• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2019.tde-11032019-160302
Document
Auteur
Nom complet
Natalia Andrea Milla Pérez
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2018
Directeur
Jury
Paula, Gilberto Alvarenga (Président)
Ferrari, Silvia Lopes de Paula
Labra, Filidor Edilfonso Vilca
Novelli, Cibele Maria Russo
Rojas, Manuel Jesus Galea
Titre en portugais
Métodos de estimação baseados na função de verossimilhança para modelos lineares elípticos
Mots-clés en portugais
Máxima verossimilhança perfilada modificada
Máxima verossimilhança restrita
Métodos robustos
Modelos exponencial potência
Modelos lineares elípticos
Modelos mistos
Modelos t-Student
Resumé en portugais
O objetivo desta tese é estudar métodos de estimação baseados na função de verossimilhança em modelos mistos lineares elípticos. Derivamos inicialmente os métodos de máxima verossimilhança, máxima verossimilhança restrita e de máxima verossimilhança perfilada modificada para o modelo linear normal. Estendemos os métodos para os modelos lineares elípticos e encontramos diferenças entre as equações resultantes de cada método. A principal motivação deste trabalho é que o método de máxima verossimilhança restrita tem sido aplicado para obter estimadores menos viesados para os componentes de variância-covariância, em contraste com os estimadores de máxima verossimilhança. O método tem sido muito utilizado em modelos com estruturas de variância-covariância como é o caso dos modelos mistos lineares. Assim, procuramos estender o método para os modelos mistos lineares elípticos bem como comparar com outros procedimentos de estimação, máxima verossimilhança e máxima verossimilhança perfilada modificada. Estudamos em particular os modelos mistos lineares com erros t-Student e exponencial potência.
Titre en anglais
Estimation methods based on the likelihood function in Elliptical Linear Models
Mots-clés en anglais
Linear elliptical models
Mixed models
Modified profile maximum likelihood
Power exponencial models
Restricted maximum likelihood
Robust methods
Student-t models
Resumé en anglais
The aim of this thesis is to study estimation methods based on the likelihood functions in elliptical linear mixed models. First, we review the modified profile maximum likelihood and the restricted maximum likelihood methods as well as the traditional maximum likelihood method in normal linear models. Then, we extend the methodologies for elliptical linear models and we compare the estimating equations derived for each method. The main motivation of the work is that the restricted maximum likelihood method has been largely applied in normal linear mixed models in order to reduce the bias of the maximum likelihood variance-component estimators. So, we intend to investigate the possible extension for elliptical linear mixed models as well as to compare with the modified profile maximum likelihood and the maximum likelihood methods. Particular studies for Student-t and power exponential linear mixed models are presented.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TeseNMPerez.pdf (8.29 Mbytes)
Date de Publication
2019-04-02
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.