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Resumo

Julia Faria Codas. Distribuicao exata nao assintotica de tempos de entrada: . Dissertagio
(Mestrado). Instituto de Matematica e Estatistica, Universidade de Sdao Paulo, Sdo Paulo, 2020.

O tempo decorrido até a primeira ocorréncia de um observavel em uma realizacdo de um
processo estocastico é um objeto de estudo classico. E conhecido que a distribuicio do tempo

de entrada, quando reescalada adequadamente, converge para uma lei exponencial.

Neste trabalho, apresentamos a forma exata da distribui¢do do tempo de entrada de uma
sequéncia finita fixa em um processo independente e identicamente distribuido, e definido
sobre um alfabeto finito ou enumeravel. Isto é, obtemos o resultado que nio é apenas assin-
totico. Mostramos que a distribuigdo exata do tempo de entrada é uma soma de exponenciais.

Provamos que esta soma possui um termo dominante e que os demais convergem para zero.

Palavras-chave: Tempo de entrada. Relacdo de recorréncia.






Abstract

Julia Faria Codas. Non-asymptotic exact distribution for hitting times: . Thesis (Mas-

ters). Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo Paulo, 2020.

The time elapsed until the first occurrence of an observable in a realization of a stochastic
process is a classic object of study. It is a known result that the distribution of the hitting

time, when properly rescaled, converges to an exponential law.

In this work, we present the exact form of the distribution of the hitting time of a fixed finite
sequence in an independent and identically distributed process, which is defined over a finite
or countable alphabet. That is, we get the result that is not just asymptotic. We show that
the exact distribution of the hitting time is a sum of exponentials. We prove that this sum

has a dominant term and that the others converge to zero.

Keywords: Hitting time. Recurrence relation.
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Introduction

The Law of Large Numbers is one of the main results in Probability Theory. In its sta-
tionary version, it says that, for independent and identically distributed random variables,
it is possible to make statistics in the sense that the sample averages tell the truth: the
sample averages almost certainly approximate to the spatial average.

It is a macroscopic result in the sense that we must see the whole sample to calculate
the proportion of observations made of the target object. If we want to understand how
the sequence of repetitions of the observable behave, we must ask further questions such
as: how long does it take until the first observation, how long does it take until the second
observation, and generally how much time elapses between any two observations, among
others. In this paper, we focus on the first one.

The asymptotic study of this problem is already a classic object. Amidst the most
outstanding results, we can cite Aldous and Brown (1993)[4], Galves and Schmidt (1997)[8],
Hirata, Saussol and Vaienti (1999)[10], Abadi (2004)[2]. Among the works that summarize
the state-of-the-art, we can mention Coelho (1997)[6], Abadi and Galves (2001)[1], Haydn
(2013)[9]. An exponential law is obtained at the limit not only in independent systems, but
some correlation decay already appears as sufficient to obtain this result.

In this work, we introduce two aspects little considered in the literature. On the one
hand, we are looking for exact results for fixed observables, not only asymptotic ones.
On the other hand, the technique developed uses recurrence relations (as opposed to the
classic "cut" the sample into "quasi” independent blocks). Although we focus on systems
that are sequences of independent random variables, the observables of interest are sets
defined by more than one random variable. Typically, the target set is defined as a fixed
finite sequence of values (cylinder). In this case, it implies that the sequence of occurrences
of this target set is not independent, despite that the original process is.

The technique, as said before, is based on recurrence relations. It goes through various
classical problems of mathematics, such as finding roots of polynomials and solutions of
systems of linear equations. In this work, we also construct the spectral gap and the spectral
radius of an operator associated with the recurrence. The problem of local recurrence (also
called in the literature the first possible return, shortest return, or periodicity) appears
explicitly. We show cases in which we can explicitly solve this problem. It corresponds to
the cases that the recurrence relations are linear and homogeneous.






Chapter 1

Hitting times via recurrence
relations

1.1 General setting

Let A be a non-empty finite or countable set and define Q = A™N. For each non-negative
integer n, X, : Q — R is the n-coordinate projection. We define a cylinder of size n as
the set of the form

A={weQ: (X(w), ", Xn1(0)) = (a0, an-1)},

for some a; € A, i = 1,--, n. In this case, we say that A is the cylinder defined by a4,
where g} is a shorthand notation for the sequence (g, -, a,-1). We also fix the notation
Ay for the set of realizations w in Q for which the observation of @' start at time k, that

is,
Ak = {C‘) €Q: (Xk(w): an+n—1(w)) = (aO, tt an—l)}-
Consider F as the o-algebra generated by all cylinders of all sizes and let P be a

probability measure defined over F. To avoid uninteresting cases, we suppose that 0 <
P(Xy, = a) < 1,forall a € A.

