {A: A C Ix(\)}. We can then redistribute
these terms inside each sum in the above, since the potentials ¢4 depend on the configurations only
inside A. The result is

Z exp | =8 Z Pa(oy) BZE:E(UX)

a;eQ; A€Ap(N) TEX
E exp | —f3 E ¢A o) — B E (07,00
m
UI]J)\)eQI,ﬁA) ACIk IEIk

= Zy, (0 Zisa H N D e | =8 Y ¢A 05) =B Ealoy)

=1 a'/\ EQ AGAO TEN

We now bound below the sum on the RHS by its summand on the particular configuration
where o5 equals the ground state 1 everywhere. Since this is a ground state, all potentials ¢ (1)
are zero and )5 Fy(1) = p1|Al. This implies
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k
Z}\ 2 le/l(x)le/Q(A) H Z}Z_()\) exp(—Bu1[Al), (1.56)

=1

and hence

k
2y, 0 %va [lizs Z1
Z}

exp (—Bui|Al) < 1. (1.57)
By corollary 1.19, the remaining term is bounded by

ko zmi
A < exp(2eT{DL (V)] + .. + PLN]}) < exp(2eTIA).
i=1 L))
As in the proof of the last lemma, we have |A| < ¢1|B,| for some positive constant ¢; and, since
T = 7(p) is proportional to 3, we get the result by setting &;(3) := 2¢,e=¢7(8), O

Lemma 1.25. There is a function d = 02(8) decaying exponentially on 8 such that

W3(A) < exp(d2(5)|Bal) (1.58)

Proof. By the proof of corollary 1.19, we have

Z\l/l()\) Z\Q/z()\)
Ws3(\) =
N7 Dy
0 . 0 .
< exp(- AV — ) exp(=BIVe i~ i) Gy (-

QO(Va(N) : F1)QO(Vi(N) : Fy)
where {F1, ..., F,.} denotes the corresponding contour model. By lemma 1.17, the right-most
term equals

= exp(=Lur(Vi(N)] = [Va(N)]) = Bua([Va(N)] = [Vi(V)])

exp| Y i@ — Y, wl@+ Y, wil@)— Y, @) |- (1.60)

xCVi(N) xCVa(N) xCVa(N) xCVi(N)

From here, we will consider the reflection map R(z,y) = (x, —y). Given any interface \, let Ry
denote R(V(M\)) U V(A) and define V() = (Z2 N A) \ Ry, VH(A) = Ry \ Ay and analogously for
V() and V3 (M),

Note that we have Vi(A) = V2(A) U VE(N) and Va(\) = V() U VZH(N), see the figure 1.7.

In general, for disjoint sets A, B and any set function f one has

Do f@ =) f@+ Y f@)+ Y fla) (1.61)
cCAUB xCA xCB iggig

Applying this for V; = VZ-O U Vil, the argument of the exponential in equation 1.60 equals

Yooel@+ D> i@+ D el

zCVP(N) zCVE(N) TNV #D
aNV]@#2

- D> i@ - D> el@- ) el

zCVY(N) zCVy(A) TNV A2

TNVy £ &
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V(A)

N E& \r\\\xx - V}(AT\}E ............ -
= S\ <=M %@ —

Figure 1.7: The detailed construction of Ry and V7 (\). After the second arrow, we see that V2(\) is the
dotted region and Vi{(\) is the dashed region inside the upper part of the interface . Note that this region
corresponds to added mass to the interface given by the reflection of the lower part. Analogously, Vi is the

added part to the interface given by the reflection of the upper part, and the remaining blank region is Vy .
The set Ry consists of the original interface and its reflection.

Yot + DY e+ Y ¢ (x)

zCVL(A) zCVy(A) TNVY#£S
TNV3 #£S
- > e - > e - Y ¢l ()
zCVL2(N) zCVE(N) TNVL#D
TNV #2

Now, since V’(A) = R(V3), by symmetry we have

Yo ool = ) ¢f),

zCV2(N) zCVL(N)

This implies that all terms involving V(\) and Vi)(\) cancel out. Moreover, we can use the
identity valid for a translation invariant function f

Yo f@) <Y D f@) =) fl@) =AY f(a)

TNA#D a€A xz3a acA 230 30

to get the estimate

Z o1 (z) < Z ol (z) < |\ Z%T(g;) < [N,

TNV £ zNOVL £ 30
xﬂVllyé@

by lemma 1.17 and we noted that [0V| < |A|. Since |V;}| < |A], the same bound holds for those
terms. Therefore, after the cancelation described above and this estimate, we get

QO(Vi(\) - F)QY(Va(N) : )

< A \|e—cT(B) 1.69

QO(Va(A) : F1)Q0(Vi(A) : Fy) — exp(4|Ale ) (1.62)

xexp | Y el@ - D @+ Y wl@- Y ¢ (1.63)
TCV (Y aCVy (M) zCVE(N) 2CVE(N)

QW) : F)Q(Vy (M) : Fo)

= exp(4|)\\e_CT(6))QO(V21()\) CF)QO(VE(N) 1 Fy)

(1.64)
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Remembering the definition A(A : F,) =1og Q°(A : F,) — S(F,)|A| and the result |A(A, F,)| <
exp(—c7)|0A|, we have that the term in 1.64 equals to

exp(4|Ale” @) exp (1og (V' (A) : F1) +10g Q0(Va (A) 1 Fa) —log Q°(V5'(A) = F1) —log Q° (V' (N) : F))

< exp(4[Ale” ) exp([VH (V)[S(F1) + e~ TP 17 (V)] = S(F) [V (V)] + e~ TP a1 (V)
x exp(|V3 (WIS(F2) + e TPNaVy (V)] = S(F)[Vy ()] + e TP|avy (M),
Noting that [OVE(A)| + [OVaH(A)| < |OA] < |A|, this yields the result

exp(6[\e™ ) exp([V (VIS (F1) = S(F2)} + V3 (A{S(F2) = S(F1)})
= exp(6A e D) exp((IVi(A)] = VPV D{S(EL) = S(E2)} + (IVa(N)] = [V (VDS (F2) — S(F1)})
= exp(6AleTP) exp(Vi(A){S(F1) = S(F2)} + [Va(NI{S(F2) — S(F1)}),

Where we have used the fact that R is a bijection between V(\) and Vi)(\), and hence they
have the same volume. Inserting this back in equation 1.59, we get

Ws(A) < exp(6Ale™ ™) exp (Vi(N) ({S(F1) = Bpur)) = (S(F2) = Bpz)})
xexp ([Va(N)[{(S(F2) — Bu2) — (S(F1) = Bm)})
We now use the fact that a'(F}) = a?(Fy) = 0, implying that S(Fy) — Bu; = —a = S(Fy) — Bus
(see equation 1.35). This implies that W3(\) < exp(d2(B)|A|) with 6o(8) := 6e=°"¥) | as wanted. [

With these bounds, we are now ready to show the main result. Here, we will assume that the
box A is placed symmetrically with respect to the boundary condition, so that a(fi) = % for all unit
vectors .

Theorem 1.26. The surface tension in equation 1.38 is strictly positive for all dominant ground
states q1,qa.

Proof. Using all the bounds gathered so far, we have

212
o A < Y e 5205+ () + BB IB). (1.65)

A3 A

For all high enough B we have 61(8),02(8) < %C’lﬁ, since they decay exponentially on f.
Therefore the sum above is bounded by

D exp(KBAN< D KA\l =n}exp(—BKn) = Y exp((—BK +Co)n),  (1.66)
A n=2L+1 n=2L+1

for some constant K, where we have used the bound |B,| > %]A] obtained in lemma 1.23, the
known result that the number of Pirogov-Sinai contours with fixed size n and containing a fixed
point is less than exp(Con) for some constant Cp and the fact that all interfaces A have at least
2L + 1 points, since they travel from one side of A to the other. Since —K + Cy < ,%5 —
for 8 > 200 , then the sum above is bounded by

1 Lp2L+1) 1
e 1—e!

Applying the logarithm and then the limit in L, we get, finally,
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Chapter 2

Duality Transformations for 1/2-spin
Systems

In the present chapter we introduce the notion of duality transformations in half-spin ferromag-
netic systems. This concept will be then used to prove the existence of the surface tension, as in
[GHMMS77].

Duality transformations are relations satisfied by the Ising model, relating the partition and
correlation functions of the model at high temperatures with the ones of a dual model in low
temperatures. A set of sufficient conditions for the existence of such dual Ising models was given
by [Weg71], requiring positive spin interactions and the existence of solutions for a system of linear
equations. A year later, [MG72| gave an alternative construction of such duality transformations -
much simpler, elegant and less restrictive - based on the intuition that such duality relations reflect
on some symmetry of the Ising model and hence can be described by the usual group-theoretic
structure of 1/2 spin lattice systems, to be described below. For the rest of the chapter, we will
follow closely the notation and the work of [MGT72].

