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Resumo

Julia Faria Codas.Distribuição exata não assintótica de tempos de entrada: . Dissertação

(Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2020.

O tempo decorrido até a primeira ocorrência de um observável em uma realização de um

processo estocástico é um objeto de estudo clássico. É conhecido que a distribuição do tempo

de entrada, quando reescalada adequadamente, converge para uma lei exponencial.

Neste trabalho, apresentamos a forma exata da distribuição do tempo de entrada de uma

sequência �nita �xa em um processo independente e identicamente distribuído, e de�nido

sobre um alfabeto �nito ou enumerável. Isto é, obtemos o resultado que não é apenas assin-

tótico. Mostramos que a distribuição exata do tempo de entrada é uma soma de exponenciais.

Provamos que esta soma possui um termo dominante e que os demais convergem para zero.

Palavras-chave: Tempo de entrada. Relação de recorrência.





Abstract

Julia Faria Codas. Non-asymptotic exact distribution for hitting times: . Thesis (Mas-

ters). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2020.

The time elapsed until the �rst occurrence of an observable in a realization of a stochastic

process is a classic object of study. It is a known result that the distribution of the hitting

time, when properly rescaled, converges to an exponential law.

In this work, we present the exact form of the distribution of the hitting time of a �xed �nite

sequence in an independent and identically distributed process, which is de�ned over a �nite

or countable alphabet. That is, we get the result that is not just asymptotic. We show that

the exact distribution of the hitting time is a sum of exponentials. We prove that this sum

has a dominant term and that the others converge to zero.

Keywords: Hitting time. Recurrence relation.
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Introduction

The Law of Large Numbers is one of the main results in Probability Theory. In its sta-
tionary version, it says that, for independent and identically distributed random variables,
it is possible to make statistics in the sense that the sample averages tell the truth: the
sample averages almost certainly approximate to the spatial average.

It is a macroscopic result in the sense that we must see the whole sample to calculate
the proportion of observations made of the target object. If we want to understand how
the sequence of repetitions of the observable behave, we must ask further questions such
as: how long does it take until the �rst observation, how long does it take until the second
observation, and generally how much time elapses between any two observations, among
others. In this paper, we focus on the �rst one.

The asymptotic study of this problem is already a classic object. Amidst the most
outstanding results, we can cite Aldous and Brown (1993)[4], Galves and Schmidt (1997)[8],
Hirata, Saussol and Vaienti (1999)[10], Abadi (2004)[2]. Among the works that summarize
the state-of-the-art, we can mention Coelho (1997)[6], Abadi and Galves (2001)[1], Haydn
(2013)[9]. An exponential law is obtained at the limit not only in independent systems, but
some correlation decay already appears as su�cient to obtain this result.

In this work, we introduce two aspects little considered in the literature. On the one
hand, we are looking for exact results for �xed observables, not only asymptotic ones.
On the other hand, the technique developed uses recurrence relations (as opposed to the
classic "cut" the sample into "quasi" independent blocks). Although we focus on systems
that are sequences of independent random variables, the observables of interest are sets
de�ned by more than one random variable. Typically, the target set is de�ned as a �xed
�nite sequence of values (cylinder). In this case, it implies that the sequence of occurrences
of this target set is not independent, despite that the original process is.

The technique, as said before, is based on recurrence relations. It goes through various
classical problems of mathematics, such as �nding roots of polynomials and solutions of
systems of linear equations. In this work, we also construct the spectral gap and the spectral
radius of an operator associated with the recurrence. The problem of local recurrence (also
called in the literature the �rst possible return, shortest return, or periodicity) appears
explicitly. We show cases in which we can explicitly solve this problem. It corresponds to
the cases that the recurrence relations are linear and homogeneous.
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Chapter 1

Hitting times via recurrence
relations

1.1 General setting

Let  be a non-empty �nite or countable set and de�neΩ = ℕ. For each non-negative
integer n, Xn ∶ Ω → ℝ is the n-coordinate projection. We de�ne a cylinder of size n as
the set of the form

A = {! ∈ Ω : (X0(!), ⋯ , Xn−1(!)) = (a0, ⋯ , an−1)},

for some ai ∈ , i = 1, ⋯ , n. In this case, we say that A is the cylinder de�ned by a
n−1

0
,

where an−1
0

is a shorthand notation for the sequence (a0, ⋯ , an−1). We also �x the notation
Ak for the set of realizations ! in Ω for which the observation of an−1

0
start at time k, that

is,

Ak = {! ∈ Ω : (Xk(!), ⋯ , Xk+n−1(!)) = (a0, ⋯ , an−1)}.

Consider  as the �-algebra generated by all cylinders of all sizes and let ℙ be a
probability measure de�ned over  . To avoid uninteresting cases, we suppose that 0 <
ℙ(X0 = a) < 1, for all a ∈ .

