• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.1997.tde-20210729-014506
Documento
Autor
Nome completo
Márcia D Elia Branco
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1997
Orientador
Título em português
Calibração: uma abordagem bayesiana
Palavras-chave em português
Análise De Regressão E De Correlação
Inferência Bayesiana
Inferência Estatística
Inferência Paramétrica
Métodos Mcmc
Resumo em português
Neste trabalho apresentamos soluções para o problema de calibração controlada sob a perspectiva bayesiana da inferência estatística. Em primeiro lugar, tratamos do problema sob a suposição de linearidade e de que os erros são distribuídos de acordo com uma distribuição elíptica. Para o modelo elíptico dependente mostramos que a distribuição a posteriori de interesse coincide com a distribuição a posteriori obtida sob a suposição de normalidade, quando considerada uma distribuição a priori imprópria para o parâmetro de dispersão. Uma análise conjugada também é apresentada. Entretanto, não obtemos essa coincidência de resultados para o modelo independente. Neste caso, a distribuição a posteriori deverá depender do particular modelo elíptico especificado. Considerando algumas especificações a priori e a representabilidade do modelo elíptico, obtivemos formas gerais para estas distribuições a posteriori, caracterizando-as como mistura de distribuições conhecidas. Além disso, foram obtidas formas conhecidas para todas as distribuições a posteriori de um parâmetro, condicionais aos demais, possibilitando a implementação do amostrador de Gibbs. Posteriormente, tratamos do problema de calibração sem a suposição de linearidade e considerando que a variável resposta é categorizada. Apresentamos uma generalização do conhecido modelo probit, onde a função de ligação é uma distribuição elíptica. Nesse caso, obtivemos uma aproximação assintótica para a distribuição a posteriori, bem como uma solução via método MCCM (Monte Carlo baseado em Cadeias de Markov), para o modelo binomial. Para o modelo multinomial, propomos a solução via MCCM e apresentamos formas conhecidas para todas as distribuições condicionais
Título em inglês
not available
Resumo em inglês
not available
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
BrancoMarciaDElia.pdf (12.92 Mbytes)
Data de Publicação
2021-07-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.