Given any abstract finite set A with cardinality |A| < oo, its power set Z2(A) has 2/4! elements
and inherits a finite group structure with product given by the symmetric difference: given any two
elements A, B € 2(A), we set A- B< AAB, where AAB = AU B\AN B. It is not hard to see
that (Z(A),-) is an abelian group, with the empty set serving as the identity element and every
element being its own inverse. We will typically denote the elements of A by lowercase letters like
x,Yy, 2, ... and the elements of & (A) are denoted by the uppercase letters A, B, C....

The first remarkable property of Z2(A) is that it is a vector field over Zy. This property allows
us to transfer useful theorems valid for vector spaces over to the group Z(A).

Lemma 2.1. The group P (A) is a Zo—wvector space with vector addition being the group operation
and scalar multiplication given by 0X +— e and 1X — X.

Proof. Associativity follows from the group axioms. Commutativity is already given since the group
is abelian, the inverse element for every vector is the vector itself, the identity element of scalar
multiplication is 1, and the distributivity of the scalar multiplication with respect to vector addition
is straightforward.

The only property left to prove is the distribution of scalar multiplication with respect to scalar
addition, i.e, (a + b)X = aX + bX. We will split the proof into 4 cases:

ea=b=1(1+1DX=0X=0g,and IX+1X =X+ X =X?=g;
ea=b=0:(0+0)X =0X =g, and 0X + 0X = 2% = &;
ea=1landb=0(14+0)X=1X=X,and 1X+0X =X +20=X - e= X,

e a — (0 and b = 1: same as before.

35
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Therefore Z(A) is a Za—vector space.
O

An elementary but useful observation is that a subset W C &?(A) is a vector subspace if, and only
if it is a subgroup. This is valid since the vector addition corresponds to the group multiplication.
Moreover, we define the maps o4 : Z(A) — {—1,1} with A € Z(A) b

oa(R) & (~1)A0A, (2.1)

These maps have the following properties:

(2) oa(R)o ( ) (R 5); (2.2)

For example, (2) is proved by noticing that |[A N (RAS)| = [(ANR)A(ANS)| = |ANR|+|AN
S| —2|AN RN S| and similarly for (3). Moreover, property (2) implies that each o4 is a character!
of Z(A).

Note that if 04 = op, then A = B. In fact, if z € A is arbitrary and = ¢ B was the case, then
oa({z}) = —1 and op({x}) = (—1)° = 1, violating the equality o4 = . Hence, we have | Z(A)|
distinct functions o4, one for each A C A and therefore the collection (04)acz(a) defines a family
of |Z(A)| distinct characters of &2(A). Since it is a well known result that a finite abelian group
G has exactly |G| characters, we find that the collection of all o4 are precisely the characters of
P (A). By property (3), we also have an explicit group isomorphism A +— o4 from Z(A) to its
character group m

Given a fixed Z C 2 (A), define the set .#) = {S : 05(B) = 1,VB € A}. Later, we will show
that there is a bijection between configurations in A and finite sets A € Z(A), where to each set
we associate the unique configuration having all spins inside of it equal to —1 and +1 outside. In
this sense:

e The maps o4 take as input a configuration and returns the product of the spins inside the
set of sites in A;

o # will be given as the support of the interactions;

e The elements S of #j are configurations such that, for any B € &, the product of the spins
inside B is always 1.

Give any group G, the orthogonal complement of a subset H < G is H+ £y {x € G : x(h) =
1,Vh € H}. We have the following lemmas.

Lemma 2.2. Let G be any finite abelian group. Then
e B = (G/H)"
« T (GM/HY).
Proof. To prove the first identity, consider the map T : H+ — (G /ﬁ)/\ defined by

def

T()(g]) = x(9),

'"Remember that a character of a group G is a homomorphism p : G — C*\{0} from G to the multiplicative

group of the complex numbers. The set of all characters form a group under pointwise multiplication, denoted by G
or G".
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where we remember that the quotient group G/H consists of equivalence classes [g] where g ~ h
iff gh=! € H. Then T is well-defined, since [g] = [h] implies that g ~ h and hence gh™ € H. As
such, gh~! can be decomposed as a finite product gh~' = ajas...a,, where each a; belongs to H. In
special, since y € H+ we have x(gh~') = x(a1)...x(an) = e and therefore

x(g9) = x(gh™"h) = x(gh")x(h) = x(h).

The map is injective, since T'(x1) = T'(x2) implies, after computing both sides of the equality in a
general element [g], that

x1(9) =T(xa)([g]) = T(x2)([g]) = x2(9),

so that x1 = xo. R

As for surjectivity, given any ® € (G /H)/\ we define x € G by x(g9) = ®([g]). It follows that x
is a homomorphism and that for any h € H one has x(h) = ®([h]) = ®([e]) = 1, since h ~ e for
any h € H by definition of the quotient subgroup. Finally, T is also a homomorphism, since

T(x1-x2)(l9]) = (x1-x2)(9) = x1(9) - x2(9) = (T'(x1) - T(x2))([9]),
implying T'(x1 - x2) = T'(x1) - T'(x2)-

For the second item, define the map F : H — (GA/HL)/\ by F(h) £ Qp, where Q : GN/H+ —
C\ {0} is given by Qn([x]) = x(h). Note that each Q, is well-defined, since [x1] = [x2] implies that
X1 'x2_1 € H*. In special, since h € H, then 1 = (x1 -Xgl)(h), implying x1(h) = x2(h). Since Qp,
is well-defined, so is F.

F' is also injective, since F'(hy) = F(hg) implies that Qp, = Qp,, which implies that x(h1) =
X(h2) for every character . Since locally compact topological groups G (which includes finite
abelian groups with the discrete topology, as in our case) are such that G separates points (see

[Pon39]), this implies that h; = hg. It is straightforward that F' is a homomorphism and, for
surjectivity, since by the first item we have by Lagrange’s Theorem? |HL| = %, which implies

that [H] = AL = 1€ — '((w)A

m = e = (L) | Thus, since F' is an injection between two sets of equal finite

cardinality, F' is an isomorphism.

O

Lemma 2.3. If % is the subgroup generated by 9B, then:

Moreover, B = {A:04(S) =1,VS € #}.

Proof. Using the last lemma, we have %+ = {x € IT(X) : x(B) = 1,VB € %} and since every
character of Z(A) is of the form o4, for some A C A, then we have

B+ ={o4:04(B) =1,YB € B} = F.
Hence, the above equations with G = Z(A) and H = £ yield

In =B = (P(N))B) = 2N/,

where we remember that the character group is isomorphic to the group itself for finite abelian
groups. Finally, since (HJ-)J- = H, then

B =S+ ={oa:04(5) =1,Y5 € .7\}

*Here, we are using the implication that |G/H| = % and that for finite abelian groups |@\ =|G|.
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={A:04(5)=1,VS € A}
O

Moreover, the order of every subgroup H < &(A) can be found in terms of its minimal gener-
ators. We will enunciate this fact in the next lemma:

Lemma 2.4. Let H < Z(A) be any subgroup. If H is generated by n minimal elements, then
|H| =2".

Proof. Recall that our group can be endowed with a structure of a vector space over Zs. With this
correspondence in mind, subgroups correspond to vector subspaces.

First, note that H = {hi,...,h,} is the same as H = span{hi,..., h,}. By minimality, this
implies that {hq, ..., h,} is a basis of H, so every element of H can be written uniquely as products
of hy, ho, ..., h,. The total number of elements of H can then be found by counting the possible
ways of grouping hy, ..., hy, which is just 2", the amount of subsets of {hy, ..., hp}.

O

By the last lemma, we write [/5| = 2V and 2| = 2" where Ny is the minimal number of
generators of %, and N; is the minimal number of generators of 4.

2.1 Connection with Statistical Mechanics

Consider any possibly infinite subset A C Z¢, a set of bonds % C ,@f(Zd) and a real or complex
function J : 8 — C. We call the triple (A, A, J) a general lattice system. To establish the connection
with the previous section, we identify each X € Z(Z?) with the configuration o given by o(z) = —1,
for all z € X and o(x) = 1, for all x € X¢. In this way, the configuration space is identified with
P2(7%).

As before, we think of a box A as some set of interacting spins and the map J represents their
interactions. Depending on the definition of &, the spins inside A can interact with the outside of A
or the interaction can be restricted only to the inside of the box. In this new language a boundary
condition is just a subset Y C Z¢, for example Y = @ and Y = Z¢ correspond to + and — boundary
conditions, respectively.