Given a cylinder A defined by the sequence g, the hitting time of a realization w of
Q to the cylinder A, denoted by 74(w), is given by the function 74 : Q — INu {co} defined
as

Ta(w) = inf{k = 1: (Xx(w), -, Xisn1(®)) = (Go, =+, An-1)},

or infinity otherwise. Note that the following equality holds for all positive integers ¢

{weQ: () >t} = hAC,
k=1
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where B¢ stands for the complementary set of B. We also denote the conditional probability
with respect to the event B

P(U n B)

P(U|B) = —
for any UinF.

Our goal in this work is to study the exact form of the probability distribution P(z4 > ¢).
Our strategy to tackle this question is different from the previous ones found in the
literature, and it consists of building homogeneous linear recurrence relations for P(z4 >

b).

1.2 The general recurrence relation

Without any other assumption for P, the probability distribution P(z4 > t) can be
written as

]P(TA > t) = P(TA > 1 - 1) - ]P(TA = t),

for all positive integer t. Since {74 = t} is equal to the intersection {74 > t - 1} n A,
then

P(zy > t) =P(ty > t - 1) - P(z4 > t - 1|A;)P(A).
Setting y; = P(z4 > t), 2,1 = P(74 > t - 1|A;) and «,,; = P(A;), we obtain

Ve = Vi1 ~ Xnt Zp-1e (1.1)

We can already see in (1.1) a linear recurrence relation between y; and y,_;. But it is
not clear yet what role the conditional probability z, ; plays in the recurrence. In order to
turn (1.1) in a homogeneous linear recurrence relation, we need to write z;_; as a sum of
terms y;_x, for some positive integers k taken in a fixed set of indexes, where the elements
of this set do not depend on the value of t.

From now on, we assume that {X,, : n € N} are independent and identically distributed
random variables. Note that this means that the probability measure P is stationary. Thus,
henceforth we can omit the index ¢ in the definition of «,, in (1.1), that is,

Vi = Vi1 — Oy Zpq- (1.2)

We can also use a structural quantity called the first possible return of a} !, denoted
T(a}™') and defined as

T(a)™") = inf{7s(w) : 0 € A}.

The first possible return T(a] ') can be seen as the minimum number of shifts necessary
to occur the first overlap between the sequence ' and a translated copy of itself. For
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example, consider @} = (1,0,1,0,1,0)

1% shift
2nd shift

Thus we have T(a}) = 2.

Note that 1 < T(a)') < n. Indeed, since we take the infimum over all realizations w
in Q that start with a', if the first overlap does not happen in less than n shifts, then
there exists a realization w such that

w = (a09 *t Ap-1, Ao, *** 5 Ap-1, ')

In the following sections, we explore the differences that can be found in the term z;_,
when we vary the value of T(a]™").

1.3 Thecase T(al')=n

We first consider a cylinder A defined by af ! such that T(a} ') = n, that is, the sequence
aj~! does not have an overlap. Two examples of sequences of size 6 that have this property
are (1,0,0,0,0,0) and (0,1,0,0, 1, 1).

In the next proposition, we show that in this case we can write (1.2) as a homogeneous
linear recurrence relation of order n.

Proposition 1. Let A be the cylinder defined by the sequence a}' such that T(al™') = n,
then

Yt = V-1 = CnYt-n-

Proof. We need to show that z,; = y,_,. Note that if a realization o is an element of A,,
then it is not possible to observe @' in  from time ¢ - n+ 1 until ¢ - 1 and also from time
t + 1 until t + n - 1. Hence, if o is in A;, then
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Therefore

Zt—l = P(TA >t - 1|Af)

= IP( ﬁA; At)
j=1

= JP( ﬁAj At>
j=1

=P(z4 > t - n|Ay).

Since {74 > t - n} is defined through X;, ---, X;_; and A, is defined through X, ---, X}, -1,
then the events are independent and the result follows. [

1.4 The case T(a] ') =1

Now, we consider a cylinder A defined by a)' with T(a}!) = 1, this means that it is
only necessary one shift to see an overlap bewteen g/ ' and a translated copy. Note that
the sequences that are such that T(a) ') = 1 are precisely the sequences (a, a, -+, a) of size
n, where a is some element of A.