Given a cylinder A de�ned by the sequence an−1
0

, the hitting time of a realization ! of
Ω to the cylinder A, denoted by �A(!), is given by the function �A ∶ Ω → ℕ∪ {∞} de�ned
as

�A(!) = inf{k ≥ 1 : (Xk(!), ⋯ , Xk+n−1(!)) = (a0, ⋯ , an−1)},

or in�nity otherwise. Note that the following equality holds for all positive integers t

{! ∈ Ω : �A(!) > t} =
t

⋂

k=1

A
c

k
,
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where Bc stands for the complementary set of B. We also denote the conditional probability
with respect to the event B

ℙ(U |B) =

ℙ(U ∩ B)

ℙ(B)

,

for any U in  .

Our goal in this work is to study the exact form of the probability distribution ℙ(�A > t).
Our strategy to tackle this question is di�erent from the previous ones found in the
literature, and it consists of building homogeneous linear recurrence relations for ℙ(�A >
t).

1.2 The general recurrence relation
Without any other assumption for ℙ, the probability distribution ℙ(�A > t) can be

written as

ℙ(�A > t) = ℙ(�A > t − 1) − ℙ(�A = t),

for all positive integer t . Since {�A = t} is equal to the intersection {�A > t − 1} ∩ At ,
then

ℙ(�A > t) = ℙ(�A > t − 1) − ℙ(�A > t − 1|At)ℙ(At).

Setting yt = ℙ(�A > t), zt−1 = ℙ(�A > t − 1|At) and �n,t = ℙ(At), we obtain

yt = yt−1 − �n,t zt−1. (1.1)

We can already see in (1.1) a linear recurrence relation between yt and yt−1. But it is
not clear yet what role the conditional probability zt−1 plays in the recurrence. In order to
turn (1.1) in a homogeneous linear recurrence relation, we need to write zt−1 as a sum of
terms yt−k , for some positive integers k taken in a �xed set of indexes, where the elements
of this set do not depend on the value of t .

From now on, we assume that {Xn : n ∈ ℕ} are independent and identically distributed
random variables. Note that this means that the probability measure ℙ is stationary. Thus,
henceforth we can omit the index t in the de�nition of �n,t in (1.1), that is,

yt = yt−1 − �n zt−1. (1.2)

We can also use a structural quantity called the �rst possible return of an−1
0

, denoted
T (a

n−1

0
) and de�ned as

T (a
n−1

0
) = inf{�A(!) : ! ∈ A}.

The �rst possible return T (a
n−1

0
) can be seen as the minimum number of shifts necessary

to occur the �rst overlap between the sequence an−1
0

and a translated copy of itself. For
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example, consider a5
0
= (1, 0, 1, 0, 1, 0)

1 0 1 0 1 0

1
st shift 1 0 1 0 1 0

2
nd shift 1 0 1 0 1 0

Thus we have T (a5
0
) = 2.

Note that 1 6 T (a
n−1

0
) 6 n. Indeed, since we take the in�mum over all realizations !

in Ω that start with a
n−1

0
, if the �rst overlap does not happen in less than n shifts, then

there exists a realization ! such that

! = (a0, ⋯ , an−1, a0, ⋯ , an−1, ⋯).

In the following sections, we explore the di�erences that can be found in the term zt−1

when we vary the value of T (an−1
0
).

1.3 The case T (an−1
0
) = n

We �rst consider a cylinderA de�ned by an−1
0

such that T (an−1
0
) = n, that is, the sequence

a
n−1

0
does not have an overlap. Two examples of sequences of size 6 that have this property

are (1, 0, 0, 0, 0, 0) and (0, 1, 0, 0, 1, 1).

In the next proposition, we show that in this case we can write (1.2) as a homogeneous
linear recurrence relation of order n.

Proposition 1. Let A be the cylinder de�ned by the sequence an−1
0

such that T (an−1
0
) = n,

then

yt = yt−1 − �nyt−n.

Proof. We need to show that zt−1 = yt−n. Note that if a realization ! is an element of At ,
then it is not possible to observe an−1

0
in ! from time t − n + 1 until t − 1 and also from time

t + 1 until t + n − 1. Hence, if ! is in At , then

! ∈

t−1

⋂

j=t−n+1

A
c

j
.
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Therefore

zt−1 = ℙ(�A > t − 1|At)

= ℙ

(

t−1

⋂

j=1

A
c

j

|
|
|
At

)

= ℙ

(

t−n

⋂

j=1

A
c

j

|
|
|
At

)

= ℙ(�A > t − n|At).

Since {�A > t −n} is de�ned through X1, ⋯ , Xt−1 and At is de�ned through Xt , ⋯ , Xt+n−1,
then the events are independent and the result follows.

1.4 The case T (an−1
0
) = 1

Now, we consider a cylinder A de�ned by an−1
0

with T (a
n−1

0
) = 1, this means that it is

only necessary one shift to see an overlap bewteen a
n−1

0
and a translated copy. Note that

the sequences that are such that T (an−1
0
) = 1 are precisely the sequences (a, a, ⋯ , a) of size

n, where a is some element of .