Given a general lattice system (A, %, J) and a boundary condition Y, the Hamiltonian % :
Z(A) — C of the system with boundary condition Y is defined by

(X)) = = > Jpop(X - (Y NAY)), (2.3)

with By < {B e #: BNA # @} and op(X) = (—1)B"X| as before. The partition function of
the system is given by

ZY s e (Y (X)) = Y exp | Y Kpop(X-(YNAY) |, (2.4)
XCA XCA BEB,

with K & BJp. To avoid problems with convergence, we will always assume that the couplings

Jp are regular. Moreover, we will always assume that the couplings Jp are ferromagnetic, in the
sense that Jp > 0 for all B. This implies, in particular, that Griffiths inequalities always hold. More
precisely, under this hypothesis, for any collection of spins 04 and op one has (c405) > (04)(oB)
for empty boundary conditions.

It is worthy to note that for any countable set . one has a pairing (-, ) : Z¢(L) x (&) —

def

{—1,1} given by (X,Y) = ox(Y) = (—=1)X7YI, which is well-defined since X is finite. We can use
this pairing to "take adjoints" of homomorphisms f : 2(%) — Z2(Z%) to yield another homomor-
phism g : 2(Z%) — (). The next lemma formalizes this construction.
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Lemma 2.5. Let (-,-) p() and (-,-) p(zay be the pairings defined above in their respective spaces.
Then, for any homomorphism f : P(B) — P(Z%) satisfying f(P(B)) C P¢(ZY), there is a
unique homomorphism g : P(Z%) — P(PB) such that

(X, f(B)) pzey = (9(X), B) »()
For all X € P(Z%) and B € P¢(B).

Proof. We will split the proof in four parts.

1. (Classification of homomorphism of #¢(Z) to {—1,1}): First, we will show that for any
homomorphism T' : Z¢(Z£) — {—1,1} with £ countable there is a set A € Z(.Z) such

that T(X) = o4(X). In fact, pick A € {z € £ : T({z}) = —1}, so that we can split any
XeZi(ZL)as X =(XNA)UXNAY) =(XNA) (XN A®). Therefore

T(X):T(XﬂA)T(XﬁAC):( 11 T@:))( 11 T@:))

z€XNA zeEXNAC

= [I 0= =0a(x).
zeXNA
2. (Non-degeneracy of (-,-)): Suppose that (B, B1) »(#) = (B, B2) » (%) for all finite B. We will
prove that By = Bs.
In fact, given any B € By, then (—1){B¥B2 = oipy(B2) = ({B}, B2) »(») = ({B}, B1) »(%) =
oipy(B1) = (~1){BINBL — 1 If we had B ¢ By, the equality above would not hold. Hence,
we must have B; C B and reversing the roles of B; and By we get the opposite inclusion.

3. (Existence): Now, fix any X € £(Z%) and consider the map Tx : Z;(#) — {—1,1} defined
by T(B) = (X, f(B)) »(z4)- This map is well-defined since f(Z¢(%)) C P(Z%) and it is clear
that any pairing on a countable set £ satisfies (X,Y - Z) »(¢) = ox(Y-Z) = ox(Y)ox(Z) =
(X,Y) p(2)(X, Z) () for any two finite Y, Z. In special, Tx is a homomorphism. There is
hence a set of bonds g(X) € & (%) such that Tx(B) = 04x)(B), that is

(X, [(B)) 2(z4y = (9(X), B) »()

This defines a map Z(Z%) > X — g(X) € £(%). It is clearly a homomorphism, since for all
finite B we have

(9(X -Y),B) gz = (XY, [(B)) pzay = (X, f(B))) 2zay(Y, [(B)) »(za)
= (9(X), B) 2#)(9(Y), B) 2y = (9(X) - g(Y), B) »()
= g(XY)=g(X) g(Y)

4. (Uniqueness): If we had two homomorphisms g1, g2 such that (X, f(B)) 5z = (91(X), B) »(z) =
92(X), B) () for all B € #¢(%), then non-degeneracy forces g1 = go.
2(%) f

O]

Note that by the first part of the proof, it follows that for any set . the homomorphisms
T: Z;(ZL) — {—1,1} are precisely of the form Y — o4(Y), for some A € 2(Z). If £ is finite,
we recover the result that the set {o4 : A € (L)} is precisely the set of characters of Z2(.Z).

In special, by the orthogonality relations of characters,
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Y. os(X)op(Y) =|2(2)5k (2.5)

Be2 (&)

Now, consider the map:

Clearly, for any finite set of bonds the resulting image is in & (Z%). The next lemma also shows
that 7 is a homomorphism.

Lemma 2.6. The map 7 defined above is a homomorphism.

Proof. Given By, By € &(%), we have

n(Bi-By)= [[ B= 1T B = I B By
BeB1-B2 BeB1\BaUEB2\B1 Bi1€B1\B2 B GBz\Bl
Since B? = @ for all group elements, we can write:
o~ I w)-( I 2| 11 o
316&\& BE&I’W@ BE&Q& BQEBQ\Bl

= H B |- H By | =m(By) - 7(Bs)

Bi€By By€By

O

Therefore, lemma 2.5 can be applied to 7 to yield its adjoint, which we call v : 2(Z%) — P2 (B).
We note that the explicit form of v can be found by the pairing identity applied to each set of the
form {B},

oyx)({B}) = {B} (X)) 2(z) = (n({B}), X) 2() = (B, X) 5() = 0B(X)
So that B € y(X) if, and only if op(X) = —1. This implies that:
1(X) ={B € P(#):05(X)= -1}
If X C A, then for op(X) to yield —1 it is necessary for B to intersect A. Therefore

V(X)) ={B € P(By) : op(X) = —1}, if X C A. (2.6)

We could, have defined ~ this way, but proving the homomorphism property of v would have been
a very convoluted proof, and moreover this construction we have done is far more elegant.

Some important subgroups of Z2(%) and £ (Z%) are the following:

1. The interaction group 4 is the subgroup of 9(2) generated by %. Moreover, we define %
to be the subgroup generated by #y = {B € #: BN A # o}.

2. The internal symmetry groups . and .#, are subgroups of Z(Z?) (the configuration space)
and Z(A) defined by:

S LS e P2 :op(S) =1, for all B € B} (2.7)
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I E{S e P(A):0p(S) =1, for all B € By} (2.8)

Clearly, any S € . satisties ) (X - S) = ) (X) for every X € P2(Z%) and .7}, is a finite
group.

def

3. The high/low temperatures subgroups of (%, ), defined by ) £y ker(m| »(,)) and 'y =
im(’y\l@( A)) respectively. The name of these subgroups will be justified by their appearance in
the high-low temperature expansion for the partition function, in the next section.

Note that

Ker(al ) = (X € 2(A) - (B € P(Bn) : 05(X) = 1} = 2}
={X e PA):0p(S)=1, forall Be B\} = S,

We will use the following lemma in the next section.

Lemma 2.7. Let G be any finite group, H any group and ¢ : G — H a homomorphism. Suppose
that T : G — R is any function such that T(g) = T (h) whenever ¢(g) = ¢(h). Then

ker(@)] Y T(gn) =Y T(9),
heim(¢p) 9€G

where gy, is any element of G such that ¢(gn) = h (by hypothesis, T is independent of the choice
of gn)-

Proof. Note that, for any h € im(¢), one has [¢~1({h})| = |ker(¢)|, since ¢~ ({h}) = gker(¢) for
any g € G with ¢(g) = h and |gker(¢)| = |ker(¢)|. Hence

ker(@)] D Tgn) = D o7 ({h})IT(gn)

heim(¢) heim(¢)
= ). D> T=> T
heim(¢p) geG geG
#(9)=h

2.1.1 High-Low Temperature Expansions for the Partiton Function

In what follows, we will derive the high and low temperature expansions of the partition function.
In this section, we always assume as boundary conditions Y = &, so the spins outside the underlying
finite box A are all +1. It is still worthy to note that the same calculations hold exactly the same
when replacing %, with the set of bonds strictly inside A, for which we will use the notation Z}; P
to remember this observation.

ZXg=Y exp| Y Kpop(X)

XCA Be%a

First, assume that %, is finite and we note that for any x € R one has exp(+x) = cosh(z)(1 +
tanh(x)). Now, for any configuration X C A and B € %, one has either op(X) = 1orop(X) = —1.
In either case, by our last observation, we have exp(K (B)op(X)) = cosh(K(B))(1+op(X) tanh(K(B))).
Hence, the partition function becomes

ZXs= > I cosh(E(B))(1+ op(X)tanh(K(B)))
XeP(N) BEB
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= Y [ cosh(®x(B)) [] 1+ op(X)tanh(K(B))).
XeP(N) BEBa BeZ\
However, the last product may we written as [[gcy, (1 + op(X)tanh(K(B))) =
> [T, oB,(X) tanh(K(B;)), with the summation taking all values of n, up to |22 (%)
(Bl,...,Bn)C%A
After splitting the last sum over the (Bi, ..., By) such that [[;" |, B; = @ and [[;_, B; # @, the
partition function becomes

ZXs= > [ cosh(®&(B) > dl ?lei)(X)Htanh(KB
=1

XeP(N) BeB (B1ye-yBn)CPBn
iz1 Bi=2
+ [ cosh(x(B)) > > o, 5y (0 ] tanh(K ()
Be&n (Bi,...,Bn)CBn XEP(A) i1

[TiL, Bi#2

Now, given any non-empty B € 2 (%,), we can write B = B - B’ with B ¢ A and B’ C A°.
Since BN X = @ for all X C A, then ox(B’) =1 for all such X and hence

Y ox(B)= > ox(B)ox(B)= > ox(B)=0.