Unlike the previous case, if we observe at time ¢ the sequence a/' in some realization
w in Q, then it is possible to observe again a) ' in w from time ¢ - n+ 1 until ¢ - 1 and also
from time t + 1 until ¢ + n- 1. Nevertheless, we can still prove a similar result to Proposition
1, but in this case we can write (1.2) as a homogeneous linear recurrence relation of order
n+1.

Proposition 2. Let A be the cylinder defined by the sequence a}* = (a, -, a), for some a
in A, then

Ve = Yier = @0 Yiopo,

where 0 = 1 - P(X, = a).

Proof. We need to show that z,_; = 6 y,_,,_;. First note that

P(ra>t-1|A) = Y P({ta >t -1} n {X,s = a;}|A)
ai€A

=P({za >t -1} n {X;-1 # a}|A)),

where the last equality follows from the fact that if w is in the intersection {74 > t-1} n A,
then X, ;(w) # a. Therefore, it follows that

t-1
w € ﬂ Aj.
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Then

Zt—l = P(TA > t_ 1|Af)
=P{ra>t-1}n{Xp # a}|At)

t-1

= ]P( ﬂA;, {X,.1 # a} At>
j=1
t-n-1

=P ﬂ AS {X,., # a}|A,
Jj=1

=P({za > t-n-1} n{X,1 # a}|A).

We conclude the proof by noting that since {r4 > t - n — 1} is defined through
Xi, -+, Xi—» and A, is defined through X, -+, X;,,-1, then the events are independent and
both are independent of {X,_; # a}. O]

1.5 Thecasel < T(al')<n

We recall that the general recurrence formula is

Vi = Yi-1 = OpZp

with y; = P(z4 > 1), ;-1 = P(74 > t - 1|A;) and a, = P(A;). Our challenge is writing the
term z,_; as sum of y;’s.

The next example illustrates some differences that may appear in the case which the
cylinder A is defined by a ! with T(a}') = T suchthat2 < T < n-1.

Example 1. Suppose that A = {0,1} and denote p = P(X, = 1). Consider the cylinder A
defined by the sequence

ag™t =(0,--,0,1,0,-,0),
N —

[gJ times [g] times

where n is a non-negative odd integer. Thus, the first possible return of the sequence a} ™' is
T(ap™") = [2].

We partition the sample space Q into the events

Q0 = (X0 Xe) = 0, -, 0)}.
t-1
Q= X =1,X=0, ke{1,..t-11\{j}},
j=1
Q, = U {Xi=1X;=1,X =0, ke{l,...t-1}\{i,j}}.

1<i<j<t-1

We are interested in analysing the intersection {t4 > t - 1} n Q;, conditioned to the event A,,
fori=0,1,2.
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Note that Q is a subset of {4 > t — 1} and that Q, and A, are independent. Hence,

P({za > t =1} nQolA;) = (1 -p)"". (1.3)

Now, note that if w is an element of Q; n A, such that X; = 1, with j in { [g] ,t—1},
then w is not an element of {t4 > t — 1}. This means that if w is in the intersection {14 >
t—1} nQyn A, then Xj(w) = 1, for somej in {1, ng }. Hence

P({za > t -1} n Qi|A) = |§]p(1 - )2 (1.4)

Equations (1.3) and (1.4) show that, in this example, the recurrence for y, have some
non-homogeneous terms. To illustrate what happens to the intersection {74 > t — 1} n Q,,
conditioned to the event A;, we use the set

t-3
?22 = U{Xl = 1:Xi+1 = I,Xk = 0, kE {i+2,...,t— 1}},
i=1

which is a subset of Q,. Then

t-3

P({ta > t -1} nQfA) = ) p*(1 - p)'"*P(za > i - n). (1.5)

i=1

It has appeared in (1.5) a sum of terms of the form y;, forj = 1,---,t — n - 3. This implies
that the degree of the recurrence relation in this case also depends on t, and hence the problem
cannot be solved using the usual method for finite linear recurrences.

Even if we could find an exact form for the recurrence y, for all values of T(a]™),
the preceding example suggests that if the first possible return is a value between 2 and
t — 1, then the term z;_; is a sum of terms of the form y;, where the number of indexes
k may depend on the value of t. Also, as in Example 1, the recurrence may have a sum
of non-homogeneous terms. A way to work around these problems is to find recurrence
inequalities for y;.

Proposition 3. Let A be the cylinder defined by the sequence a}' and suppose T(a} ') = T
with2 < T<n-1.Then

Ly 2 Y- o, 0 Yi-n-T+1 5
2. yt < yt—l - ane yt—n—T+1 + (I’l - 1)“,21 )/t—Zn—TH-

where 0 = P(A{_;|A;).

