• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2008.tde-03052008-170204
Documento
Autor
Nombre completo
Grazielle Yumi Solda
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2008
Director
Tribunal
Chiann, Chang (Presidente)
Lopes, Silvia Regina Costa
Toloi, Clelia Maria de Castro
Título en portugués
Modelos de memória longa, GARCH e GARCH com memória longa para séries financeiras
Palabras clave en portugués
FIGARCH
GARCH
Memória longa
retornos
variância condicional
volatilidade
Resumen en portugués
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (variância condicional) de séries temporais financeiras. O modelo ARFIMA é empregado para capturar o comportamento de memória longa observado na volatilidade de séries financeiras. Por sua vez, o modelo GARCH é utilizado para modelar a volatilidade variando no tempo destas séries. Finalmente, o modelo FIGARCH é utilizado para modelar a dinâmica dos retornos de séries temporais financeiras juntamente com sua volatilidade. Serão apresentados alguns estimadores para os parâmetros dos modelos estudados. Foram realizadas simulações dos três tipos de modelos com o objetivo de comparar o comportamento dos estimadores para diferentes valores dos parâmetros. Por fim, serão apresentadas aplicações em séries reais.
Título en inglés
Long memory, GARCH and long memory GARCH models for financial time series
Palabras clave en inglés
asset returns
conditional variance
FIGARCH
GARCH
Long memory
volatility
Resumen en inglés
The goal of this project is to present and compare differents methods of modeling volatility (conditional variance) in financial time series. ARFIMA model is applied to capture long memory behavior of volatility in financial time series. GARCH model is used to model the temporal variation in financial volatility. Finally, FIGARCH model is used to model dynamic of financial time series returns as well as its volatility behavior. We present some estimators for the studied models. Estimators behavior of the three types of models for different parameters is assessed through a simulation study. At last, applications to real data are presented.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2010-05-26
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.