• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
André Casagrandi Perette
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Patriota, Alexandre Galvão (Presidente)
Andrade Filho, Mário de Castro
Silva, Tatiane Ferreira do Nascimento Melo da
Título em português
Implementação no software estatístico R de modelos de regressão normal com parametrização geral
Palavras-chave em português
Correção de Skovgaard
Correção de viés
Estimador de máxima verossimilhança
Linguagem R
Parametrização geral
Resumo em português
Este trabalho objetiva o desenvolvimento de um pacote no software estatístico R com a implementação de estimadores em modelos de regressão normal univariados com parametrização geral, uma particularidade do modelo definido em Patriota e Lemonte (2011). Essa classe contempla uma ampla gama de modelos conhecidos, tais como modelos de regressão não lineares e heteroscedásticos. São implementadas correções nos estimadores de máxima verossimilhança e na estatística de razão de verossimilhanças. Tais correções são efetivas quando o tamanho amostral é pequeno. Para a correção do estimador de máxima verossimilhança, considerou-se a correção do viés de segunda ordem, enquanto que para a estatística da razão de verossimilhanças aplicou-se a correção desenvolvida em Skovgaard (2001). Todas as funcionalidades do pacote são descritas detalhadamente neste trabalho. Para avaliar a qualidade do algoritmo desenvolvido, realizaram-se simulações de Monte Carlo para diferentes cenários, avaliando taxas de convergência, erros da estimação e eficiência das correções de viés e de Skovgaard.
Título em inglês
Normal regression models with general parametrization in software R
Palavras-chave em inglês
Bias correction
General parameterization
Maximum Likelihood Estimator
Skovgaard's correction
Software R
Resumo em inglês
This work aims to develop a package in R language with the implementation of normal regression models with general parameterization, proposed in Patriota and Lemonte (2011). This model unifies important models, such as nonlinear heteroscedastic models. Corrections are implemented for the MLEs and likelihood-ratio statistics. These corrections are effective in small samples. The algorithm considers the second-order bias of MLEs solution presented in Patriota and Lemonte (2009) and the Skovgaard's correction for likelihood-ratio statistics defined in Skovgaard (2001). In addition, a simulation study is developed under different scenarios, where the convergence ratio, relative squared error and the efficiency of bias correction and Skovgaard's correction are evaluated.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (1.66 Mbytes)
Data de Publicação
2019-10-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.