Proof. Since T(a)') = T, if w is in A,, then

()(}(0)), ) )(j+n—1(a))) # (aO’ T an—l)s
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forj=t-T+1,-,t-1,thatis,

Therefore,

and this proves inequality 1.

For inequality 2, we begin in the same way, but now we will subtract the probability
of what we added in the inequality 1.

Zi1 = ]P(TA >t - 1|At)

-n-T t-n-T t-T-1
=P A5 AY |A ﬂ A, | AnAL
J=1 j=t-n-T+1

t-2n-T t-T-1
>91P(rA>t—n—T)—1P< M A;)JP( U AJ)
j=1 j=t-n-T+1

>0P(tp>t-n-T)-(n-Da,P(ta>t-2n-T)

2
= 0(,,9 Yi-n-T+1 T (n - 1)0(” Vi-2n-T+15
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where in the last inequality we used the following fact

t-T-1 t-T-1
]P< U Aj>< > PA) = (n-Da,

j=t-n-T+1

1.6 The exact distribution of the hitting time

We found in Propositions 1 and 2 that when the first possible return T(a] ") is equal
to 1 or to n, then the general recurrence (1.2) can be written as a homogeneous linear
recurrence relation with constant coefficients. To solve it, we use classical results.[7]

We begin with the case where the first possible return is T(aj') = n. Then the
characteristic polynomial associated to the recurrence found in Proposition 1 is

f(x) = x"-x""+ a,. (1.6)

It follows from the theory of homogeneous linear recurrence relations that we can write
the explicit formula for the solution of the recurrence in Proposition 1 in terms of the
roots of f. Also, the multiplicities of these roots have to be considered so we can decide
the number of terms and the form of the coefficients in the general solution.

Hence, in the next theorem, we give the exact form of the distribution of the hitting
time 7, by finding the multiplicities of the roots of f.

Theorem 1. Suppose A is a cylinder defined by the sequence ay”! such that T(a}™") = n. Let

f be the polynomial defined as in (1.6). If o, # (n- 1) , then the distribution of the hitting
time 74 is given by

P(TA>t)_Z j]’

(n- 1)"

for some constants Cy, ---, C,, and ry, -+, r, are the distinct roots of f. And if o, = , then

the distribution of the hitting time 7, is given by

n-2
P(zy > t) = Z Djsjt + (Dyy + tDy)st

j=1

for some constants Dy, ---, D,,, where s, -+, s,_, are the roots of f with multiplicity 1, and s,
is the root of f with multiplicity 2.

Proof. It is sufficient to show that if a, # &2 1) ", then f has n distinct roots ry, -+, r,. And

if @, = (";

multiplic1ty 2.

, then f has n - 2 roots sy, -+, s,-, with multiplicity 1 and one root s,_; with
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Note that the derivative of f is
f/(x) = x"*(nx - n+1),

so the roots of f” are 0, with multiplicity n - 2, and *=! with multiplicity 1. Since a, > 0,
then 0 cannot be a root of f. On the other hand, note that

- n-1\n-1/n- !
A = (i 1)y = -0 g

Thus, %! is a root of f with multiplicity 2 if and only if &, = ("7:)#1. O]

n

In order to find the constants mentioned in the above theorem, we can use the set
{P(t4 > j),j=0,-+,n—- 1} as initial conditions, where

P(zy > j) =1-jay,, (1.7)

j=0,--,n-1.To prove (1.7), note that P(z4 > 0) = 1 and

)

P(ea =) - IP(AJ-)IP< N

= P(4))

= Oy,
for j = 1,--, n - 1. Therefore,
P(za > j) =1-P(za <))
=1- zJ: P(zy = i)
i=1
=1-jo,

forj=1,--,n-1.

Thus, we can find the constants Ci, -, C,, if we solve the system of linear equa-
tions

P(ty >0)=C, + -+ G,
P(zp > 1) = Ciry + - + Cyry

P(ta>n-1)=Crl "t + -+ Curl .

11
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And we can find the constants Dy, -+, D, if we solve the system of linear equations

P(zy > 0) =Dy + -+ D, 4
]P(TA > 1) = D131 +oe + Dn—Zrn—Z + (Dn—l + Dn)sn—l

]P(’Z'A >n - 1) = Dls{"l + ot Dn—er:l__zl + (Dn—l + (n - l)Dn)sg—_l1

Now, we consider the case that the first possible return is T(a{ ') = 1. The characteristic
polynomial associated to the recurrence found in Proposition 2 is

g(x) = x™ = x" + a,0. (1.8)

We proceed as before in the next theorem, we give the exact distribution of 74 by
defining the multiplicities of the roots of g.

