• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2016.tde-03052016-183520
Document
Auteur
Nom complet
Plinio Lucas Dias Andrade
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2016
Directeur
Jury
Rifo, Laura Leticia Ramos (Président)
Dorea, Chang Chung Yu
Leonardi, Florencia Graciela
Ruffino, Paulo Régis Caron
Sobottka, Marcelo
Titre en portugais
Estimação do índice de memória em processos estocásticos com memória longa: uma abordagem via ABC
Mots-clés en portugais
ABC
Computação bayesiana aproximada
Inferência bayesiana
Processo estocástico com memória longa
Resumé en portugais
Neste trabalho propomos o uso de um método Bayesiano para estimar o parâmetro de memória de um processo estocástico com memória longa quando sua função de verossimilhança é intratável ou não está disponível. Esta abordagem fornece uma aproximação para a distribuição a posteriori sobre a memória e outros parâmetros e é baseada numa aplicação simples do método conhecido como computação Bayesiana aproximada (ABC). Alguns estimadores populares para o parâmetro de memória serão revisados e comparados com esta abordagem. O emprego de nossa proposta viabiliza a solução de problemas complexos sob o ponto de vista Bayesiano e, embora aproximativa, possui um desempenho muito satisfatório quando comparada com métodos clássicos.
Titre en anglais
Estimation of the memory index of stochastic processes with long memory: an ABC approach
Mots-clés en anglais
ABC
Approximate Bayesian computation
Bayesian inference
Long memory stochastic process
Resumé en anglais
In this work we propose the use of a Bayesian method for estimating the memory parameter of a stochastic process with long-memory when its likelihood function is intractable or unavailable. Such approach provides an approximation for the posterior distribution on the memory and other parameters and it is based on a simple application of the so-called approximate Bayesian computation (ABC). Some popular existing estimators for the memory parameter are reviewed and compared to this method. The use of our proposal allows for the solution of complex problems under a Bayesian point of view and this proposal, although approximative, has a satisfactory performance when compared to classical methods.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-06-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.