• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2012.tde-18072012-201751
Document
Author
Full name
Lucas Petri Damiani
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Botter, Denise Aparecida (President)
Paula, Gilberto Alvarenga
Venezuela, Maria Kelly
Title in Portuguese
Técnicas de diagnóstico para modelos lineares generalizados com medidas repetidas
Keywords in Portuguese
Dados faltantes
Distribuições binomiais correlacionadas
Equações de estimação generalizadas
Medidas repetidas
Simulação de variáveis aleatórias
Técnicas de diagnóstico.
Abstract in Portuguese
A literatura dispõe de métodos de diagnóstico para avaliar o ajuste de modelos lineares generalizados (MLGs) para medidas repetidas baseado em equações de estimação generalizada (EEG). No entanto, tais métodos não contemplam a distribuição binomial nem bancos de dados com observações faltantes. O presente trabalho generalizou os métodos já desenvolvidos para essas duas situações. Na construção de gráficos de probabilidade meio-normal com envelope simulado para a distribuição binomial, foi proposto um método para geração de variáveis aleatórias com distribuição marginal binomial correlacionadas, baseado na convolução de variáveis com distribuição de Poisson independentes. Os métodos de diagnóstico desenvolvidos foram aplicados em dados reais e simulados.
Title in English
Diagnostics for generalized linear models for repeated measures data with missing values
Keywords in English
Correlation structure
Diagnostic techniques
Generalized estimating equation
Missing data
Repeated measures
Simulation of random variables.
Abstract in English
Literature provides diagnostic methods to assess the fit of generalized linear models (GLM) for repeated measures based on generalized estimating equations (GEE). Still, such methods do not include the binomial distribution or databases with missing observations. This work generalizes the methods already developed for these two situations. A method for generating random variables with correlated marginal binomial distributions based on convolution of independent Poisson random variables has been proposed for the construction of half-normal probability plots. The diagnostic methods developed were applied to real and simulated data.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-07-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.