Unlike the previous case, if we observe at time t the sequence an−1
0

in some realization
! in Ω, then it is possible to observe again an−1

0
in ! from time t − n + 1 until t − 1 and also

from time t +1 until t +n−1. Nevertheless, we can still prove a similar result to Proposition
1, but in this case we can write (1.2) as a homogeneous linear recurrence relation of order
n + 1.

Proposition 2. Let A be the cylinder de�ned by the sequence an−1
0

= (a, ⋯ , a), for some a
in , then

yt = yt−1 − �n� yt−n−1,

where � = 1 − ℙ(X0 = a).

Proof. We need to show that zt−1 = � yt−n−1. First note that

ℙ(�A > t − 1|At) = ∑

ai∈
ℙ({�A > t − 1} ∩ {Xt−1 = ai}|At)

= ℙ({�A > t − 1} ∩ {Xt−1 ≠ a}|At),

where the last equality follows from the fact that if ! is in the intersection {�A > t −1}∩At ,
then Xt−1(!) ≠ a. Therefore, it follows that

! ∈

t−1

⋂

j=t−n

A
c

j
.
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Then

zt−1 = ℙ(�A > t − 1|At)

= ℙ({�A > t − 1} ∩ {Xt−1 ≠ a}|At)

= ℙ

(

t−1

⋂

j=1

A
c

j
, {Xt−1 ≠ a}

|
|
|
At

)

= ℙ

(

t−n−1

⋂

j=1

A
c

j
, {Xt−1 ≠ a}

|
|
|
At

)

= ℙ({�A > t − n − 1} ∩ {Xt−1 ≠ a}|At).

We conclude the proof by noting that since {�A > t − n − 1} is de�ned through
X1, ⋯ , Xt−2 and At is de�ned through Xt , ⋯ , Xt+n−1, then the events are independent and
both are independent of {Xt−1 ≠ a}.

1.5 The case 1 < T (an−1
0
) < n

We recall that the general recurrence formula is

yt = yt−1 − �nzt−1

with yt = ℙ(�A > t), zt−1 = ℙ(�A > t − 1|At) and �n = ℙ(At). Our challenge is writing the
term zt−1 as sum of yk’s.

The next example illustrates some di�erences that may appear in the case which the
cylinder A is de�ned by an−1

0
with T (an−1

0
) = T such that 2 6 T 6 n − 1.

Example 1. Suppose that  = {0, 1} and denote p = ℙ(X0 = 1). Consider the cylinder A
de�ned by the sequence

a
n−1

0
= (0, ⋯ , 0

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⌊
n

2 ⌋
times

, 1, 0, ⋯ , 0

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⌊
n

2 ⌋
times

),

where n is a non-negative odd integer. Thus, the �rst possible return of the sequence an−1
0

is
T (a

n−1

0
) = ⌈

n

2⌉
.

We partition the sample space Ω into the events

Ω0 = {(X1, ⋯ , Xt−1) = (0, ⋯ , 0)},

Ω1 =

t−1

⋃

j=1

{Xj = 1, Xk = 0, k ∈ {1, ..., t − 1}⧵{j}},

Ω2 = ⋃

16i<j6t−1

{Xi = 1, Xj = 1, Xk = 0, k ∈ {1, ..., t − 1}⧵{i, j}}.

We are interested in analysing the intersection {�A > t − 1} ∩ Ωi , conditioned to the event At ,
for i = 0, 1, 2.
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Note that Ω0 is a subset of {�A > t − 1} and that Ω0 and At are independent. Hence,

ℙ({�A > t − 1} ∩ Ω0|At) = (1 − p)
t−1
. (1.3)

Now, note that if ! is an element of Ω1 ∩ At such that Xj = 1, with j in {⌈n2⌉, ⋯ , t − 1},
then ! is not an element of {�A > t − 1}. This means that if ! is in the intersection {�A >

t − 1} ∩ Ω1 ∩ At , then Xj(!) = 1, for some j in {1, ⋯ , ⌊
n

2⌋
}. Hence

ℙ({�A > t − 1} ∩ Ω1|At) = ⌊
n

2⌋
p(1 − p)

t−2
. (1.4)

Equations (1.3) and (1.4) show that, in this example, the recurrence for yt have some
non-homogeneous terms. To illustrate what happens to the intersection {�A > t − 1} ∩ Ω2,
conditioned to the event At , we use the set

Ω̃2 =

t−3

⋃

i=1

{Xi = 1, Xi+1 = 1, Xk = 0, k ∈ {i + 2, ..., t − 1}},

which is a subset of Ω2. Then

ℙ({�A > t − 1} ∩ Ω̃2|At) =

t−3

∑

i=1

p
2
(1 − p)

t−i−2
ℙ(�A > i − n). (1.5)

It has appeared in (1.5) a sum of terms of the form yj , for j = 1, ⋯ , t − n − 3. This implies
that the degree of the recurrence relation in this case also depends on t , and hence the problem
cannot be solved using the usual method for �nite linear recurrences.

