• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2016.tde-01062016-162917
Document
Auteur
Nom complet
Guilherme Ost de Aguiar
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Galves, Jefferson Antonio (Président)
Cassandro, Marzio
Ferrari, Pablo Augusto
Locherbach, Eva
Maus, Jacob Ricardo Fraiman
Titre en portugais
Limite hidrodinâmico para neurônios interagentes estruturados espacialmente
Mots-clés en portugais
Limite hidrodinâmico
Processos markovianos determinísticos por partes
Sistemas de partículas interagentes
Sistemas neuronais
Resumé en portugais
Nessa tese, estudamos o limite hidrodinâmico de um sistema estocástico de neurônios cujas interações são dadas por potenciais de Kac que imitam sinapses elétricas e químicas, e as correntes de vazamento. Esse sistema consiste de $\ep^$ neurônios imersos em $[0,1)^2$, cada um disparando aleatoriamente de acordo com um processo pontual com taxa que depende tanto do seu potential de membrana como da posição. Quando o neurônio $i$ dispara, seu potential de membrana é resetado para $0$, enquanto que o potencial de membrana do neurônio $j$ é aumentado por um valor positivo $\ep^2 a(i,j)$, se $i$ influencia $j$. Além disso, entre disparos consecutivos, o sistema segue uma movimento determinístico devido às sinapses elétricas e às correntes de vazamento. As sinapses elétricas estão envolvidas na sincronização do potencial de membrana dos neurônios, enquanto que as correntes de vazamento inibem a atividade de todos os neurônios, atraindo simultaneamente todos os potenciais de membrana para $0$. No principal resultado dessa tese, mostramos que a distribuição empírica dos potenciais de membrana converge, quando o parâmetro $\ep$ tende à 0 , para uma densidade de probabilidade $ho_t(u,r)$ que satisfaz uma equação diferencial parcial nâo linear do tipo hiperbólica .
Titre en anglais
Hydrodynamic limit for spatially structured interacting neurons
Mots-clés en anglais
Hydrodynamic limit
Interacting particle systems
Neuronal systems
Piecewise deterministic Markov process
Resumé en anglais
We study the hydrodynamic limit of a stochastic system of neurons whose interactions are given by Kac Potentials that mimic chemical and electrical synapses and leak currents. The system consists of $\ep^$ neurons embedded in $[0,1)^2$, each spiking randomly according to a point process with rate depending on both its membrane potential and position. When neuron $i$ spikes, its membrane potential is reset to $0$ while the membrane potential of $j$ is increased by a positive value $\ep^2 a(i,j)$, if $i$ influences $j$. Furthermore, between consecutive spikes, the system follows a deterministic motion due both to electrical synapses and leak currents. The electrical synapses are involved in the synchronization of the membrane potentials of the neurons, while the leak currents inhibit the activity of all neurons, attracting simultaneously their membrane potentials to 0. We show that the empirical distribution of the membrane potentials converges, as $\ep$ vanishes, to a probability density $ho_t(u,r)$ which is proved to obey a nonlinear PDE of Hyperbolic type.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TESE_GUILHERME.pdf (641.78 Kbytes)
Date de Publication
2016-07-26
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.