Theorem 2. Suppose A is a cylinder defined by the sequence al”! such that T(a}™") = 1. Let
g be the polynomial defined as in (1.8). If a,,0 # then the distribution of the hitting
time 74 is given by

n+1 (n+1)+1°

n+1

P(TA>t)—Z i

for some constants Cy, -+, Cp.q, where 1y, -+, 1,,1 are the distinct roots of g. And if a,60 =
then the distribution of the hitting time t, is given by

n-1
P(zy > t) = Z Djsj + (Dy + tDya1)s,,
j=1
for some constants Dy, -+, D,.1, where sy, -+, s,_; are the roots of g with multiplicity 1, and s,
is the root of g with multiplicity 2.

T 1 ——, then g has n + 1 distinct roots ry, -+, 1.

Proof. We only need to show that if @, 0 #
And if a,0 = W’ then g has n - 1 roots sy, -+, s,-; with multiplicity 1 and one root s,_;

with multiplicity 2.
The derivative of g is such that
g'(x) = x""((n+1)x - n),

then the roots of g’ are 0, with multiplicity n - 1, and -~ with multiplicity 1. Since &, > 0,
then 0 cannot be a root of g. On the other hand, note that

n

g(n+1):(n+1) (n+1 1)+an9:_(n+rij+an-

Thus, - is a root of g with multiplicity 2 if and only if &,0 = . ]

(n+1)m+1
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Again, to find the constants mentioned in the above theorem, we can use the set of
initial conditions {P(z4 > j),j = 0,---, n}, where P(z4 > 0) = 1 and

P(za > j) = 1-P(z4 <))

J

=1- ) P(rs = i)
i=1
=1-a,-(-1)a,0,

with j = 1,--, n.

1.7 Examples
In the next two examples, we suppose A = {0,1} and denote p = P(X, = 1).

Example 2. Consider A the cylinder defined by (1,0) and suppose that p # 0.5. Using
Proposition 1, we have the following recurrence relation

Yt = Vi = p(1 = P)yia.
So the associated characteristic polynomial is
fx) = x* —x + p(1-p),

where the roots r; and r, are

r1=l—p,
rp = p.

Thus, the roots are distinct and, by Theorem 1, the general solution is of the form
P(zq > t) = Cirf + Gor;,
where C, and C, are constants. The initial conditions are

P(zy > 0) =1,
P(za > 1) = 1-p(1 - p).

Then, solving the system of equations

P(za > 0) = C + G
]P(TA > 1) = C1r1 + Czrz



14

1 | HITTING TIMES VIA RECURRENCE RELATIONS

we obtain
. (1-p)
“ap-v
P
27 2p-1

Example 3. Consider A the cylinder defined by (1, 1). By Proposition 2, the recurrence rela-
tion for y, is

Vi = Vo1 — P21 = P)yis.
So the associated characteristic polynomial is

g(x) = x*(x - 1) + p*(1 - p),

where the roots of g are

1-p+(1-p)1+3p)
2

rn= s

_1-p-@-p)1+3p)
r; = s
r3:p.

Thus, by Theorem 2, the general solution is of the form
_ t t t
ye = Ciry + Gory + Garg,
where C;, j = 1, 2,3, are constants. The initial conditions are

IP(TA>0)= 1,
P(za > 1) = 1-p?,
P(ty > 2) = 1-p* - (1 - p)p’,

and solving the system of linear equations
P(ta>0)=C + G

]P(TA > 1) = C1r1 + Czrz
P(zy > 2) = Cirf + Cor?
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we find that
5,2
C1 = =+ 1+ p 2p )
2 2{@-p)1+3p)
1 1+p-2p
2 2= p)1+3p)

C3:0.

15






Chapter 2

The parameters of the exact
distribution

2.1 Introduction

In this chapter, we focus on the case of a cylinder A defined by @' such that T(aj™') = n.

. 1)t . . . .
From now on, we consider «, < % since this is the typical case when n is large. Then

by Theorem 1, we have that the distribution of 7, is a sum of exponentials terms, that
is,

P(ta > 1) = Z Gy,
=

where ry, -+, r, are the distinct roots of the polynomial f(x) = x" - x" ' + @,, and Cy, -, C,
are the constants that are uniquely defined after we apply the initial conditions P(z4 >
j)=1-jay, forj=0,--,n-1,as shown in (1.7).

