• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2016.tde-03052016-183520
Document
Author
Full name
Plinio Lucas Dias Andrade
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Rifo, Laura Leticia Ramos (President)
Dorea, Chang Chung Yu
Leonardi, Florencia Graciela
Ruffino, Paulo Régis Caron
Sobottka, Marcelo
Title in Portuguese
Estimação do índice de memória em processos estocásticos com memória longa: uma abordagem via ABC
Keywords in Portuguese
ABC
Computação bayesiana aproximada
Inferência bayesiana
Processo estocástico com memória longa
Abstract in Portuguese
Neste trabalho propomos o uso de um método Bayesiano para estimar o parâmetro de memória de um processo estocástico com memória longa quando sua função de verossimilhança é intratável ou não está disponível. Esta abordagem fornece uma aproximação para a distribuição a posteriori sobre a memória e outros parâmetros e é baseada numa aplicação simples do método conhecido como computação Bayesiana aproximada (ABC). Alguns estimadores populares para o parâmetro de memória serão revisados e comparados com esta abordagem. O emprego de nossa proposta viabiliza a solução de problemas complexos sob o ponto de vista Bayesiano e, embora aproximativa, possui um desempenho muito satisfatório quando comparada com métodos clássicos.
Title in English
Estimation of the memory index of stochastic processes with long memory: an ABC approach
Keywords in English
ABC
Approximate Bayesian computation
Bayesian inference
Long memory stochastic process
Abstract in English
In this work we propose the use of a Bayesian method for estimating the memory parameter of a stochastic process with long-memory when its likelihood function is intractable or unavailable. Such approach provides an approximation for the posterior distribution on the memory and other parameters and it is based on a simple application of the so-called approximate Bayesian computation (ABC). Some popular existing estimators for the memory parameter are reviewed and compared to this method. The use of our proposal allows for the solution of complex problems under a Bayesian point of view and this proposal, although approximative, has a satisfactory performance when compared to classical methods.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-06-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.