• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1998.tde-20210729-020648
Document
Auteur
Nom complet
Rodrigo Andrade Tavares
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1998
Directeur
Titre en portugais
Seleção de variáveis em regressão 'L IND.1'
Mots-clés en portugais
Análise De Regressão E De Correlação
Resumé en portugais
O método mais utilizado no ajuste de modelos de regressão múltipla é o de mínimos quadrados, devido a suas propriedades estatísticas serem amplamente estudadas e facilidades computacionais. Contudo, este método é sensível a valores aberrantes, que são muito freqüentes no caso da distribuição dos erros possuir caudas pesadas. O objetivo desta dissertação é apresentar o método de estimação 'L IND.1', que é resistente a valores aberrantes na variável resposta. Será explorado, em particular, o problema de seleção de variáveis, sendo apresentados e desenvolvidos os critérios quando são analisadas as possíveis regressões, e procedimento automáticos de seleção. Um estudo preliminar sobre os efeitos da multicolinearidade nas estimativas 'L IND.1' é também executado. São apresentados também, programas que tornam viável a utilização do método 'L IND.1' em problemas de regressão
Titre en anglais
not available
Resumé en anglais
A widely used method to fit a multiple regresssion model is the least squares method, due to its statistical properties and computacional facilities. However, this approach can be affected by outliers, wich are very frequent when the errors distribution has heavy tails. The aim of this dissertation is to presente the 'L IND.1' method for regression models, exploring the variables selection problem. Criterions for variables selection are presented and developed when all possible regressions are considered and automatic selection procedures. A preliminary study about the multicolinearity effects over 'L IND.1'estinates is also perfomed. Programs which make possible the use of the 'L IND.1'method in regression problems are presented
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.