• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2013.tde-13062013-163845
Document
Auteur
Nom complet
Tiago Moreira Vargas
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Ferrari, Silvia Lopes de Paula (Président)
Botter, Denise Aparecida
Lemonte, Artur José
Opazo, Miguel Angel Uribe
Vasconcellos, Klaus Leite Pinto
Titre en portugais
Estatística gradiente: teoria assintótica de alta ordem e correção tipo-Bartlett
Mots-clés en portugais
Argumento de encolhimento
Correção tipo-Bartlett
Expansão assintótica
Matchingpriors
Rota Bayesiana
Teste gradiente.
Resumé en portugais
Obtemos uma expansão assintótica da função de distribuição sob a hipótese nula da estatística gradiente para testar hipóteses nulas compostas na presença de parâmetros de perturbação. Esta expansão é derivada utilizando uma rota Bayesiana baseada no argumento de encolhimento descrito em Ghosh e Mukerjee (1991). Usando essa expansão, propomos uma estatística gradiente corrigida por um fator de correção tipo-Bartlett, que tem distribuição qui-quadrado até um erro de ordem o(n-1) sob a hipótese nula. A partir disso, determinamos fórmulas matriciais e algébricas que auxiliam na obtenção da estatística gradiente corrigida em modelos lineares generalizados com dispersão conhecida e desconhecida. Simulações de Monte Carlo são apresentadas. Finalmente, discutimos a obtenção de regiões de credibilidade via inversão da estatística gradiente. Caracterizamos as densidades a priori, matching priors, que asseguram propriedades de cobertura frequentista acuradas para essas regiões.
Titre en anglais
Gradient statistic: higher order asymptotics and Bartlett-type correction
Mots-clés en anglais
Asymptotic expansion
Bartlett-type correction
Bayesian route
Gradient test
Matching priors
Shrinkage argument.
Resumé en anglais
We obtain an asymptotic expansion for the null distribution function of the gradient statistic for testing composite null hypotheses in the presence of nuisance parameters. The expansion is derived using a Bayesian route based on the shrinkage argument described in Ghosh and Mukerjee (1991). Using this expansion, we propose a Bartlett-type corrected gradient statistic, which has a chi-square distribution up to an error of order o(n1) under the null hypothesis. Also, we determined matrix and algebraic formulas that assist in obtaining Bartett-type corrected statistic in generalized linear models with known and unknown dispersion. Monte Carlo simulations are presented. Finally, we obtain credible regions based by the inversion of gradient statistic. We characterize priori densities, matching priors, that ensure accurate frequentist coverage properties for these regions.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TeseFinal_Tiago.pdf (443.10 Kbytes)
Date de Publication
2013-06-26
 
AVERTISSEMENT: Le matériau se réfère à des documents provenant de cette thèse ou mémoire. Le contenu de ces documents est la responsabilité de l'auteur de la thèse ou mémoire.
  • VARGAS, TIAGO M., FERRARI, SILVIA L P, and LEMONTE, ARTUR J. Gradient statistic: Higher-order asymptotics and Bartlett-type correction. ELECTRON J STAT [online], 2013, vol. 7, p. 43-61. [cited 2013-08-04]. Available from : <http://projecteuclid.org/euclid.ejs/1357913281>
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.