XCA XCA XCA

Where we used the fact that for Y # & element of Z(A) we have 3~y ) 0y (X) = 0 by
equality 2.5 with .Z = A.

This means that the second term in the expansion of the partition function is zero, and we are
left with

ZXg= Y. I cosh(x > oa(X) ][ tanh(X(B)))
=1

XeP(N) BESB (Bl,.‘.,Bn)C?ZA
i=1 Bi=92

Of course, for all configurations X we have o4(X) = 1. Hence, all the depence of X in the
partition function is gone, and the summation over X € Z(A) yields a multiplicative term of Al
With the definition of the high-temperature subgroup J#j, this yields

Zx 5 =2l H cosh(K(B)) > [] tanh(X(B)), (2.9)
BEZB BeJ#\ BEB

The expression in 2.9 is known as the high temperature expansion of the partition function.
There is also a low temperature expansion, which is obtained by the following steps:

Z¥s=Y ep | 3 KB)op(X)| = 3 ] exp (K(B)os(X)+1-1])

XCA BeA XCA BeXn

= Z H exp (K(B)) H exp(K(B)lop(X) —1])

XCA Be%B) Be%x

1 —o0p(X)
H exp (K(B)) Z H exp <—2K(B)2B>

BEB) XCA BEB

[[ exo&(B) > [] exp(—2K(B)).

BE%A XCABE’}/L@‘(A)(X)

Now, the mappings Z(A) 2 X — 7|5, (X) and T : Z(A) — R given by
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rx)= [ esp(-2K(B))
Bey|z, (X)

obviously satisfy T'(X) = T(Y) whenever 7|2, (X) = 7|2, (Y). Hence, we may apply lemma
2.7 to get

ZXg=2" ] exp(K(B)) > ][ exv(—2K(B)) (2.10)

BePBp Bel'y BeEB

Which is the aforementioned low temperature expansion. Note that the sum on the right-hand
side has finitely many terms even in the case where %, is not finite.

Remember that we deduced these equations in the special case where A, is finite. If the set is
infinite, we pick a sequence 4, increasing to &, where each 4, is finite. Starting from the standard
expression for the partition function, for the high temperature expansion case we have

Zip=Jim > | D Kpon(X)
XCA \Be%,

= oAl lim [T cosh(&x(B)) > ] tanh(X(B)).
Be%#, Bety, BeEB

To pass the limit inside the terms, we need to prove that each individual term converges.
The next lemmas ensure the convergence of each term, including the ones in the low temperature
expansion.

Lemma 2.8. Let (a,)n>1 be a sequence of non-negative real numbers. Then [, (14ay) converges
if, and only if > "7 | ayn, converges. Moreover, if Y > | a, converges to a non-zero real number, then
so does [[2 | an.

Proof. Let N be any natural number. By noticing that the expansion of (1 +a1)(1+az)...(1+an)
equals > gy [[ses as, where [INV] & {1,2,..., N}, then we restrict the sum over all S C [N] by
only those S with |S| = 1. Since all a,, are non-negative, this restriction can only lower the initial
sum, from where we have

N N
Zan < H(l +an)'
n=1 n=1

Using e* > 1 4+ = we get

N N .
[[(+an) < e ==,
n=1 n=1

from where

N N ~
S an < [ +an) < eXnmren,
n=1 n=1

Lemma 2.9. Let 2, be a sequence of complex numbers such that ), < [2n| < 0o. Then:

H cosh(zy,) < 00;
n=1

Z H tanh(zs) < 005

SeNseS
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00
[T exp(zn) < o0,
n=1

and every term above is a non-zero complex number.

Proof. We will use the following result: a product [],~,(1 + 2,) converges to a non-zero complex
number if, and only if [],~;(1 + |2,|) is finite. Using the expression cosh(z) = 1 4 2sinh® (%), the
first expression will converge if, and only if

>

2
sinh (%)‘ < 0.

Since |sinh(z)|? = sinh?(z) cos?(y) + cosh?(z) sin?(y) for z = x + iy, we only need to prove that
the series:

1. anl sinh?(z,,) cos®(y,)

2. > 1 cosh?(z,,) sin?(y,)

are convergent, where z, = x, + iy,. For the first series, we bound cos?(y,) < 1 and note
Lsinh?(zn) _ 1 <

2 ac% 2 —

sinh?(x,) < 222 for all big enough n € N. Moreover, since Y > lzn| converges, then also con-

that lim,

1 (since x, — 0 as its series converges). Therefore, we have

verges the series Y, -, 22, from where series (1) is convergent.

The second series also converges, since cosh?(z,,) — 1 and hence cosh?(z,,) < 2 for all big enough
n € N and since sin?(y,,) < y2. This proves that the first product in convergent and non-zero.

For the second term, it is convergent to an explicit term:

[10+tanh(za) = [ —= e
1 + tanh(z = = ,
1l n L cosh(z,)  [I,2; cosh(z,)

where we used the identity 1 + tanh(z) = CO:}T(Z). Note that the final expression converges to a
non-zero complex number, since e* # 0 for all z € C.

The product []77; exp(z,,) = exp (3.2 zn) also converges since 7 | 2, < 00.

Corollary 2.10. The partition function is non-zero.

Corollary 2.11. The partition function in any finite box A can be written in the following forms:

ZX 5 =2" ] cosh(k(B)) > ] tanh(x(B))

BeBn Be#, BEB
ZXg=2" ] exp(K(B)) > [] exp(—2K(B))
Be% Bel'y BeEB

2.2 Duality Relation

By looking at the partition function expressions of corollary 2.11, a relation between the high-
temperature and low-temperature expressions can be established if a map between I'y and J# is
found. To be explicit, We will consider two lattice systems (A, J, #) and (A*, J*, B*). The set of
bonds of (A*, J*) being denoted by %*, suppose we are given a transformation between the bonds
by a map
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d: B — B*
B — B*.

This yields a map between sets of bonds,

D: P(B) -~ P(B)
B=(B,..,By) = B* = (B},..., BY).

We can then ask that D maps bijectively J#3 to I'y. Our condition of choice to ensure D| is
an injective homomorphism is the following lemma.

Lemma 2.12. Let 4 be any subgroup of P (A). If there exists a generating set {B,,...,B,} of 4
such that

B;={Bec%:B"ecDBj}
then D|g is an injective group homomorphism.

Proof. For any product B = [[;-; B, of generators, one may write

n
B=|[{B:B*€B;}={B:B*€B}j} --{B:B* € B},}
i=1
In general, the n-fold symmetric difference is given by the collection of all points belonging to an
odd number of sets in the product. Hence, the only surviving terms in the product above are those B
intersecting an odd number of sets in the product above, i.e, the B’s such that B* € By, N..N By,
with np and odd number. Therefore:

D(B)=D({B:B* € B N..NB, ,(~1)"" = —1})

Znpgo

n n
={B*:B*€B;, N..NB;, ., (-1)"" = -1} =[[ Bf = [[ P(B))
=1 i=1

n n
— o[ - Tl
i=1 i=1
The property holds for an arbitrary product of general elements of & as well, since these are
given by products of the generators. This proves that D|¢ is an homomorphism. Note that for any
B € ¢ such that D(B) = @ then B must be empty, since otherwise we may write B = { By, ..., B}
so that

g ={Bj,... B}
A contradiction. Hence the kernel of D|y is trivial and it is injective. O

Note that if d is surjective, then so is D: given (B, ..., B}) € Z (%), then pick A, ..., A, € &
such that A} = Bf, ..., A} = B} and therefore D({41,...,A,}) = {Bj], ..., B}}. Moreover, if d is
injective, then the condition of the lemma above (for &4 = (%)) is satisfied: taking as generators
the whole &(%) and given arbitrary B = {C1,...,Cp} € P(H) and B € A such that B* € B*,
then d(B) € B*, i.e, d(B) = d(C}), for some C; € B. By injectivity, B = C; € B and hence

B> {B:B*"eB*}

Of course, for every C; € B one has C; € B* so the other inclusion holds and equality is
achieved. Therefore
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Corollary 2.13. If d : # — B* is bijective, then the map D : P(B) — P (F*) is a group
isomorphism.

