• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2015.tde-16072015-154752
Document
Author
Full name
Rodrigo Lambert
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Garcia, Nancy Lopes (President)
Abadi, Miguel Natalio
Ahumada, Cesar Octavio Maldonado
Aschbacher, Walter Harry Hans
Tal, Fabio Armando
Vaienti, Sandro
Title in Portuguese
Teoremas fundamentais para o caminho mais curto entre duas sequências
Keywords in Portuguese
Caminho mais curto
Entropia de Rényi
Tempo de retorno
Abstract in Portuguese
Definimos a função caminho mais curto como sendo a mínima quantidade de passos para que uma realização do processo com condição inicial y atinja um conjunto-alvo x. Para tal função, provamos três resultados principais: um teorema de concentração de massa, um princípio de grandes desvios, e uma convergência em distribuição.
Title in French
Théorèmes fondamentaux pour le plus court chemin entre deux sequences
Keywords in French
Chemin le plus court
Entropie de Rényi
Temps de retour
Abstract in French
Dans ce travail, nous étudions les propriétés de le chemin le plus court entre deux sequences, et en présente trois principaux résultats: Le premier est le comportement asymptotique de le chemin le plus court comme une fonction linéaire de la taille de les cylindres. Le deuxième est un principe de grandes déviations pour cette quantitée. Et le troisième est de la convergence en distribution d'une version re-mise à l'échelle de cette variable aleatorie.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
R_Lambert_Tese.pdf (959.61 Kbytes)
Publishing Date
2015-07-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.