• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2008.tde-11092008-143337
Documento
Autor
Nome completo
Livia Costa Borges
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Barroso, Lúcia Pereira (Presidente)
Andrade Filho, Marinho Gomes de
Ferreira, Daniel Furtado
Morettin, Pedro Alberto
Sáfadi, Thelma
Título em português
Análise bayesiana do modelo fatorial dinâmico para um vetor de séries temporais usando distribuições elípticas.
Palavras-chave em português
Anállise Bayesiana
distribuições elípticas
Metropolis-Hastings< modelo fatorial
séries temporais
Resumo em português
A análise fatorial é uma importante ferramenta estatística que tem amplas aplicações práticas e explica a correlação entre um grande número de variáveis observáveis em termos de um pequeno número de variáveis não observáveis, conhecidas como variáveis latentes. A proposta deste trabalho é fazer a análise Bayesiana, que incorpora à análise o conhecimento que se tenha sobre os parâmetros antes da coleta dos dados, do modelo fatorial dinâmico na classe de modelos elípticos multivariados, assumindo que a um vetor de q séries temporais pode-se ajustar um modelo fatorial com k < q fatores mais um ruído branco, e que a parte latente segue um modelo vetorial auto-regressivo. A classe de modelos elípticos citada acima é rica em distribuições simétricas com caudas mais pesadas que as da distribuição normal, característica importante na análise de séries financeiras. Essa classe inclui as distribuições t de Student, exponencial potência, normal contaminada, entre outras. A inferência sobre os parâmetros foi feita utilizando métodos de Monte Carlo via Cadeias de Markov, com os algoritmos Metropolis-Hastings e Griddy-Gibbs, através da obtenção das distribuições a posteriori dos parâmetros e dos fatores. A determinação da convergência do processo foi feita por técnicas gráficas e pelos métodos de Geweke (1992), de Heidelberger e Welch (1983) e Half-Width. O método foi ilustrado usando dados reais e simulados.
Título em inglês
Bayesian Analysis of the dynamic factorial models for a time series vector using elliptical distribuitions.
Palavras-chave em inglês
Baysian analysis
elliptical distributions
factorial model
Metropolis-Hastings
time series
Resumo em inglês
The factor analysis is an important statistical tool that has wide practical applications and it explains the correlation among a large number of observable variables in terms of a small number of unobservable variables, known as latent variables. The proposal of this work is the Bayesian analysis, which incorporates the information we have concerning the parameters before collecting data into the analysis of a dynamical factor model in the class of multivariate elliptical models, where the factors follow a multivariate autoregressive model, assuming that a vector of q time series can be adjusted with k < q factors and a white noise. The class of elliptical models is rich in symmetrical distributions with heavier tails than the normal distribution, which is an important characteristic in financial series analysis. This class includes t-Student, power exponential, contaminated normal and other distributions. The parameters inference was made through Monte Carlo Markov Chain methods, with Metropolis-Hastings and Griddy-Gibbs algorithms, by obtaining the parameters and factors posteriori distributions. The convergence process was made through graphical technics and by Geweke (1992) and by Heidelberger and Welch (1983) and Half- Width methods. The method was illustrated using simulated and real data.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese_liviaborges.pdf (1.55 Mbytes)
Data de Publicação
2008-11-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.