• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2005.tde-20210726-183243
Documento
Autor
Nome completo
Fredy Walter Castellares Cáceres
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2005
Orientador
Título em português
Autômato celular probabilista, modelos unidimensionais de trânsito e teoria de filas
Resumo em português
Modelos de trânsito de partículas aparecem na vida real e têm se convertido numa área de pesquisa muito ativa. embora bastante estudados, desde 1992, com a publicação do artigo de Nagel-Schreckembrg, por meio de simulações computacionais e por diversos métodos teóricos aproximados como os modelos de campo médio, existem poucos resultados rigorosos.Mostramos resultados rigorosos para vários modelos de trânsito. Provamos a existência de transição de fase e propriedades assintóticas para o autômato celular 184 e para o modelo de Fukui-Ishibashi, que generaliza o autômato 184, permitindo movimento de partículas velozes. Introduzimos um autômato celular probabilista que resgata as propriedades dos modelos de Schadschneider-Schreckenberg, conhecidos como autômatos com regras slow-to-star. Provamos a existência de transição de fase, encontramos o fluxo assintótico. Introduzimos o autômato celular probabilista com distribuição inicial a medida produto de Bernoulli de densidade p e de dinâmica de evolução dada por: cada partícula espera um tempo aleatório que tem distribuição geométrica de parâmetro p para mover-se pela primeira vez. Após este tempo, as partículas movem-se com velocidade 1 para sempre ou, em caso contrário, se deterão (várias partículas podem ocupar o mesmo sítio) se encontrarem alguma partícula parada na sua frente que bloqueie seu movimento. Neste caso as velocidades das partículas voltarão para 0 e as partículas ficarão bloqueadas até que a partícula ou as partículas que bloqueiam seus caminhos tenham partido. A partir deste instante, a partícula não bloqueada espera mais um tempo aleatório com distribuição geométrica para mover-se. Finalmente, introduziremos um modelo de trânsito de partículas que é contínuo no tempo e no espaço, que denominaremos Modelo Pontual.
Título em inglês
not available
Resumo em inglês
not available
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-07-28
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.