• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2012.tde-19022013-151640
Document
Auteur
Nom complet
Wagner Barreto de Souza
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2012
Directeur
Jury
Fontes, Luiz Renato Goncalves (Président)
Lebensztayn, Élcio
Ohashi, Alberto Masayoshi Faria
Valentim, Fábio Júlio da Silva
Valenzuela, Milton David Jara
Titre en portugais
Passeios aleatórios estáveis em Z com taxas não-homogêneas e os processos quase-estáveis
Mots-clés en portugais
Envelhecimento
Lei alfa-estável
Limite de escala
Localização.
Modelo de armadilha
Passeios aleatórios beta-estáveis
Processo alfa-estável
Resumé en portugais
Seja $\mathcal X=\{\mathcal X_t:\, t\geq0,\, \mathcal X_0=0\}$ um passeio aleatório $\beta$-estável em $\mathbb Z$ com média zero e com taxas de saltos não-homogêneas $\{\tau_i^: i\in\mathbb Z\}$, com $\beta\in(1,2]$ e $\{\tau_i: i\in\mathbb Z\}$ sendo uma família de variáveis aleatórias independentes com distribuição marginal comum na bacia de atração de uma lei $\alpha$-estável, com $\alpha\in(0,2]$. Nesta tese, obtemos resultados sobre o comportamento do processo $\mathcal X_t$ para tempos longos, em particular, obtemos seu limite de escala. Quando $\alpha\in(0,1)$, o limite de escala é um processo $\beta$-estável mudado de tempo pela inversa de um outro processo, o qual envolve o tempo local do processo $\beta$-estável e um independente subordinador $\alpha$-estável; chamamos o processo resultante de processo quase-estável. Para o caso $\alpha\in[1,2]$, o limite de escala é um ordinário processo $\beta$-estável. Para $\beta=2$ e $\alpha\in(0,1)$, o limite de escala é uma quase-difusão com medida de velocidade aleatória estudada por Fontes, Isopi e Newman (2002). Outros resultados sobre o comportamento de $\mathcal X$ para tempos longos são envelhecimento e localização. Nós obtemos resultados de envelhecimento integrado e não-integrado para $\mathcal X$ quando $\alpha\in(0,1)$. Relacionado à esses resultados, e possivelmente de interesse independente, consideramos o processo de armadilha definido por $\{\tau_{\mathcal X_t}: t\geq0\}$, e obtemos seu limite de escala. Concluímos a tese com resultados sobre localização de $\mathcal X$. Mostramos que ele pode ser localizado quando $\alpha\in(0,1)$, e que não pode ser localizado quando $\alpha\in(1,2]$, assim estendendo os resultados de Fontes, Isopi e Newman (1999) para o caso de passeios simples simétricos.
Titre en anglais
Stable random walks on Z with inhomogeneous rates and quasistable processes
Mots-clés en anglais
Aging
alpha-stable law
alpha-stable process
beta-stable random walks
Localization.
Scaling limit
Trap model
Resumé en anglais
Let $\mathcal X=\{\mathcal X_t:\, t\geq0,\, \mathcal X_0=0\}$ be a mean zero $\beta$-stable random walk on $\mathbb Z$ with inhomogeneous jump rates $\{\tau_i^: i\in\mathbb Z\}$, with $\beta\in(1,2]$ and $\{\tau_i: i\in\mathbb Z\}$ is a family of independent random variables with common marginal distribution in the basin of attraction of an $\alpha$-stable law with $\alpha\in(0,2]$. In this thesis we derive results about the long time behavior of this process, in particular its scaling limit. When $\alpha\in(0,1)$, the scaling limit is a $\beta$-stable process time-changed by the inverse of another process, involving the local time of the $\beta$-stable process and an independent $\alpha$-stable subordinator; the resulting process may be called a quasistable process. For the case $\alpha\in[1,2]$, the scaling limit is an ordinary $\beta$-stable process. For $\beta=2$ and $\alpha\in(0,1)$, the scaling limit is a quasidiffusion with random speed measure studied by Fontes, Isopi and Newman (2002). Other results about the long time behavior of $\mathcal X$ concern aging and localization. We obtain integrated and non integrated aging results for $\mathcal X$ when $\alpha\in(0,1)$. Related to these results, and possibly of independent interest, we consider the trap process defined as $\{\tau_{\mathcal X_t}: t\geq0\}$, and derive its scaling limit. We conclude the thesis with results about localization of $\mathcal X$. We show that it localizes when $\alpha\in(0,1)$, and does not localize when $\alpha\in(1,2]$, extending results of Fontes, Isopi and Newman (1999) for the simple symmetric case.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2013-02-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.