• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2013.tde-04042013-215702
Document
Auteur
Nom complet
Michel Helcias Montoril
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Morettin, Pedro Alberto (Président)
Chiann, Chang
Dias, Ronaldo
Pinheiro, Aluísio de Souza
Sato, João Ricardo
Titre en portugais
Modelos de regressão com coeficientes funcionais para séries temporais
Mots-clés en portugais
algoritmo de Daubechies--Lagarias
modelos de regressão com coeficientes funcionais.
ondaletas clássicas
ondaletas deformadas
Splines
Resumé en portugais
Nesta tese, consideramos o ajuste de modelos de regressão com coeficientes funcionais para séries temporais, por meio de splines, ondaletas clássicas e ondaletas deformadas. Consideramos os casos em que os erros do modelo são independentes e correlacionados. Através das três abordagens de estimação, obtemos taxas de convergência a zero para distâncias médias entre as funções do modelo e seus respectivos estimadores, propostos neste trabalho. No caso das abordagens de ondaletas (clássicas e deformadas), obtemos também resultados assintóticos em situações mais específicas, nas quais as funções do modelo pertencem a espaços de Sobolev e espaços de Besov. Além disso, estudos de simulação de Monte Carlo e aplicações a dados reais são apresentados. Por meio desses estudos numéricos, fazemos comparações entre as três abordagens de estimação propostas, e comparações entre outras abordagens já conhecidas na literatura, onde verificamos desempenhos satisfatórios, no sentido das abordagens propostas fornecerem resultados competitivos, quando comparados aos resultados oriundos de metodologias já utilizadas na literatura.
Titre en anglais
Functional-coefficient regression models for time series
Mots-clés en anglais
Daubechies--Lagarias algorithm
functional-coefficient regression models.
Splines
warped wavelets
wavelets
Resumé en anglais
In this thesis, we study about fitting functional-coefficient regression models for time series, by splines, wavelets and warped wavelets. We consider models with independent and correlated errors. Through the three estimation approaches, we obtain rates of convergence to zero for average distances between the functions of the model and their estimators proposed in this work. In the case of (warped) wavelets approach, we also obtain asymptotic results in more specific situations, in which the functions of the model belong to Sobolev and Besov spaces. Moreover, Monte Carlo simulation studies and applications to real data sets are presented. Through these numerical results, we make comparisons between the three estimation approaches proposed here and comparisons between other approaches known in the literature, where we verify interesting performances in the sense that the proposed approaches provide competitive results compared to the results from methodologies used in literature.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Tese_Montoril.pdf (4.43 Mbytes)
Date de Publication
2013-04-15
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.