In Section 2.2, we study properties of the roots ry, -+, r,. In Section 2.3, we give an
explicit formula for the constant C; in terms of the corresponding root r;, for j = 1, -, n,
and we show that the distribution of the hitting time has a dominant term and that the
others converge to zero.

2.2 Analysis of the roots

Since we consider «, < ("_nlznil, then all the roots ry, -+, r, of f are distinct. By studying

the first derivative of f, we find that f has two positive real roots. The number of negative
real roots depends on the parity of the degree of f. If n is odd, then f has one negative real
root. If n is even, then f does not have any negative real root. See Figure 2.1.

Suppose that the indexes of the roots are such that |ry| > |r|, for j = 2,---, n. We are
interested in defining upper and lower bounds for the largest root r, and we wish to
describe a circle with a radius less than |r;| that contains the remaining roots.

17
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(a) The roots of f(x) = x° — x> + 0.5°. (b) The roots of f(x) = x" - x° + 0.5".
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0.4} J \ 0.4} . .

0.6
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0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0

(c) The roots of f(x) = x'8 — x17 + 0.518, (d) The roots of f(x) = x1° — x18 + 0.51°.

Figure 2.1: Comparison of the graphical representation of the roots of f(x) = x" — x™! + 0.5" for
different values of n. The polynomial f is associated to the cylinder of size n defined by (1,0, -+, 0)
in the case that A = {0,1} and P(Xp = 0) = 0.5.

Consider then the following polynomial
I(x) = x" - x"".

The only difference between the polynomial f and [ is the constant coefficient «,, that
is,

f(x) = Ux) = o,

for all complex values x. Also, since the polynomial [ can be factored as I(x) = x"(x - 1),
then the roots of [ are 0 and 1, with multiplicities equal to n — 1 and 1, respectively. See
Figure 2.2.

It is a known result that the roots of a polynomial vary continuously as a function
of the coefficients.[12] It means that since f and [ differ only by «,, then n - 1 roots
of f are inside a neighborhood centered at the origin, and the remaining root of f is
inside a neighborhood centered at 1. That is, the roots of f and [ are, in a sense, close.
We use Rouché’s Theorem as a tool to characterize the neighborhood centered at the origin.

Theorem. (Rouché’s Theorem) Suppose that
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(a) The dashed line represents the polynomial (b) The dashed line represents the polynomial
I(x) = x* - x® and the solid line represents I(x) = x° - x* and the solid line represents
the polynomial f(x) = x* - x* + 0.820.22, the polynomial f(x) = x> — x* + 0.8%0.2%,
which is associated to the cylinder defined by which is associated to the cylinder defined by

(1,1,0,0). (1,1,1,0,0).

Figure 2.2: Comparison of the graphs of the polynomials f and | for the even n case (a) and for the
odd n case (b).
1. two functions h; and h, are analytic inside and on a simple closed contour C;
2. |hy(x)| > |h2(x)| at each point x in C.
Then h, and h, + h, have the same number of roots, counting multiplicities, inside C.
Note that, if we find € in (0, 1) such that
|1(x)] > f(x) = I(x), (2.1)

for all complex values x such that |x| = €, then, by Rouché’s Theorem, [ and f have n -1
roots, counting multiplicities, inside the circle centered at the origin with radius e. Notice
that the condition (2.1) can be written as

min{|l(x)| : x € C with |x| = €} > a,,
which is equivalent to
" e-1)+a, <0. (2.2)

Hence, by straightforward computations, one can prove the following propositions.

1

Proposition 4. Fixed § > 0, there exists ny such that € = " Nar0) satisfies (2.2), for every

n = n.
Proposition 5. Fixed n in (0, 1), there exists n, such that
l-ap-a"<n<1-a,-d,

for every n > ny.

19



20

2 | THE PARAMETERS OF THE EXACT DISTRIBUTION

Proposition 5 says that the largest root r; is a positive real number. Since we consider

a, < ("_;#, there is another positive real root, which we denote by r,. Note that

1 1

fla™) = ap(aq™ - 1) + a, > 0. (2.3)

Therefore, by Propositions 4 and 5, and by (2.3), if we fix nin (0, 1) and fix § > 0, then
for large n, we have

l-op-a,""<n<1-a,-a, (2.4)
1 1
<1y < oV (2.5)
and
1
1| < a9, (2.6)
forj=3,-,n.

