• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1998.tde-20210729-015807
Document
Auteur
Nom complet
Adriano Francisco Siqueira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1998
Directeur
Titre en portugais
Processo de exclusão simples totalmente assimétrico
Mots-clés en portugais
Processos Estocásticos
Resumé en portugais
Considere um processo de exclusão simples totalmente assimétrico na rede unidimensional em Z. A deriva do processo é positiva. Estamos interessados em saber o que acontecerá com as propriedades locais e globais do processo ao começarmos o processo com degrau de densidade na distribuição inicial das partículas da seguinte maneira: a distribuição de partículas para os sítios à esquerda da origem será dada pela medida produto 'v IND. 'lâmbda' de densidade 'lâmbda' à direita da origem com 'v IND.p' para p< 'lâmbda'. Nesta dissertaçào é mostrado que o número de partículas no tempo t entre os sítios [ut] e [vt] dividido por t, converge quase certamente para 'INT.SUP.v INF. u' f(s)ds, onde f será chamada perfil de densidade que é uma função contínua e pode ser determinada explicitamente. Também é provado que a distribuição do processo vista por um observador que viaja à velocidade constante u converge fracamente para uma medida de Bernoulli com densidade f(u) quando o tempo tende ao infinito. A este resultado damos o nome de equilíbrio local. A chave das demonstrações será usar o processo de exclusão com dois tipos de partículas e a técnica do Acoplamento. As provas estão baseadas em idéias de Rost, Benassi-Fouque, Andjel-Vares e Andjel e completa a prova do resultado enunciado em Benassi-Fouque
Titre en anglais
not available
Resumé en anglais
Consider a process of simple exclusion totally asymmetric in the net one dimensional lattice Z. The drift of the process is positive. We are interested in knowing the behavior of the local and overall properties of the process when the initial distribution of the particles is as follows: the particle distribution for the sites to the left of the origen will be given by 'v IND.'lâmbda' and on the right of it by 'v IND.p' with p< 'lâmbda'. In this dissertation, it is shown that the number of particles at time t between the sites [ut] and [vt] divided by t, converges almost surely to 'INT. SUP. v INF. u' f(s)ds, where f is called density profile and can be obtained explicity
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.