Even if we could �nd an exact form for the recurrence yt for all values of T (an−1
0
),

the preceding example suggests that if the �rst possible return is a value between 2 and
t − 1, then the term zt−1 is a sum of terms of the form yk , where the number of indexes
k may depend on the value of t . Also, as in Example 1, the recurrence may have a sum
of non-homogeneous terms. A way to work around these problems is to �nd recurrence
inequalities for yt .

Proposition 3. Let A be the cylinder de�ned by the sequence an−1
0

and suppose T (an−1
0
) = T

with 2 6 T 6 n − 1. Then

1. yt > yt−1 − �n� yt−n−T+1 ,

2. yt 6 yt−1 − �n� yt−n−T+1 + (n − 1)�
2

n
yt−2n−T+1.

where � = ℙ(A
c

t−T
|At).

Proof. Since T (an−1
0
) = T , if ! is in At , then

(Xj(!), ⋯ , Xj+n−1(!)) ≠ (a0, ⋯ , an−1),
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for j = t − T + 1,⋯ , t − 1, that is,

! ∈

t−1

⋂

j=t−T+1

A
c

j
.

Therefore,

zt−1 = ℙ(�A > t − 1|At)

= ℙ

(

t−1

⋂

j=1

A
c

j

|
|
|
At

)

= ℙ

(

t−T

⋂

j=1

A
c

j

|
|
|
At

)

6 ℙ

(

t−n−T

⋂

j=1

A
c

j
, A

c

t−T
|At

)

= ℙ

(

t−n−T

⋂

j=1

A
c

j

)

ℙ(A
c

t−T
|At)

= � ℙ(�A > t − n − T )

= � yt−n−T+1

and this proves inequality 1.

For inequality 2, we begin in the same way, but now we will subtract the probability
of what we added in the inequality 1.

zt−1 = ℙ(�A > t − 1|At)

= ℙ

(

t−1

⋂

j=1

A
c

j

|
|
|
At

)

= ℙ

(

t−T

⋂

j=1

A
c

j

|
|
|
At

)

= ℙ

(

t−n−T

⋂

j=1

A
c

j
, A

c

t−T

|
|
|
At

)

− ℙ

(

t−n−T

⋂

j=1

A
c

j
,

t−T−1

⋃

j=t−n−T+1

Aj , A
c

t−T

|
|
|
At

)

> � ℙ(�A > t − n − T ) − ℙ

(

t−2n−T

⋂

j=1

A
c

j

)

ℙ

(

t−T−1

⋃

j=t−n−T+1

Aj

)

> � ℙ(�A > t − n − T ) − (n − 1)�nℙ(�A > t − 2n − T )

= �n� yt−n−T+1 + (n − 1)�
2

n
yt−2n−T+1,
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where in the last inequality we used the following fact

ℙ

(

t−T−1

⋃

j=t−n−T+1

Aj

)

6
t−T−1

∑

j=t−n−T+1

ℙ(Aj) = (n − 1)�n.

1.6 The exact distribution of the hitting time

We found in Propositions 1 and 2 that when the �rst possible return T (a
n−1

0
) is equal

to 1 or to n, then the general recurrence (1.2) can be written as a homogeneous linear
recurrence relation with constant coe�cients. To solve it, we use classical results.[7]

We begin with the case where the �rst possible return is T (an−1
0
) = n. Then the

characteristic polynomial associated to the recurrence found in Proposition 1 is

f (x) = x
n
− x

n−1
+ �n. (1.6)

It follows from the theory of homogeneous linear recurrence relations that we can write
the explicit formula for the solution of the recurrence in Proposition 1 in terms of the
roots of f . Also, the multiplicities of these roots have to be considered so we can decide
the number of terms and the form of the coe�cients in the general solution.

Hence, in the next theorem, we give the exact form of the distribution of the hitting
time �A by �nding the multiplicities of the roots of f .

Theorem 1. Suppose A is a cylinder de�ned by the sequence an−1
0

such that T (an−1
0
) = n. Let

f be the polynomial de�ned as in (1.6). If �n ≠
(n−1)

n−1

n
n

, then the distribution of the hitting
time �A is given by

ℙ(�A > t) =

n

∑

j=1

Cjr
t

j
,

for some constants C1, ⋯ , Cn, and r1, ⋯ , rn are the distinct roots of f . And if �n = (n−1)
n−1

n
n

, then
the distribution of the hitting time �A is given by

ℙ(�A > t) =

n−2

∑

j=1

Djs
t

j
+ (Dn−1 + tDn)s

t

n−1
,

for some constants D1, ⋯ , Dn, where s1, ⋯ , sn−2 are the roots of f with multiplicity 1, and sn−1
is the root of f with multiplicity 2.