Note, however, that asking for d to be bijective is not necessary to ensure that D]y to be a
group isomorphism. We can ask instead the weaker conditions of surjectivity for d and that D maps
) to I} while satisfying the conditions of the above lemma. This ensures that D]y, — I'} is an
isomorphism, as we wanted. Therefore, we arrive at the following definition of duality:

Definition 2.14. Let (A, K) and (A*, K*) be finite lattice systems and consider the maps d : B —
PB* and D : P(B) — P(B*) as before. If the following conditions are satisfied:

1. The map d is surjective and the conditions of lemma 2.12 are satisfied for & ;
2. D(H) =T

8. The interactions are related by:

exp(—2K*(B*))= ] tanh(K(B))
Bed—1(B*)

Then (A*, K*) is called a dual lattice system for (A, K).

Note that the dual set of bonds Z* is not specified. There is, however, a general way of con-
structing dual lattice systems for our ferromagnetic case, and in this construction the dual bonds
will be specified naturally. The type of duality specified in the definition above is called "HT-LT"
duality, which is short for high temperature - low temperature duality. There are other types, like
LT-HT, HT-HT and LT-LT duality. The difference between these definitions is the relation of J#y
and I'y and the map D, so for example for LT-HT duality we have D(I'y) = J#" and for HT-HT
duality we have D(J#)) = )"

Let us suppose that d is bijective and extract the first consequence of the duality relations above.
Starting from the low temperature partition function, we have

Zis=2"s [ ep®*B%) Y. [[ exp(—2K*(B*)

B*ed(#y) B*el';, B*eB*
=2V ] exp(2k*(B)) 2 Y. [ tanhk(d ()
B*ed(Aa) B*el'} B*€B*
_ oN: cosh K (d—!
2 H Snh K (4T Z H tanh K (B
Bred(#,) Be%,\ BeB

. cosh K (B)
— 9Ns tanh K (B
I\ amrm > 1L
Be%x BGWABEB

Therefore

Z « h K ( B
# = olAI=N5 H sinh K(B) cosh K(B)
A*B Be%Bp

= 9IAI=Ng—|%4 H V/2sinh K (B) cosh K (B)

Be%Bp
— NNl [ /snh 2K (), (2.11)
Be%Bp

which is the duality relation for the partition function.
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Lemma 2.15. (A*, K*) is a dual lattice for (A, K) if the following conditions hold:

1. The map d : B — FB* is surjective, the conditions of lemma 2.12 are satisfied and the image
of a set of generators for ) by D is a set of generators of I'};

2. The interactions are related by:
exp(—2K*(B*)) = ] tanh(K(B))
Bed—1(B*)

Proof. We only need to prove D(.#3) = I'}. Since the conditions of lemma 2.12 are satisfied for
), then we already know that D is a homomorphism. Fix a set of generators {Bj, ..., B,,} of )
such that {B7, ..., B;,} generates I'}. Thus, any B € J#) can be written as a product:

k
:HE
i=1

and we have D(B) = (Hl 1B, ) = Hf 1By, € T}, since T'} is a subgroup. Moreover, given

any B* € I} we have B* = HZ 1 B HZ D(B,,) =D (Hle ﬁni) € D(#)), since #) is a
subgroup. This finishes the proof.
0

To end the section, we shall prove the following result:

Lemma 2.16. Let {A, By, K} be any finite lattice system. Then, for any HT-LT dual {A*, B*r~, K*}
we have

(TB)A 2y, K = (ILB*) A* %y K
where pp = [[gep exp(—2K(B)op).
Proof. First, write og = —ie 395 and rewrite the expected value as

<U§>{A,K} = Z{’A{K} JE(X)SEBG%A K(B)op(X)

XCA

=Z }Z I (=i)erzon0 e=pemy K(B)on(X)

— (_Z)‘E‘Z{AlK} Z eZBEBZQUB(X) ZBe@A K(B)op(X)
XCA
( lBlZ{_A K) Z ezBe@A & op(X )7

XCA

where we define the new interaction K by

(B) - K(B), if B¢ B;
- | K(B) +iZ, if B € B.

Therefore, with respect to the finite lattice system (A, K ), we have

(oB) (A} = (i IR _(pim Dy DRy Ziaskey
2. ’ Z{A,K} Z{A*,f(*} Z{A*,K*} Z{A,K}

(2.12)
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The first and last terms can be computed by the duality relations of the partiton function (see
equation 2.11), and they yield

{AK} =C H \/sinh2K (B

Z{A* K* BG@A
{A K) =C H \/SlnhQK
{A* K*} BEB

where C' = 2M=N5=I%al is a constant depending only on |A|, N & and %) and hence is indeed
equal for both terms. Therefore, we have

Z{A,f(} Zip+ K} H sthK B)

|l 2.13
Zine iy Ziaxy g\ sinh 2K(B) - (2.13)

and we noted that for every B € %, such that B ¢ B, we have K(B) = K(B) and hence
the corresponding term in (2.13) equals 1. If otherwise, then sinh(2K (B)) = sinh(2K (B) + i) =
—sinh 2K (B) and hence the corresponding term is 7, so overall the value of (2.13) is in fact iZ. As
for the middle term in (2.12), we use the duality relations between the interactions

¢ 2K (BY) — tanh K (B)
e 2K"(B") = tanh(K(B))
~ 1 ~ 1 1. tanh K(B)
— K*(B*) — K*(B*) = —= logtanh K(B) + -~ logtanh K (B) = - log —————.
(%) = K*(5°) =~ ogtanh K(5) + 3 logtanh K(5) = 3 log )
By using the relation tanh(z — i%) = coth(x) and defining ¢(B) < log tanh K (B), we get?
K*(B*)—K*(B*) = ¢(B)dpep, so that K (B)op+() = K (B")op+ () ep(B)op+()95eB and the middle
term in (2.12) is

Z{A*JN{*} {A* - Z ZB*EJQ* K* (B*)op*(X*)

Z * *
{A 7K } X*CA*

Ziowy Do I1 MO~z 3 [ e (el Blinenen (4)

X*CA* B*€Z )« X*CA* B*e %, «

g Z{Al* K*} Z H eK*(B*)GB*(X*) H ecp(B)oB*(X*)éBeﬁ

X*CA* \B*€Z;}« B*e# «
=7 L ) Z H o (B)op=(X*) H oK (B*)ops(X*)
X*CA* \BeB B*€Z} «

After using again the duality relations between the interactions, we note that ¢(B) = —2K*(B*).
Substituting this in the above, we get:

Z{A*,f(*} {A*K*} Z H 2K (B (X7) <H e—K*(B*)aB*(X*)>

Z *
{Ax K} X*CA* \ B*eB* B*c B+

5If B € B, then K(B) = K(B) — i%, so that tanh(K(B)) = tanh(K(B) — i3) = m

Llog E?Tﬁiﬁg; = logtanh(K (B)) = ¢(B). If B ¢ B, then K(B) = K(B) and the logarithm term yields zero.

and hence
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B*eB*

:< H e—QK*(B*)UB*(')> (2.14)
{A* K}

Plugging equations (2.13) and (2.14) into (2.12), we have, finally,

{A*.K*}

B*eB*
O

It is not hard to see that the same result holds if we replace %) with B , and for LT-HT duality
we get (LB)A, 2y K = (OB*)A* B \u K+

2.2.1 Construction of Dual Lattices

For the rest of this section, #) C (%) will denote the subgroup of all B = {Bjy,..., By}
contained in A with product being the identity. For the rest of the thesis, %’1{ will denote the
collection of all bonds contained in A.

Suppose that we found a generator %y C #) of ) and denote its elements by By,...,B,,. To

each B; we define a point 7 (usually the barycenter of |J B) and we define A* as the collection
= BEB;
of all points of this form.

For any given bond B € %, we define the dual bond B* as

B* & {r, : B; > B},
and we define #* as the collection of all subsets of this form. This defines a map d : & — $B*.
With these definitions, we have
Proposition 2.17. The lattice system (A*, B*) constructed above is a dual lattice system for (A, B).

Proof. First we will show that B, = D~!'(D(B,)), and this will imply that D|, is an injective
group homomorphism. To fix notations, set B; = (B4, ..., By) and we shall prove that B* € B} if,
and only if r € B*.

First, suppose that B* € B}, so that there is some k satisfying B* = Bj. Since By € B;, then:

T*ﬁi € {r*ﬁj : By, € Ej} = B; = B*.

Now, suppose that r; € B*. Then, since {r; : B € B;} = B*, this implies B € B, and
B, B,
therefore B* € B}, as we wanted. This show the equivalence we wanted. Note that in particular
this implies the following useful equality:

B} ={B":B*€Bj}={B" 1} € B} (2.15)

By gluing together our argument thus far, we now have a sequence of implications:

B* € B = rp € B* = Be€ B,

Since the other side of the implications is trivially true, B* € B if, and only if B € B;, which
is the same as saying Bf = B* implies B, = B or D~Y(B}) = B,, i.e, D71(D(B;)) = B,.
Now, note that the family of all {z} with x € A generates Z(A). Since 7 is a homomorphism,
then the image of this family by ~ generates I'y, so the sets y({z}) generate I'y = y(Z(A)).

