Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.45.2013.tde-09052013-224741
Documento
Autor
Nome completo
Sérgio Coichev Teixeira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Barroso, Lucia Pereira (Presidente)
Sáfadi, Thelma
Toloi, Clelia Maria de Castro
Título em português
Utilização de análise de componentes principais em séries temporais
Palavras-chave em português
Análise de componentes principais
Análise de componentes principais para domínio da frequência
MSSA
SSA
Resumo em português
Um dos principais objetivos da análise de componentes principais consiste em reduzir o número de variáveis observadas em um conjunto de variáveis não correlacionadas, fornecendo ao pesquisador subsídios para entender a variabilidade e a estrutura de correlação dos dados observados com uma menor quantidade de variáveis não correlacionadas chamadas de componentes principais. A técnica é muito simples e amplamente utilizada em diversos estudos de diferentes áreas. Para construção, medimos a relação linear entre as variáveis observadas pela matriz de covariância ou pela matriz de correlação. Entretanto, as matrizes de covariância e de correlação podem deixar de capturar importante informações para dados correlacionados sequencialmente no tempo, autocorrelacionados, desperdiçando parte importante dos dados para interpretação das componentes. Neste trabalho, estudamos a técnica de análise de componentes principais que torna possível a interpretação ou análise da estrutura de autocorrelação dos dados observados. Para isso, exploramos a técnica de análise de componentes principais para o domínio da frequência que fornece para dados autocorrelacionados um resultado mais específico e detalhado do que a técnica de componentes principais clássica. Pelos métodos SSA (Singular Spectrum Analysis) e MSSA (Multichannel Singular Spectrum Analysis), a análise de componentes principais é baseada na correlação no tempo e entre as diferentes variáveis observadas. Essas técnicas são muito utilizadas para dados atmosféricos na identificação de padrões, tais como tendência e periodicidade.
Título em inglês
Use of principal component analysis in time series
Palavras-chave em inglês
MSSA
Principal Component Analysis
Principal Component Analysis in the Frequency Domain
SSA
Resumo em inglês
The main objective of principal component analysis (PCA) is to reduce the number of variables in a small uncorrelated data sets, providing support and helping researcher understand the variation present in all the original variables with small uncorrelated amount of variables, called components. The principal components analysis is very simple and frequently used in several areas. For its construction, the components are calculated through covariance matrix. However, the covariance matrix does not capture the autocorrelation information, wasting important information about data sets. In this research, we present some techniques related to principal component analysis, considering autocorrelation information. However, we explore the principal component analysis in the domain frequency, providing more accurate and detailed results than classical component analysis time series case. In subsequent method SSA (Singular Spectrum Analysis) and MSSA (Multichannel Singular Spectrum Analysis), we study the principal component analysis considering relationship between locations and time points. These techniques are broadly used for atmospheric data sets to identify important characteristics and patterns, such as tendency and periodicity.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-05-13