Proof. It is su�cient to show that if �n ≠
(n−1)

n−1

n
n

, then f has n distinct roots r1, ⋯ , rn. And
if �n =

(n−1)
n−1

n
n

, then f has n − 2 roots s1, ⋯ , sn−2 with multiplicity 1 and one root sn−1 with
multiplicity 2.
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Note that the derivative of f is

f
′
(x) = x

n−2
(nx − n + 1),

so the roots of f ′ are 0, with multiplicity n − 2, and n−1

n
with multiplicity 1. Since �n > 0,

then 0 cannot be a root of f . On the other hand, note that

f (
n−1

n
) = (

n−1

n
)
n−1
(
n−1

n
− 1) + �n = −

(n−1)
n−1

n
n

+ �n.

Thus, n−1

n
is a root of f with multiplicity 2 if and only if �n =

(n−1)
n−1

n
n

.

In order to �nd the constants mentioned in the above theorem, we can use the set
{ℙ(�A > j), j = 0, ⋯ , n − 1} as initial conditions, where

ℙ(�A > j) = 1 − j�n, (1.7)

j = 0, ⋯ , n − 1. To prove (1.7), note that ℙ(�A > 0) = 1 and

ℙ(�A = j) = ℙ(Aj)ℙ

(

j−1

⋂

i=1

A
c

i

|
|
|
Aj

)

= ℙ(Aj)

= �n,

for j = 1, ⋯ , n − 1. Therefore,

ℙ(�A > j) = 1 − ℙ(�A 6 j)

= 1 −

j

∑

i=1

ℙ(�A = i)

= 1 − j�n,

for j = 1, ⋯ , n − 1.

Thus, we can �nd the constants C1, ⋯ , Cn, if we solve the system of linear equa-
tions

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

ℙ(�A > 0) = C1 + ⋯ + Cn

ℙ(�A > 1) = C1r1 + ⋯ + Cnrn

⋮

ℙ(�A > n − 1) = C1r
n−1

1
+ ⋯ + Cnr

n−1

n
.
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And we can �nd the constants D1, ⋯ , Dn, if we solve the system of linear equations

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

ℙ(�A > 0) = D1 + ⋯ + Dn−1

ℙ(�A > 1) = D1s1 + ⋯ + Dn−2rn−2 + (Dn−1 + Dn)sn−1

⋮

ℙ(�A > n − 1) = D1s
n−1

1
+ ⋯ + Dn−2r

n−1

n−2
+ (Dn−1 + (n − 1)Dn)s

n−1

n−1
.

Now, we consider the case that the �rst possible return is T (an−1
0
) = 1. The characteristic

polynomial associated to the recurrence found in Proposition 2 is

g(x) = x
n+1

− x
n
+ �n�. (1.8)

We proceed as before in the next theorem, we give the exact distribution of �A by
de�ning the multiplicities of the roots of g.

Theorem 2. Suppose A is a cylinder de�ned by the sequence an−1
0

such that T (an−1
0
) = 1. Let

g be the polynomial de�ned as in (1.8). If �n� ≠
n
n

(n+1)
n+1

, then the distribution of the hitting
time �A is given by

ℙ(�A > t) =

n+1

∑

j=1

Cjr
t

j
,

for some constants C1, ⋯ , Cn+1, where r1, ⋯ , rn+1 are the distinct roots of g. And if �n� =

n
n

(n+1)
n+1

, then the distribution of the hitting time �A is given by

ℙ(�A > t) =

n−1

∑

j=1

Djs
t

j
+ (Dn + tDn+1)s

t

n
,

for some constants D1, ⋯ , Dn+1, where s1, ⋯ , sn−1 are the roots of g with multiplicity 1, and sn
is the root of g with multiplicity 2.

Proof. We only need to show that if �n� ≠
n
n

(n+1)
n+1

, then g has n + 1 distinct roots r1, ⋯ , rn+1.
And if �n� = n

n

(n+1)
n+1

, then g has n − 1 roots s1, ⋯ , sn−1 with multiplicity 1 and one root sn−1
with multiplicity 2.

The derivative of g is such that

g
′
(x) = x

n−1
((n + 1)x − n),

then the roots of g′ are 0, with multiplicity n − 1, and n

n+1
with multiplicity 1. Since �n� > 0,

then 0 cannot be a root of g. On the other hand, note that

g(
n

n+1
) = (

n

n+1
)
n
(
n

n+1
− 1) + �n� = −

n
n

(n+1)
n+1
+ �n.

Thus, n

n+1
is a root of g with multiplicity 2 if and only if �n� = n

n

(n+1)
n+1

.
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Again, to �nd the constants mentioned in the above theorem, we can use the set of
initial conditions {ℙ(�A > j), j = 0, ⋯ , n}, where ℙ(�A > 0) = 1 and

ℙ(�A > j) = 1 − ℙ(�A 6 j)

= 1 −

j

∑

i=1

ℙ(�A = i)

= 1 − �n − (j − 1)�n�,

with j = 1, ⋯ , n.

1.7 Examples

In the next two examples, we suppose  = {0, 1} and denote p = ℙ(X0 = 1).

Example 2. Consider A the cylinder de�ned by (1, 0) and suppose that p ≠ 0.5. Using
Proposition 1, we have the following recurrence relation

yt = yt−1 − p(1 − p)yt−2.