2.3 Analysis of the constants

We want to show that in Theorem 1 the constant C; can be written in terms of the
corresponding root r;, for j = 1, -+, n. As said before, to determine C;, ---, C,, we have to
solve the system of linear equations

P(z4>0)= G+ + G,
].P(TA >1) = Ciry + -+ Cyry @.7)

P(za>n-1)=Crl '+ + Cur?
where, by (1.7), we have
]P(TA >]) =1 _jan:

for j = 0,---, n — 1. Note that we can write (2.7) in the matricial form
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where V is the square matrix of size n, called the Vandermonde matrix, which is defined
as

1 1 1

V= 51 ’:2 I'n
n-1 n-1 n-1

7"1 7"2 rn

Since all the roots of f are distinct, V is invertible, and therefore we can find the
constants by calculating

G 1 0
sz =V 1 - a, V! 1 : (2.8)
C, 1 n-1

The matrix V™! has the general form (see for instance [11])

[ rP o+ by 4 e+ by ory + by ri+ byr + b, r+ b 1
H_;l=2 (n-n) H?:z (n-n) H]iz (n-n) H;l=2 (n-mn)
vl = : : : :
rPl b by e by gty + by r2+ bir, + by r, + by 1
-1 -1 -1 -1
H;'l:1 (rn - rj) er'lzl (rn - r]) er'l=1 (rn - r]) er‘l=1 (rn - rj)
where

n
bi==2,1
j=1
b, = Z TiTks
1<j<k<n

: (2.9)
bn—l = (_1)}171 Z VisVj, = Vipors

1i<je<<jp-1<n
n
b, = (-1)"riry -+ 1y

Since the polynomial f can be factored as

=T ex-n)

then f can be written in terms of the coefficients b;, for j = 1, ---, n. That is,

f(x) = x" + byx" " + o+ by x + by,
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Therefore, we also have

by = -1,
bz =0,
b3 = O;
bn—l = 0:
b, = a,.

Thus, in our case, V! has the following simplified form

it -t ri-n r -1 1

) H;lzz (rn-n) H;l:z (n-r) H;'lzz (n-n) H;l:z (rn-n)
V= : : : :
rict -2 ri-r, r,—1 1

ker';l (rn - r])

Then solving (2.8), we get

H;l:_ll (rn - rj) H]'?:_ll (rn - rj) H]r'lz_ll (rn - r])_

_ n-1
n-1 1 r]
r; -
J "1-r
J
C = ,

! Hk#j(rj = %)

for j = 1,--, n. Using (2.9) and (2.10), the denominator of C; can be simplified as

[1i-n)=ng=(n-1)r,

k#j
for j = 1, -, n. Therefore,
-(n-2)
r— oy i
] n
G = il
j b
nr; - (n-1)
forj=1,-,n.
Moreover, since r; is a root of f, then it satisfies
n n-1 =0
e =0,
or equivalently
n-1 _ On
rj - 3
I-7

forj=1,-,n.

(2.10)

(2.11)

(2.12)

Thus, substituting (2.12) in (2.11), we obtain the final expression of C; as function of
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the respective root r;, that is,

n

C-— U (2.13)
7o - (n-1)" '

forj=1,-,n.

Note that the complex roots come in conjugate pairs. Let r be a complex root of f and
7 be its conjugate root. If we denote by C, and C; the associated constants of the roots r
and 7, respectively, then using (2.13), we can see that

Thus, in the general solution, the sum
Corl + C,rt
is a real number.

Finally, notice the inequality (2.4) shows that, when n is large, the root r; approaches
the value 1. Hence, by (2.13), the constant C; also approaches the value 1. Further, using
(2.5), (2.6) and (2.13), we can see that, for large n, the absolute value of the remaining
constants are of order .

23






Chapter 3

Conclusion

In this work, for the cases that the first possible return T(a]™") is equal to 1 or to n, we
proved that the exact distribution of the hitting time is a sum of exponentials. We showed
that this sum has a dominant term and that the others converge to zero.

In Chapter 2, we focused on the case T(aj ') = n for the analysis of the parameters of
the exact distribution. Notice that analogous results proved in Sections 2.2 and 2.3 hold for
the case T(a]™') = 1, since there are only small differences between the two cases. Namely:
the initial conditions used to find the constants, the degree and the constant term of the
characteristic polynomials f and g.

For the case 1 < T(a} ') < n, we found inequalities for y, in Proposition 3. Our idea is
that one can solve the inequalities following the procedure exposed in Chapters 1 and 2
to obtain sharp upper and lower bounds for y;. Note that the difference between the two
inequalities in Proposition 3 is a term of order &2, which is small for large n.

Moreover, we think that the same type of technique used to build the inequalities in
Proposition 3 could be used in the case of discrete-time stochastic processes with some
type of mixing condition assumed.

