• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2007.tde-01072007-080446
Documento
Autor
Nombre completo
Karin Ayumi Tamura
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2007
Director
Tribunal
Giampaoli, Viviana (Presidente)
Cysneiros, Francisco José de Azevêdo
Paula, Gilberto Alvarenga
Título en portugués
"Modelo logístico multinível: um enfoque em métodos de estimação e predição"
Palabras clave en portugués
Modelos multiníveis
predição da variável resposta.
regressão logística
Resumen en portugués
Modelo multinível é uma ferramenta estatística cada vez mais popular para análise de dados com estrutura hierárquica. O objetivo deste trabalho é propor um método para realizar a predição de observações de novos grupos usando modelos de regressão logística multinível com 2 níveis. Além disso, é apresentado e comparado dois métodos de estimação para o modelo multinível: Quase-verossimilhança Penalizada (QVP) e Quadratura de Gauss-Hermite (QGH). A idéia central está baseada no trabalho de (Jiang e Lahiri, 2006) no qual se propõe o uso do chamado melhor estimador empírico para o efeito aleatório. Através deste estimador, utilizou-se a parte fixa do modelo em conjunto com uma estimativa do desvio padrão do efeito aleatório para fazer a predição de observações de novos grupos, encontrando a probabilidade estimada dessa observação apresentar o evento de interesse, dadas suas características.
Título en inglés
Multilevel logistc model: focusing on estimation and prediction methods
Palabras clave en inglés
logistic regression
Multilevel models
variable response prediction.
Resumen en inglés
Multilevel model is an statistical tool which is becoming more and more popular in data analysis with hierachical structure. The purpose of this dissertation is to present a method to make a prediction of new group observation in multilevel logistic regression models with 2 levels. Besides, were presented and compared two estimation methods for multilevel model: Penalized Quase-likelihood and Gauss-Hermite Quadrature. The central idea is based on the paper of Jiang and Lahiri (2006), which is presented the empirical best estimator for the random effect. Through this estimator was used the fixed part of the model with an estimative of the standard deviation of the random effect to find the estimated probability of this observation presenting the target event, in accordance with its characteristic.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
KarinAyumiTamura.pdf (1.08 Mbytes)
Fecha de Publicación
2013-02-19
 
ADVERTENCIA: El material descrito abajo se refiere a los trabajos derivados de esta tesis o disertación. El contenido de estos documentos es responsabilidad del autor de la tesis o disertación.
  • TAMURA, Karin Ayumi, and GIAMPAOLI, Viviana. Prediction in Multilevel Logistic Regression [doi:10.1080/03610911003790106]. Communications in Statistics - Simulation and Computation [online], 2010, vol. 39, n. 6, p. 1083-1096.
  • TAMURA, Karin Ayumi, e GIAMPAOLI, Viviana. Predição em modelo logísticos multiníveis. Escola de Modelos de Regressão. In Escola de Modelos de Regressão, 10, Salvador, 2007.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.