However, we note the following:
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Y({}) = {B: op({a}) = —1} = {B: B3 z}.
Applying this result to the dual lattice we built, we get that:

D(B;) ={B":rp, € B} =7"(rp,);

where we have used equation 2.15. Hence, D maps a generator of %, into a generator of I'}.. This
proves the proposition.
O

This proves dual systems always exist. We will now provide explicit examples for a few models.
The main strategy is the following: by the first isomorphism theorem for groups, we have?

P(B) Ay = n(P(B)) = B,

which implies | £} | = I ZA1=N:  This yields a way of finding generating subsets of JZj: we only need
to find independent (in the sense of Zs-vector spaces) subsets of ) with L%’/f\| — N; elements. In
general, these subsets are not too hard to find.

First, we will provide examples in which there are external fields present. This means that every
singleton {z} with z € A is a bond. In special, this implies that {z : € A} C 2., and hence

PN)={zx:x €A} C %{ Since the other inclusion holds trivially, we have & = 22(A), which
implies N; = |A], so that J#, is generated by L%’IJ;] — |A| elements.

Considering the family of all B = {B, z1, ..., x, }, where B € 95/{ and {x1, ...,z } = B (this does
not include the singleton sets of the form {z} with x € A), there are a total of |¢%’/{| sets minus
the singletons, which account for |A|, as wanted. Now, in general, an n-fold symmetric difference

n
AT | A; is empty if every € (J A; is contained in an even number of the A;. This is the case for
i=1
the sets {B, z1, ...,z } above, since every x € B is contained only in a singleton set and in B itself,
implying that B € J#). Moreover, the collection is also independent: by labeling B = {B, z1, ..., T, }
with B = {z1, ...,z }, then if

Be#,

|B|>2
with every term in the product being distinct from the others implies that, for any B’ € ,%’1{ with
|B'| > 2, we have

s=1] &

Be#]
|B>2
B£B'
In special, if B’ is not empty then it must contain B’ and hence B’ must be in some B with
B # B’. This is impossible, since B’ € B implies B’ = B. Therefore, this proves that

{B={B,z1,...,zn} : B={z1,...,2,} and |B| > 2}

is independent and hence a generating set for J£,. The map d : & — ZB* then gives the following
description: for any B € %’1{, we have B* = {r*ﬁ : B e B} = T?Bm’._.’%p since the only B in
the generating set containing B must the {B,x1,...,z,}. In this way, we see that the dual model
maps bonds B with |B| > 2 to an external field in the barycenter of B. In special, in this specific

4 #) is the kernel of m, and (2 (%)) is the group consisting of all products of elements of 2(%J) by the
definition of the map 7, which coincides with the subgroup generated by & (t%’f\)
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construction we have done, dual models to models with external field always have external field
themselves.

Moreovever, any singleton bond {z} corresponding to an external field is mapped to B* = {r7}; :
{z} € B}. This is more easily seen in the following way: given some x € A, the corresponding dual
interaction is built by finding all B € # containing this point. Then, the set of all the barycenters
of these B define the dual interaction. We now turn to the examples.

e Nearest neighbor Ising model with periodic boundary conditions and external field:

a b b
® ® ® ®

Here, we begin with the box on the left, where the black dots represent the vertices of the lattice.
Since the interactions respect a periodic boundary condition, the vertex a interacts with b, b, ¢ and
C.

Passing through the arrow, the dual vertexes are the barycenters of the nearest neighbor inter-
actions, which are represented in the lattice on the right by the black losangles. The interactions
are given by the procedure described before and in this case are four-body interactions. The inter-
actions strictly inside the dual lattice happen only on the boundary of the non-shaded losangles
(those with barycenter consisting of a "normal" vertex), and the vertexes on the boundary give rise
to the four-body interactions described by the periodicity of the boundary condition. For example,
the dual four-body interaction corresponding to the vertex a is the collection of all dual vertexes

labeled a* in the dual lattice. Note that the dual systems inherits the periodic boundary conditions.

e Nearest neighbors 4-body interaction Ising model with periodic boundary conditions and
external field:

@ @ @ @ @ - @ } } } }

oo o o o D
The dotted lines in the lattice represent layers of the periodic boundary conditions. The barycen-
ters of each square representing an interaction define the dual lattice and the procedure described
above also yiels a four-body interaction for the dual model. Since both the system and its dual have
the same lattices and interaction type (up to a translation), we say that the system is self-dual.

e Nearest neighbor Ising model with free boundary conditions and without external field:



52 DUALITY TRANSFORMATIONS FOR 1/2-SPIN SYSTEMS 2.2

The main difficulty in this example is the fact that |2 is not equal to 2lAl anymore, since there
is no external field. Instead, we have to compute by more direct means the minimal number of
generators of J}.

The new strategy is to use lemma 2.3 to get Ng + N; = |A|. Since in the non-external field case
there are exactly two elements in .7, being the + and — configurations everywhere, then Ng =1
and hence N; = N2 — 1 = (N — 1)(N + 1), where we put A as a square of side N. Moreover, it is
not hard to see that there are 2N (/N — 1) bonds. Then, the number of minimal generators of %} is

| B — N;j=2N(N —-1)— (N -1)(N+1)=(N-1)2N =N —1) = (N - 1)2

It is very easy to see that every loop of bonds in this model is an element of J#3. Thus, for each
r € [N —1,N — 12N Z? we can associate the set x = {B1, By, B3, By} defined below. The dual
model is also represented in the same picture:

@--®--©1-0-1@®

B4 1 1 1 1 1

G- 41-4-{-4-19

B | | | | |
1 i ®-F |- 1-4-1-®
7, oL+ e]ele

>
>
;
>
;

It is also not hard to see that the collection of all x is independent: if er[ No12nz2 L =D then
all the boundary x (those with x at the boundary) terms must be empty, otherwise we could take
a bond B € z which intersects only z and hence would be in the symmetric difference, yielding
a contradiction. We now repeat the process as many times as needed, erasing the new boundary
terms each time to get that all z must be empty.

As we can see from the general construction, the corresponding dual model is a nearest neighbor
Ising model but with external fields only in the boundary, since it is at the boundary bonds that
only one generator contains the given bond. In the picture, the losangles represent the dual vertices,
and the losangles within the circles represent the dual vertices having an external field. The dual
interactions are also of two-body type.

2.2.2 Duality in Infinite Systems

Instead of working with finite lattices, in this section we will define dual lattice systems for
infinite systems.

To start, the main difference is that in infinite systems we do not specify the finite box, so it is
just a pair (%4, K) of a set of bonds and the interaction between them.

Remember that the main point of the duality in the finite case was a map d : & — %£* mapping
the bonds onto the dual bonds such that d(.#y) = I'}. To generalize, we will consider a map
d: B — P$* such that d(H}) = (N where we define

Ay Z ker (| p, ()

def

I “im(y) and TV) & im(y| 2, (z4))-

These are the infinite volume counterparts of the already defined sets £, and I'y. Consider the
two conditions bellow:
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1. TY) =T N2 (B);

2. There exists a sequence of finite boxes A; — Z? such that for all 4 and | X| < co we have that
op(X) = 41 for all B € N Z(AS) implies a decomposition X = Y Sy with Y C A; and
Sf S

Note that condition (b) says that if a configuration X satisfies the definition of a ground state
only for bonds outside the fixed box A;, then the configuration can be decomposed as a product of
a configuration inside the box and a ground state. As for condition (a), it says that |y(X)| < oo
is equivalent to the existence of some finite X’ (not necessarily equal to X) such that v(X) = v(X’).

It is not hard to see that the construction made for the finite systems still works for infinite
systems, if the condition I'Y) = T'N P¢(A) is respected. One only needs to find a generating subset
Ho C A7 and repeat the procedure. The main difference is that the methods we used to prove that
the subsets 7 generate %) in the finite case only work in finite lattices, so in the infinite case we
need to show this fact directly. Usually, one needs to know what the elements of J#}; look like to
then find a suitable generator.

Now, even though dual systems satisfy d(#7) = I'* N P¢(#*) = I'D” by definition, condition
(a) also implies the converse (see [GHMMS77], chapter 4), that is, d(I'/)) = H

Using both conditions (a) and (b) above, one can transfer the duality in an infinite system to
duality of a growing sequence of finite systems. In this construction, we build the dual systems by
collecting all the sites covered by the %,, into a new lattice A}, i.e, we set AY := |J B. Note that

BeAy,

A7 will only be finite in the case where the interactions are short-range. This effectivily transfers
the ” +” boundary condition into free boundary conditions in the dual system, as the next lemma
shows:

Lemma 2.18. Let {Z% %, K} be a ferromagnetic system satisfying the conditions (a) and (b) above.
Then for any dual system {74, %*, K*} we have:

o () =07
o If the dual system satisfies the same hypothesis, then ((-)f)* = (-)%

where, for any Gibbs measure (-) in {Z4, B, K}, we define ((op+))* = (up) and (-)3 means the usual
Gibbs measure with boundary condition Y on the dual system. Moreover, for any Gibbs measure (-),
if ((-))* is a Gibbs measure for the dual system then we have the inequalities

o (08)" = (0B)" = (08)s = [Ipep tanh K(B);

o 1> (up)s = (up)" = (np)"
for any boundary condition Y for which the thermodynamical limit exists.

