• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2003.tde-07072006-122612
Document
Author
Full name
Maria Kelly Venezuela
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2003
Supervisor
Committee
Botter, Denise Aparecida (President)
Artes, Rinaldo
Peres, Antonieta D'Alcantara de Queiroz
Title in Portuguese
"Modelos lineares generalizados para análise de dados com medidas repetidas"
Keywords in Portuguese
dados longitudinais
equação de estimação generalizada
medidas repetidas
modelos lineares generalizados
quase-verossimilhança
técnicas de diagnóstico
Abstract in Portuguese
Neste trabalho, apresentamos as equações de estimação generalizadas desenvolvidas por Liang e Zeger (1986), sob a ótica da teoria de funções de estimação apresentada por Godambe (1991). Essas equações de estimação são obtidas para os modelos lineares generalizados (MLGs) considerando medidas repetidas. Apresentamos também um processo iterativo para estimação dos parâmetros de regressão, assim como testes de hipóteses para esses parâmetros. Para a análise de resíduos, generalizamos para dados com medidas repetidas algumas técnicas de diagnóstico usuais em MLGs. O gráfico de probabilidade meio-normal com envelope simulado é uma proposta para avaliarmos a adequação do ajuste do modelo. Para a construção desse gráfico, simulamos respostas correlacionadas por meio de algoritmos que descrevemos neste trabalho. Por fim, realizamos aplicações a conjuntos de dados reais.
Title in English
"Generalized linear models for repeated measures regression analysis"
Keywords in English
diagnostic techniques
generalized estimating equations
generalized linear models
longitudinal data
quasi-likelihood methods
repeated measures
Abstract in English
In this work, we consider the generalized estimation equations developed by Liang and Zeger (1986) focusing the theory of estimating functions presented by Godambe (1991). These estimation equations are an extension of generalized linear models (GLMs) to the analysis of repeated measurements. We present an iterative procedure to estimate the regression parameters as well as hypothesis testing of these parameters. For the residual analysis, we generalize to repeated measurements some diagnostic methods available for GLMs. The half-normal probability plot with a simulated envelope is useful for diagnosing model inadequacy and detecting outliers. To obtain this plot, we consider an algorithm for generating a set of nonnegatively correlated variables having a specified correlation structure. Finally, the theory is applied to real data sets.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Dissertacao.pdf (1.82 Mbytes)
Publishing Date
2006-08-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.