So the associated characteristic polynomial is

f (x) = x
2
− x + p(1 − p),

where the roots r1 and r2 are

r1 = 1 − p,

r2 = p.

Thus, the roots are distinct and, by Theorem 1, the general solution is of the form

ℙ(�A > t) = C1r
t

1
+ C2r

t

2
,

where C1 and C2 are constants. The initial conditions are

ℙ(�A > 0) = 1,

ℙ(�A > 1) = 1 − p(1 − p).

Then, solving the system of equations
{

ℙ(�A > 0) = C1 + C2

ℙ(�A > 1) = C1r1 + C2r2
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we obtain

C1 =

(1 − p)
2

2(1 − p) − 1

,

C2 =

p
2

2p − 1

.

Example 3. Consider A the cylinder de�ned by (1, 1). By Proposition 2, the recurrence rela-
tion for yt is

yt = yt−1 − p
2
(1 − p)yt−3.

So the associated characteristic polynomial is

g(x) = x
2
(x − 1) + p

2
(1 − p),

where the roots of g are

r1 =

1 − p +

√

(1 − p)(1 + 3p)

2

,

r2 =

1 − p −

√

(1 − p)(1 + 3p)

2

,

r3 = p.

Thus, by Theorem 2, the general solution is of the form

yt = C1r
t

1
+ C2r

t

2
+ C3r

t

3
,

where Cj , j = 1, 2, 3, are constants. The initial conditions are

ℙ(�A > 0) = 1,

ℙ(�A > 1) = 1 − p
2
,

ℙ(�A > 2) = 1 − p
2
− (1 − p)p

2
,

and solving the system of linear equations

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

ℙ(�A > 0) = C1 + C2

ℙ(�A > 1) = C1r1 + C2r2

ℙ(�A > 2) = C1r
2

1
+ C2r

2

2
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we �nd that

C1 =

1

2

+

1 + p − 2p
2

2

√

(1 − p)(1 + 3p)

,

C2 =

1

2

−

1 + p − 2p
2

2

√

(1 − p)(1 + 3p)

,

C3 = 0.
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Chapter 2

The parameters of the exact
distribution

2.1 Introduction

In this chapter, we focus on the case of a cylinderA de�ned by an−1
0

such that T (an−1
0
) = n.

From now on, we consider �n <
(n−1)

n−1

n
n

, since this is the typical case when n is large. Then
by Theorem 1, we have that the distribution of �A is a sum of exponentials terms, that
is,

ℙ(�A > t) =

n

∑

j=1

Cjr
t

j
,

where r1, ⋯ , rn are the distinct roots of the polynomial f (x) = xn − xn−1 + �n, and C1, ⋯ , Cn

are the constants that are uniquely de�ned after we apply the initial conditions ℙ(�A >
j) = 1 − j�n, for j = 0, ⋯ , n − 1, as shown in (1.7).

In Section 2.2, we study properties of the roots r1, ⋯ , rn. In Section 2.3, we give an
explicit formula for the constant Cj in terms of the corresponding root rj , for j = 1, ⋯ , n,
and we show that the distribution of the hitting time has a dominant term and that the
others converge to zero.

2.2 Analysis of the roots

Since we consider �n <
(n−1)

n−1

n
n

, then all the roots r1, ⋯ , rn of f are distinct. By studying
the �rst derivative of f , we �nd that f has two positive real roots. The number of negative
real roots depends on the parity of the degree of f . If n is odd, then f has one negative real
root. If n is even, then f does not have any negative real root. See Figure 2.1.

Suppose that the indexes of the roots are such that |r1| > |rj |, for j = 2, ⋯ , n. We are
interested in de�ning upper and lower bounds for the largest root r1 and we wish to
describe a circle with a radius less than |r1| that contains the remaining roots.



18

2 | THE PARAMETERS OF THE EXACT DISTRIBUTION

(a) The roots of f (x) = x
6
− x

5
+ 0.5

6. (b) The roots of f (x) = x
7
− x

6
+ 0.5

7.

(c) The roots of f (x) = x
18
− x

17
+ 0.5

18. (d) The roots of f (x) = x19 − x18 + 0.519.

Figure 2.1: Comparison of the graphical representation of the roots of f (x) = x
n
− x

n−1
+ 0.5

n for
di�erent values of n. The polynomial f is associated to the cylinder of size n de�ned by (1, 0, ⋯ , 0)

in the case that  = {0, 1} and ℙ(X0 = 0) = 0.5.

Consider then the following polynomial

l(x) = x
n
− x

n−1
.

The only di�erence between the polynomial f and l is the constant coe�cient �n, that
is,

f (x) − l(x) = �n,

for all complex values x . Also, since the polynomial l can be factored as l(x) = xn−1(x − 1),
then the roots of l are 0 and 1, with multiplicities equal to n − 1 and 1, respectively. See
Figure 2.2.