Proof. Applying condition (b), for each i we have I'y, = rfnp (An,). Indeed, the inclusion C is
obvious and, as for the other inclusion, for every X with |X| < oo and such that y(X) C %x, we
have by definition of v that every bond B such that op(X) = —1 is in #x, and hence all bonds
B not intersecting A; must satisfy op(X) = +1. By condition (b), this implies a decomposition
X =Y S, withY C A; and Sy € .. Since 7 is a homomorphism and v(S) = @ for all S € . (just
compare the definitions of v and .¥), then v(X) = (Y. Since Y C A;, this proves the inclusion
O.
Since we have d(I'f)) = ", then

d(Ty,) = dCW) N P(dBy,) = K7 0 P(dBn,)
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The last equation says that (A}, d(%x,)) is a LT — HT dual of (A;, Ay, ), where A} & Uy B~
BE%’Ai

Now, let B* € d(#,) be any and take a sequence KZ; C A} of maximal volumes satisfying 93/% C

d(A),). Then, since by Griffith’s inequalities the correlation functions are non-decreasing functions

of the interactions, we start in the system (A}, d(Z,,)) and tune down all interactions Kp with

B € d(A,,) \%’/f\N to zero. After doing this, all interactions in the region A} \Kf are killed, so the

left-over system is just Kf with free boundary conditions. Thus, we achieve the inequality

(08*) (5% . }S (057 ) (Ar,d(2a,)}-

By the same argument of Griffith’s inequalities, since d(%y,) C %’fﬁ by the definition of A},
similarly we have <U§*>{Af,d(=@Ai)} < <U§*>{A;7%1f\f} and in total we obtain

(UB*>{A* ggf ) <o ){ard(#,)} < <UB*>{A* @f Bt

Then, as ¢ goes to infinity, the volumes KZ; and A} cover Z% and for hence the thermodynamical
limit yields
. - L\
(OB Az )y = (0805
Finally, using lemma 2.16, we have
* = = 1 pr— 1 * >k prm— * *
({op)+)" = (uB)+ = A}g%dWQ){Ai,%Ai} = Ai}linzd(og MAzd(#s,)) = (0B)F- (2.16)
We now proceed to prove the set of inequalities of the proposition. Pick any boundary condition
Y and transform (05*)’{ A,y into a correlation function in terms of free boundary conditions in the

following way: we first rewrite exp (—B.5) (-)) as

e—B%AYi(X H oB(X)op(YNAS)K H c0B(X)oB(YNAS)Kp
BEBN ., Be%#:
¢ BNA;#92
_ HeUB Yos(YNAS)K H eO'B(X)UB(YﬂAf)KB
Be%: Be#:
BCA; BNA#{2,B}
_ HeJB Yop(YNAS)K H eaB(X)KB H e—UB(X)KB ) (217)
Be%#: Be%#: Be%#:
BCA; BNA;#{2,B} BNA;#{2,B}
op(YNAS)=1 op(YNAS)=—1

To proceed, we will insert the term

H eoB(X)Kp H e—oB(X)Kp | —_ 1
Be%: Be#:

BNA;#{2,B} BNA#{@,B}

UB(YOA,?):fl UB(YﬁAf):f

between the last two products and then simplify similar terms. Moreover, we note that if B C A;,
then op(Y NA¢) = 1. In this way, equation (2.17) becomes
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HeaB(X)KB H 6UB(X)KB H e—QJB(X)KB

Be%: BeR: Be%:
BCA; BNA;#{2,B} BNA;#{2,B}
O'B(Yﬂ/\,?):—l

=ump(X) | J] €755 | = pup(X) exp(— 41 (X)),
BE@Ai

where b:={B € #Z: BNA; # {@,B} and og(Y N A{) = —1}. In terms of correlation functions,
for any B C %), this yields

>oxea, k(X) exp(=BA (X)) Xxea, 1(X)p(X) exp(—BA7 (X))

Y o_ —
WBIA = T (B (X)) > v, i(X) xp( A (X))
| Sen, mp(X)m(X) exp(—BA (X)) Cyen, x4 (X))
S ven oD BATE)  Toxon, m(X) exp( A7 (X))

(LBUB) (A2, }

(ko) (A5, 1

Since {Af,d(#y,)} is a LT — HT dual for {A;, Ba,}, by duality and by second Griffith’s in-
equality, we have

(o0B*0p+) A* . dBn.
<M§>¥Ai} = & )

*
= {0 pB* X ,
<0b*>{A?vd=@Ai} E=2 >{Awf}

where we remember again that (A}, d%,,) is a finite system with free boundary conditions. Taking
the thermodynamical limit and letting (-) denote the limit of the LHS, we get

(up)” > (op); = (uB)+.

Moreover, if the dual system satisfies the same conditions of the theorem, then we also get

(np=)y > (pB)i,

which translates to (op)Y > (op)s. To end the proof, all there is left to prove is the last lower
bound. To achieve it, simply write

doxcar e exp(=2K"(B")op- (X)) exp(—Ha: (X))

{oB)nis = (HB*)azs = > xcar(X) exp(—BH#4: (X))
> [ ew(-2k7(B*) = [] tanh(K(B)),
B*cB* B*eB*

where we bounded exp(—2K*(B*)op+ (X)) > exp(—2K*(B*)) and used the duality relation between
the interactions.

O]

2.3 Surface Tension: Duality Approach

In this section we will prove the convergence of the surface tension for Ising-like models. The first
step is to split Z¢ = Z2 U Z;’l (upper and lower parts, respectively), where Z¢ = {x € Z% : 24 > 0}
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and Zf = {2z € Z% : 4 < 0} and consider the boxes A of side lengths Ly, Lo..., Ly_1,2M with
Ly,...;Lqg_1,M > 0.

We let S € . be any and consider the boundary condition (S,+) such that the spin in the
region Zﬁ equals 1 and the spin in the region Zf is the same as S, that is, (S,+) =5N Zld.

The Ising-like Hamiltonians to be worked with are of the form

A (X)E = " Jpop(X - Yae), (2.18)
Be%Bp

where Yy =Y N A€ Here it is crucial, again, that we work in a model of short-range interactions,
meaning that all B € £ have their diameter uniformly bounded by some finite constant. This
guarantees, for example, that %, has finitely many elements. The limit of interest here is the one
in equation 1.39 and, up to the negative sign and the inverse temperature, is equal to

lim lim — log AP
Li,....,Lg_1—00 M—o0 LlLQ...Ld_l ZX—,B

We will prove that it indeed exists in the ferromagnetic case and it is uniformly bounded above.
Putting Y = S N Z¢, the Hamiltonian with respect to this boundary condition can be written as

(X)) == Y Jpop(X - Yae) =~ Y Jpop(X)op(SNZINAY).
Be%x Be%x
After adding and subtracting ,%’f(X ) from both sides of the equality, one gets
AIDX) = A5 (X) == Y Jpop(X){op(SN A NZY) — 1},
Be%Bp
Now, for all B € v(Yac) by definition o5(SNZINA®) = —1 and hence there is an overall factor
of 2 in the right hand side and for all B ¢ v(Ya<) the factor in parenthesis is zero. Hence
A X) -5 (X)) =2 Y Jpos(X). (2.19)
BE’Y(YAC)I’L@A

In terms of the partition function, we have

Yxcaexp(=BAT (X)) exp(=2 ¥ Jpop(X))

Z/(\S’—H _ ZXcA exp(_l&%ﬂ/\(&ﬂ(‘x)) _ Bey(Yac)NBa
zy Y xca exp(—=BA7 (X)) > xcaexp(—=B7 (X))
+
exp(—pBA;" (X))
Y I e D
XCA Bey(YEN#y) XXC:AGXP(_B‘%% (X)) Bey(Yae)nZa |

We now note that, defining A; AN Zf and A, £ AN 74,

(SNAS) - Yae = (SNAD) - (SNZINAY) = (SNAH\(SNZINA) = SNzl
and therefore Yae = (SN A¢) - (S NZ2). Thus,
Y(Yae) N Ba = {(SNA]) - 7(S N Zy)} N B

— (1(SN A N B} (1SN ZD) N B} = 6L - By,
Note that for all B € (S NZ%)} N %, = B, the bond intersects the box A and Z%° and

Psince if BN Z% = @ then we would have o5(S N BNZ$) = 1, contradicting the definition of v(S N Z%)
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hence intersects the upper part A, of the box. If, however, we had B C Zﬁ then we would get
—1 = op(SNZ) = (—1)IFNBZl = (—1)I57Bl = 55(8) = 1, a contradiction. Therefore, every
B € (SN Z%) intersects Z¢ and also Z<. Since we are working with short range interactions, this
implies that for M large enough the number of bonds in v(S NZ%)} N %, = B, is constant.

