• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2011.tde-09052011-000104
Documento
Autor
Nome completo
Frederico Zanqueta Poleto
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2011
Orientador
Banca examinadora
Singer, Julio da Motta (Presidente)
Colosimo, Enrico Antônio
Loschi, Rosângela Helena
Moura, Fernando Antônio da Silva
Paulino, Carlos Daniel Mimoso
Título em português
Análise de dados categorizados com omissão em variáveis explicativas e respostas
Palavras-chave em português
Análise de sensibilidade
Dados faltantes ou incompletos
Identificabilidade
Intervalos de ignorância e de incerteza
MAR
MCAR e MNAR
Mecanismo de omissão não-informativa e informativa
Modelos de seleção e de mistura de padrões
Processo de Dirichlet
Sobreparametrização.
Resumo em português
Nesta tese apresentam-se desenvolvimentos metodológicos para analisar dados com omissão e também estudos delineados para compreender os resultados de tais análises. Escrutinam-se análises de sensibilidade bayesiana e clássica para dados com respostas categorizadas sujeitas a omissão. Mostra-se que as componentes subjetivas de cada abordagem podem influenciar os resultados de maneira não-trivial, independentemente do tamanho da amostra, e que, portanto, as conclusões devem ser cuidadosamente avaliadas. Especificamente, demonstra-se que distribuições \apriori\ comumente consideradas como não-informativas ou levemente informativas podem, na verdade, ser bastante informativas para parâmetros inidentificáveis, e que a escolha do modelo sobreparametrizado também tem um papel importante. Quando há omissão em variáveis explicativas, também é necessário propor um modelo marginal para as covariáveis mesmo se houver interesse apenas no modelo condicional. A especificação incorreta do modelo para as covariáveis ou do modelo para o mecanismo de omissão leva a inferências enviesadas para o modelo de interesse. Trabalhos anteriormente publicados têm-se dividido em duas vertentes: ou utilizam distribuições semiparamétricas/não-paramétricas, flexíveis para as covariáveis, e identificam o modelo com a suposição de um mecanismo de omissão não-informativa, ou empregam distribuições paramétricas para as covariáveis e permitem um mecanismo mais geral, de omissão informativa. Neste trabalho analisam-se respostas binárias, combinando um mecanismo de omissão informativa com um modelo não-paramétrico para as covariáveis contínuas, por meio de uma mistura induzida pela distribuição \apriori\ de processo de Dirichlet. No caso em que o interesse recai apenas em momentos da distribuição das respostas, propõe-se uma nova análise de sensibilidade sob o enfoque clássico para respostas incompletas que evita suposições distribucionais e utiliza parâmetros de sensibilidade de fácil interpretação. O procedimento tem, em particular, grande apelo na análise de dados contínuos, campo que tradicionalmente emprega suposições de normalidade e/ou utiliza parâmetros de sensibilidade de difícil interpretação. Todas as análises são ilustradas com conjuntos de dados reais.
Título em inglês
Categorical data analysis with missingness in explanatory and response variables
Palavras-chave em inglês
Dirichlet process
Identifiability
Ignorance and uncertainty intervals
Incomplete or missing data
Informative and non-informative missingness mechanism
MAR
MCAR and MNAR
Overparameterization.
Selection and pattern-mixture models
Sensitivity analysis
Resumo em inglês
We present methodological developments to conduct analyses with missing data and also studies designed to understand the results of such analyses. We examine Bayesian and classical sensitivity analyses for data with missing categorical responses and show that the subjective components of each approach can influence results in non-trivial ways, irrespectively of the sample size, concluding that they need to be carefully evaluated. Specifically, we show that prior distributions commonly regarded as slightly informative or non-informative may actually be too informative for non-identifiable parameters, and that the choice of over-parameterized models may drastically impact the results. When there is missingness in explanatory variables, we also need to consider a marginal model for the covariates even if the interest lies only on the conditional model. An incorrect specification of either the model for the covariates or of the model for the missingness mechanism leads to biased inferences for the parameters of interest. Previously published works are commonly divided into two streams: either they use semi-/non-parametric flexible distributions for the covariates and identify the model via a non-informative missingness mechanism, or they employ parametric distributions for the covariates and allow a more general informative missingness mechanism. We consider the analysis of binary responses, combining an informative missingness model with a non-parametric model for the continuous covariates via a Dirichlet process mixture. When the interest lies only in moments of the response distribution, we consider a new classical sensitivity analysis for incomplete responses that avoids distributional assumptions and employs easily interpreted sensitivity parameters. The procedure is particularly useful for analyses of missing continuous data, an area where normality is traditionally assumed and/or relies on hard-to-interpret sensitivity parameters. We illustrate all analyses with real data sets.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Poleto_PhD_Thesis.pdf (2.04 Mbytes)
Data de Publicação
2011-06-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.