• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2015.tde-13042015-230033
Document
Auteur
Nom complet
William Nilson de Amorim
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Silva, Gisela Tunes da (Président)
Artes, Rinaldo
Lima, Antonio Carlos Pedroso de
Titre en portugais
Verossimilhança hierárquica em modelos de fragilidade
Mots-clés en portugais
Análise de sobrevivência
Modelos de fragilidade
Verossimilhança hierárquica
Verossimilhança penalizada
Resumé en portugais
Os métodos de estimação para modelos de fragilidade vêm sendo bastante discutidos na literatura estatística devido a sua grande utilização em estudos de Análise de Sobrevivência. Vários métodos de estimação de parâmetros dos modelos foram desenvolvidos: procedimentos de estimação baseados no algoritmo EM, cadeias de Markov de Monte Carlo, processos de estimação usando verossimilhança parcial, verossimilhança penalizada, quasi-verossimilhança, entro outros. Uma alternativa que vem sendo utilizada atualmente é a utilização da verossimilhança hierárquica. O objetivo principal deste trabalho foi estudar as vantagens e desvantagens da verossimilhança hierárquica para a inferência em modelos de fragilidade em relação a verossimilhança penalizada, método atualmente mais utilizado. Nós aplicamos as duas metodologias a um banco de dados real, utilizando os pacotes estatísticos disponíveis no software R, e fizemos um estudo de simulação, visando comparar o viés e o erro quadrático médio das estimativas de cada abordagem. Pelos resultados encontrados, as duas metodologias apresentaram estimativas muito próximas, principalmente para os termos fixos. Do ponto de vista prático, a maior diferença encontrada foi o tempo de execução do algoritmo de estimação, muito maior na abordagem hierárquica.
Titre en anglais
Hierarchical likelihood in frailty models
Mots-clés en anglais
Frailty models
Hierarchical likelihood
Penalized likelihood
Survival analysis
Resumé en anglais
Estimation procedures for frailty models have been widely discussed in the statistical literature due its widespread use in survival studies. Several estimation methods were developed: procedures based on the EM algorithm, Monte Carlo Markov chains, estimation processes based on parcial likelihood, penalized likelihood and quasi-likelihood etc. An alternative currently used is the hierarchical likelihood. The main objective of this work was to study the hierarchical likelihood advantages and disadvantages for inference in frailty models when compared with the penalized likelihood method, which is the most used one. We applied both approaches to a real data set, using R packages available. Besides, we performed a simulation study in order to compare the methods through out the bias and the mean square error of the estimators. Both methodologies presented very similar estimates, mainly for the fixed effects. In practice, the great difference was the computational cost, much higher in the hierarchical approach.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
essay.pdf (1.28 Mbytes)
Date de Publication
2015-04-17
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.