By exercise 3.12 of [FV17], for all large enough M we then get that

Z(5:4) "
%+ = < H NB> = <U§X>{A*7d(%A)}
A Bevy(Ypac)NBa A

is a non-decreasing function of M, where A* =J B* (remember that (A*,d(%,)) is a dual system
BEBn
for (A, %AB,), as in lemma 2.18 for a proof). Therefore, the map

(5:4)

Z

M — log < A+ )
ZA

is non-decreasing and bounded above by zero, implying that

i 1og (20
e B\ T 2T

A

exists. Before proving the existence of the surface tension, we will first prove that it is bounded
below if it exists. To do this, we first note that

d—1
1Byl <C H L, (2.20)
i=1
where R is the maximum range of the interactions, i.e, R := max{|B| : B € &} and C :=

21B2rO)] ig the number of subsets in the ball of radius 2R in the f~ norm. This is true because
the number of such bonds is certainly bounded by the number of bonds intersecting the separation
plane, and this number is bounded by H?;ll L; (i.e, the area of intersection of the box with the
separation plane) times the number of bonds intersecting the lower and upper plane and containing
a point x € Hf:_ll L;. For each point = € H?:_ll L;, the number of such bonds is bounded by the
number of subsets in the ¢, norm ball of radius 2R with center in z, finishing this argument.

Now, by the end of the proof of lemma 2.18 and the duality relations for the interactions, we
have for all sufficiently big values of M

Z/(XS,-&-)

S = sy > [ tanh(Kp) = T e ),
A

BeB} BeB,

Applying the logarithm on both sides, bounding Kp < K = max{Kp : B € 5} and using the
last upper bound, this implies that

(S,+) d-1

Z .

log ( % ) >-2 Y Kp>-2KC[] L (2.21)
i=1

A BeB,

d—1
Taking the limit first on M and then dividing both sides of the inequality by [[ L; we get that
i=1

the surface tension is bounded below by —2KC , if it exists. To prove why it exists, we first define
the function

(S,+)
— T; A
f(Lla "-aLd—l) = ]\}I_I?OOIOg ( ZX > ) (222)
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and we wish to show that f is superadditive in each variable. To see why this holds, pick some
1 < i < d-—1 and split the box as A = A’ UA”, where A’,A” are the sub-box with sides
(L1, .y Li—1, L;, Liy1,...,Lg—1,2M) and (L1, ..., L;—1, L yLit1, ..., Lg_1,2M) respectively. Note that
B,/ - B consists of bonds B € (v(SNZL)NByr)- (v (SﬂZg) NAByr) and we note that by definition
they intersect either A’ or A”, but not both simultaneously. If we add this missing set of bonds into

the symmetric difference above, we recover B, .
def

Hence, if we define 0B, = B, \ (By/ - Byr) then 6B, is disjoint of B,/ - By» implying that
By - Byv - 6B, = Bj. One can then repeat the arguments above to get

d—1
6B, < C[] L;-
j=1
J#i
Before taking the limit in M, note that Griffiths second inequality and exercise 3.12 of [FV17]
imply

Z/(\S’+)

+
ZA

= <U§A* >{A*,d(%A)} = <O-5§A* O-EA*’ O-EA*N ){A*,d(,@l\)}

> (0B, ) A d(@Z)NTB ) (A d( B2} (T8, ) (A d(24))

(08,
> (o8 B, >{A* d(Ba <U§A* >{A*” d(BA)} <06§A*>{A*,d(%\)}

(S+) (5,+)
> AR H o—2K(B)
- Z+/ Z+N ’
A A BedB,
where we have used lemma 2.18 again for the last term. Taking the logarithm on both sides, we
have
S,+) (S:+) (S,+) d—1
7 A% Z\ .
log< ZX ) 210g< ZA/ ) +log< ZA// > —QC’KHL]-,
7j=1
J#
and hence

f(Lh ceey Li—17L/i + L?a Li+17 ceey Ld—l) Z
o d—1
f(L17 ceey L7,_1, L,IL, L’l+17 ceey Ld*l) + f(L17 ceey LZ—17 L’/L/’ LZ+17 aeey Ld*l) - 2CK H L’L‘
j=1
i
If we now define the function g(L1, ..., Lg—1) = f(L1, ...,Ld_l)—26'[~(L1...Ld 1 i % = f(L1,...;Lg—1)—

26[?(L2L3...Ld,1 +LiLs...Lg 1+ ...L1Ls...Ly_5), then g is superadditive in each Varlable. For ex-
ample, we have
g(L/I + L/llv L27 ceey Ld—l) 2 f(Lllu L27 ceey Ld—l) + f(L/1,7 LQ) ceey Ld—l)
—26I?L2...Ld_1 — 26[?(L2...Ld_1 + L/1L3...Ld_1 + L/1,L3...Ld_1 + ...+ L,1L2...Ld_2 + L,1/L2...Ld_2)
= (f(L), Lo, ... Lg_1) —2CK(La...Lg_1 + L\ L3...Lg_1 + ... + L Ly...Lg_3))
+(f(LY, Ly, ... Lg_1) —2CK (Lg...Lg_y + L"L3...Lg_1 + ... + L'/ Lo...Lg_5))
= g(L/17 LQ? '“7Ld71) + g( /1/7 L27 ceey Ld*l)

We now use Fekete’s lemma repeatedly: first, we note that the limit on L; of g(Lq, ..., Ld_l)%1
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exists, which we denote by g(La, ..., Lg—1). Therefore, the limit on Ly of f(Lq, ..., Ld—l)l% also exists

and equals g(Lo, ..., Lg—1) + 25]?(L3L4...Ld,1 + LoLy...Lg—1 + ...+ LoLs...L4_2), and we denote
f(La,...,Lg—1) = limp, o0 L%f(Ll,Lg,...,Ld_l). Of course, g(La, ..., Lg_1) is also superadditive,
being the limit of superadditive functions. We now iterate the procedure to get the existence of

: : f(LysLa—1)
thdfl‘ﬂ)O thlﬁ)OO TILiLo -
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Chapter 3

Concluding Remarks

The main theorems of this thesis concern bounds and existence results for the surface tension.
These results include interesting applications, such as in the proof that the correlation functions
(ca)* with A C Z3 and 75(0,1) — 28J, both depending on (3.J, are analytic in z = e B (see
[BLP79]). For this proof, one uses the uniform bound in L found in the last section. Another
application, for Potts models with 2" spins, one can transform the model to a ferromagnetic Ising
model ([BLM83]), and hence the surface tension in this case exists by the same technique used here.

One could ask for generalizations of both papers for long range models. One indicative that
this is possible in [BKL83| is the existence of long-range extensions of Pirogov-Sinai theory (see
for example [Par88a| and its continuation [Par88b]). We note, moreover, that a cluster expansion
method was employed starting in lemma 1.17. By cluster expansion, one usually means a way to
write the free energy of the system as a convergent series in terms of collections of contours, called
polymers or clusters.

In the classical theory of Pirogov and Sinai, the contours are connected and there is no interaction
between them. In the long range picture, however, the picture is very different. Here, the contours
are usually disconnected and there is no way of making them not interact with each other, since
the spin interaction radius is infinite. In the special case of the d-dimensional long range Ising
model with interactions va—%’ a recent work in progress of Lucas Affonso, Rodrigo Bissacot, Joao
Maia, Joao F. Rodrigues and Kelvyn Welsch proved the convergence of a cluster expansion for all
regularity region o > d > 2 of the form

log Zng = Y ¢"(X) [] 24 (D),

Xcef rex

where £ denotes the collection of external contours with boundary condition + and zg ()
are the activities for the model. Here, the contours are different from the Pirogov-Sinai contours
presented in this thesis, as they are partitions of the set of incorrect points satisfying a certain
separability condition. A convergent cluster expansion for the one dimensional model was proved
for o € (3— }E—%,Q] in [CMPR14], and these results can be used as a substitute for the cluster
expansion used in lemma 1.17.

As for [GHMMST7], problems include that the general construction of dual lattices may not
work anymore and some proofs become invalid. In fact, in this case &?(%,) is infinite and therefore
J) is infinite, so it may have an infinite set of generators. Following the construction of dual models,
this would yield some infinite A* even though A may be finite.

Going back to the proof of lemma 2.18, one of the main steps was to construct a finite dual

system by setting the lattice as A* o U B*. In special, if the duality map d is injective then
BeZA,

this A* would be again infinite for long range models.

61
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