It is a known result that the roots of a polynomial vary continuously as a function
of the coe�cients.[12] It means that since f and l di�er only by �n, then n − 1 roots
of f are inside a neighborhood centered at the origin, and the remaining root of f is
inside a neighborhood centered at 1. That is, the roots of f and l are, in a sense, close.
We use Rouché’s Theorem as a tool to characterize the neighborhood centered at the origin.

Theorem. (Rouché’s Theorem) Suppose that
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(a) The dashed line represents the polynomial
l(x) = x

4
− x

3 and the solid line represents
the polynomial f (x) = x

4
− x

3
+ 0.8

2
0.2

2,
which is associated to the cylinder de�ned by
(1, 1, 0, 0).

(b) The dashed line represents the polynomial
l(x) = x

5
− x

4 and the solid line represents
the polynomial f (x) = x

5
− x

4
+ 0.8

3
0.2

2,
which is associated to the cylinder de�ned by
(1, 1, 1, 0, 0).

Figure 2.2: Comparison of the graphs of the polynomials f and l for the even n case (a) and for the
odd n case (b).

1. two functions ℎ1 and ℎ2 are analytic inside and on a simple closed contour C ;

2. |ℎ1(x)| > |ℎ2(x)| at each point x in C .

Then ℎ1 and ℎ1 + ℎ2 have the same number of roots, counting multiplicities, inside C .

Note that, if we �nd � in (0, 1) such that

|l(x)| > f (x) − l(x), (2.1)

for all complex values x such that |x| = �, then, by Rouché’s Theorem, l and f have n − 1
roots, counting multiplicities, inside the circle centered at the origin with radius �. Notice
that the condition (2.1) can be written as

min{|l(x)| : x ∈ ℂ with |x| = �} > �n,

which is equivalent to

�
n−1
(� − 1) + �n < 0. (2.2)

Hence, by straightforward computations, one can prove the following propositions.

Proposition 4. Fixed � > 0, there exists n0 such that � = �
1

(n−1)(1+�)

n satis�es (2.2), for every
n > n0.

Proposition 5. Fixed � in (0, 1), there exists n0 such that

1 − �n − �
1+�

n
6 r1 6 1 − �n − �

2

n
,

for every n > n0.
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Proposition 5 says that the largest root r1 is a positive real number. Since we consider
�n <

(n−1)
n−1

n
n

, there is another positive real root, which we denote by r2. Note that

f (�

1

n−1

n ) = �n(�

1

n−1

n − 1) + �n > 0. (2.3)

Therefore, by Propositions 4 and 5, and by (2.3), if we �x � in (0, 1) and �x � > 0, then
for large n, we have

1 − �n − �
1+�

n
6 r1 6 1 − �n − �

2

n
, (2.4)

�

1

n−1

n < r2 < �

1

(n−1)(1+�)

n , (2.5)

and

|rj | < �

1

(n−1)(1+�)

n , (2.6)

for j = 3, ⋯ , n.

2.3 Analysis of the constants

We want to show that in Theorem 1 the constant Cj can be written in terms of the
corresponding root rj , for j = 1, ⋯ , n. As said before, to determine C1, ⋯ , Cn, we have to
solve the system of linear equations

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

ℙ(�A > 0) = C1 + ⋯ + Cn

ℙ(�A > 1) = C1r1 + ⋯ + Cnrn

⋮

ℙ(�A > n − 1) = C1r
n−1

1
+ ⋯ + Cnr

n−1

n

(2.7)

where, by (1.7), we have

ℙ(�A > j) = 1 − j�n,

for j = 0, ⋯ , n − 1. Note that we can write (2.7) in the matricial form

V

⎡

⎢

⎢

⎢

⎣

C1

C2

⋮

Cn

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1

1

⋮

1

⎤

⎥

⎥

⎥

⎦

− �n

⎡

⎢

⎢

⎢

⎣

0

1

⋮

n − 1

⎤

⎥

⎥

⎥

⎦

,
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where V is the square matrix of size n, called the Vandermonde matrix, which is de�ned
as

V =

⎡

⎢

⎢

⎢

⎣

1 1 ⋯ 1

r1 r2 ⋯ rn

⋮ ⋮ ⋱ ⋮

r
n−1

1
r
n−1

2
⋯ r

n−1

n

⎤

⎥

⎥

⎥

⎦

.

Since all the roots of f are distinct, V is invertible, and therefore we can �nd the
constants by calculating

⎡

⎢

⎢

⎢

⎣

C1

C2

⋮

Cn

⎤

⎥

⎥

⎥

⎦

= V
−1

⎡

⎢

⎢

⎢

⎣

1

1

⋮

1

⎤

⎥

⎥

⎥

⎦

− �nV
−1

⎡

⎢

⎢

⎢

⎣

0

1

⋮

n − 1

⎤

⎥

⎥

⎥

⎦

. (2.8)

The matrix V −1 has the general form (see for instance [11])

V
−1
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

r
n−1

1
+ b1r

n−2

1
+ ⋯ + bn−2r1 + bn−1

∏
n

j=2
(r1 − rj)

