• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2013.tde-19062013-153433
Documento
Autor
Nome completo
Luz Marina Gomez Gomez
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Morettin, Pedro Alberto (Presidente)
Chiann, Chang
Lopes, Silvia Regina Costa
Pinheiro, Aluísio de Souza
Sato, João Ricardo
 
Título em português
Regressão não paramétrica com processos estacionários alpha-mixing via ondaletas
Palavras-chave em português
alpha-mixing
ondaleta
ondaleta adaptativa de Haar
ondaleta deformada
processo estacionário
regressão não paramétrica
Resumo em português
Nesta tese consideramos um modelo de regressão não paramétrica, quando a variável explicativa e um processo estritamente estacionário e alpha-mixing. São estudadas as condições sobre o processo Xt e sua estrutura de dependência, assim como do domínio da função f a ser estimada. Também são feitas as adaptações necessárias aos procedimentos para obter as taxas de convergência do risco para a norma Lp, no caso de ondaletas deformadas. Em relação às ondaletas adaptativas de Haar, obtêm-se as taxas de convergência do risco do estimador proposto. Mediante estudos de simulação, e avaliado o desempenho dos procedimentos propostos quando aplicados a amostras finitas sob diferentes níveis de perturbação do sinal e diferentes tamanhos da amostra. Também são feitas aplicações a dados reais.
 
Título em inglês
Nonparametric regression with stationary mixing processes.
Palavras-chave em inglês
adapted Haar wavelet.
alpha-mixing
nonparametric regression
stationary process
warped wavelet
wavelet
Resumo em inglês
In this thesis we consider a nonparametric regression model, when the exploratory variables are alpha-mixing stationary processes. We obtain convergence rates for risk for Lp norm, via warped wavelets, under suitable regularity conditions. For estimation using design adapted Haar wavelets we obtain convergence rates for the risk of the proposed estimator. The performance of the estimators are assessed via simulation studies with dierent sample sizes and dierent signal-to-noise ratios. Applications to real data are also given.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tesis20032013.pdf (1.25 Mbytes)
Data de Publicação
2014-08-25
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.