25






Bibliography

[1]

M. ABapI. “Exponential approximation for hitting times in mixing processes”. In:
Mathematical Physics Electronic Journal [electronic only] 7 (Jan. 2001) (cit. on p. 1).

Miguel ABADI. “Sharp error terms and neccessary conditions for exponential hitting
times in mixing processes”. In: Ann. Probab. 32.1A (Jan. 2004), pp. 243-264. porL:
10.1214/a0p/1078415835. URL: https://doi.org/10.1214/a0p/1078415835 (cit. on p. 1).

Miguel ABADI and Antonio GALVES. “Inequalities for the occurrence times of rare
events in mixing processes. The state of the art”. In: Markov Process. Related Fields
7 (July 2000).

David J. ALbous and Mark BRowN. “Inequalities for rare events in time-reversible
Markov chains. I”. In: Stochastic inequalities. Vol. Volume 22. Lecture Notes—
Monograph Series. Hayward, CA: Institute of Mathematical Statistics, 1992, pp. 1-
16. por: 10.1214/Inms/1215461937. URL: https://doi.org/10.1214/Inms/1215461937
(cit. on p. 1).

James Ward BrRowN. Complex Variables and Applications (Brown and Churchill).
McGraw-Hill Education, Sept. 2013. 1sBN: 0073383171.

Zaq CoEeLHO. “Asymptotic Laws for symbolic Dynamical Systems”. English. In:
Topics in Symbolic Dynamics and Applications. Ed. by F BLANCHARD, A Maass, and
A NOGUEIRA. Vol. 279. London Mathematical Society Lecture Note Series. Cambridge
University Press, June 2000, pp. 123-165. 1SBN: 9780521796606 (cit. on p. 1).

Paul CuLL. Difference Equations: From Rabbits to Chaos (Undergraduate Texts in
Mathematics). Springer, Apr. 2005. 1SBN: 0387232338 (cit. on p. 10).

Antonio GALVEs and Bernard ScHMITT. “Inequalities For Hitting Times In Mixing
Dynamical Systems”. In: 1997 (cit. on p. 1).

N. T.A. HayDN. “Entry and return times distribution”. In: Dynamical Systems 28.3

(2013), pp. 333-353. por: 10.1080/14689367.2013.822459. eprint: https://doi.org/10.

1080/14689367.2013.822459. URL: https://doi.org/10.1080/14689367.2013.822459
(cit. on p. 1).

27


https://doi.org/10.1214/aop/1078415835
https://doi.org/10.1214/aop/1078415835
https://doi.org/10.1214/lnms/1215461937
https://doi.org/10.1214/lnms/1215461937
https://doi.org/10.1080/14689367.2013.822459
https://doi.org/10.1080/14689367.2013.822459
https://doi.org/10.1080/14689367.2013.822459
https://doi.org/10.1080/14689367.2013.822459

28

[10]

[12]

BIBLIOGRAPHY

Masaki HIrRATA, Benoit SaussoL, and Sandro VAIENTI. “Statistics of Return Times: A
General Framework and New Applications”. In: Communications in Mathematical
Physics 206.1 (1999), pp. 33—55. 1sSN: 1432-0916. por: 10.1007/s002200050697. URL:
https://doi.org/10.1007/s002200050697 (cit. on p. 1).

Yiu-Kwong MaN. “On Computing the Inverse of Vandermonde Matrix via Synthetic
Divisions”. In: Transactions on Engineering Technologies. Springer Singapore, Aug.
2018, pp. 121-128. por: 10.1007/978-981-13-0746-1_9. URL: https://doi.org/10.1007/
978-981-13-0746-1_9 (cit. on p. 21).

Morris MARDEN. Geometry of Polynomials. American Mathematical Society, Dec.
1949. por: 10.1090/surv/003. URL: https://doi.org/10.1090/surv/003 (cit. on p. 18).


https://doi.org/10.1007/s002200050697
https://doi.org/10.1007/s002200050697
https://doi.org/10.1007/978-981-13-0746-1_9
https://doi.org/10.1007/978-981-13-0746-1_9
https://doi.org/10.1007/978-981-13-0746-1_9
https://doi.org/10.1090/surv/003
https://doi.org/10.1090/surv/003

	Introduction
	Hitting times via recurrence relations
	General setting
	The general recurrence relation
	The case T(a0n-1)=n
	The case T(a0n-1)=1
	The case 1<T(a0n-1)<n
	The exact distribution of the hitting time
	Examples

	The parameters of the exact distribution
	Introduction
	Analysis of the roots
	Analysis of the constants

	Conclusion
	Bibliography