⋯

r
2

1
+ b1r1 + b2

∏
n

j=2
(r1 − rj)

r1 + b1

∏
n

j=2
(r1 − rj)

1

∏
n

j=2
(r1 − rj)

⋮ ⋱ ⋮ ⋮ ⋮

r
n−1

n
+ b1r

n−2

n
+ ⋯ + bn−2rn + bn−1

∏
n−1

j=1
(rn − rj)

⋯

r
2

n
+ b1rn + b2

∏
n−1

j=1
(rn − rj)

rn + b1

∏
n−1

j=1
(rn − rj)

1

∏
n−1

j=1
(rn − rj)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where

b1 = −

n

∑

j=1

rj ,

b2 = ∑

16j<k6n

rjrk ,

⋮ (2.9)

bn−1 = (−1)
n−1

∑

16j1<j2<⋯<jn−16n

rj1
rj2

⋯rjn−1
,

bn = (−1)
n
r1r2⋯rn.

Since the polynomial f can be factored as

f (x) =

n

∏

j=1

(x − rj),

then f can be written in terms of the coe�cients bj , for j = 1, ⋯ , n. That is,

f (x) = x
n
+ b1x

n−1
+ ⋯ + bn−1x + bn.



22

2 | THE PARAMETERS OF THE EXACT DISTRIBUTION

Therefore, we also have

b1 = −1,

b2 = 0,

b3 = 0,

⋮ (2.10)
bn−1 = 0,

bn = �n.

Thus, in our case, V −1 has the following simpli�ed form

V
−1
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

r
n−1

1
− r

n−2

1

∏
n

j=2
(r1 − rj)

⋯

r
2

1
− r1

∏
n

j=2
(r1 − rj)

r1 − 1

∏
n

j=2
(r1 − rj)

1

∏
n

j=2
(r1 − rj)

⋮ ⋱ ⋮ ⋮ ⋮

r
n−1

n
− r

n−2

n

∏
n−1

j=1
(rn − rj)

⋯

r
2

n
− rn

∏
n−1

j=1
(rn − rj)

rn − 1

∏
n−1

j=1
(rn − rj)

1

∏
n−1

j=1
(rn − rj)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Then solving (2.8), we get

Cj =

r
n−1

j
− �n

1 − r
n−1

j

1 − rj

∏
k≠j
(rj − rk)

,

for j = 1, ⋯ , n. Using (2.9) and (2.10), the denominator of Cj can be simpli�ed as

∏

k≠j

(rj − rk) = nr
n−1

j
− (n − 1)r

n−2

j
,

for j = 1, ⋯ , n. Therefore,

Cj =

rj − �n

r
−(n−2)

j
− rj

1 − rj

nrj − (n − 1)

, (2.11)

for j = 1, ⋯ , n.

Moreover, since rj is a root of f , then it satis�es

r
n

j
− r

n−1

j
+ �n = 0,

or equivalently

r
n−1

j
=

�n

1 − rj

, (2.12)

for j = 1, ⋯ , n.

Thus, substituting (2.12) in (2.11), we obtain the �nal expression of Cj as function of



2.3 | ANALYSIS OF THE CONSTANTS

23

the respective root rj , that is,

Cj =

r
n

j

nrj − (n − 1)

, (2.13)

for j = 1, ⋯ , n.

Note that the complex roots come in conjugate pairs. Let r be a complex root of f and
r̄ be its conjugate root. If we denote by Cr and Cr̄ the associated constants of the roots r
and r̄ , respectively, then using (2.13), we can see that

Cr̄ = C̄r .

Thus, in the general solution, the sum

Crr
t
+ C̄r r̄

t

is a real number.

Finally, notice the inequality (2.4) shows that, when n is large, the root r1 approaches
the value 1. Hence, by (2.13), the constant C1 also approaches the value 1. Further, using
(2.5), (2.6) and (2.13), we can see that, for large n, the absolute value of the remaining
constants are of order �n

n
.
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Chapter 3

Conclusion

In this work, for the cases that the �rst possible return T (an−1
0
) is equal to 1 or to n, we

proved that the exact distribution of the hitting time is a sum of exponentials. We showed
that this sum has a dominant term and that the others converge to zero.

In Chapter 2, we focused on the case T (an−1
0
) = n for the analysis of the parameters of

the exact distribution. Notice that analogous results proved in Sections 2.2 and 2.3 hold for
the case T (an−1

0
) = 1, since there are only small di�erences between the two cases. Namely:

the initial conditions used to �nd the constants, the degree and the constant term of the
characteristic polynomials f and g.

For the case 1 < T (an−1
0
) < n, we found inequalities for yt in Proposition 3. Our idea is

that one can solve the inequalities following the procedure exposed in Chapters 1 and 2
to obtain sharp upper and lower bounds for yt . Note that the di�erence between the two
inequalities in Proposition 3 is a term of order �2

n
, which is small for large n.

Moreover, we think that the same type of technique used to build the inequalities in
Proposition 3 could be used in the case of discrete-time stochastic processes with some
type of mixing condition assumed.
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