Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1999.tde-20210729-024034
Document
Author
Full name
Verónica Andrea González López
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1999
Supervisor
Title in Portuguese
Acoplamento, 'tau' de Kendall e redução da dimensão de um vetor aleatório
Keywords in Portuguese
Análise Multivariada
Probabilidade
Abstract in Portuguese
Considerando um vetor aleatório n-variado, n > 2, com coordenadas Negativamente Associadas (NA), Positivamente Associadas (PA) ou com ambas as condições nele presentes (por exemplo, algumas variáveis aleatórias Associadas em pares e outrasvariáveis Negativamente Associadas em pares), percorremos as conexões entre os diferentes conceitos. Analisamos e apresentamos opções que tornam uma estrutura 'heterogênea' (estrutura mista: positiva e negativa) numa estrutura 'homogênea'. Emseguida, adotamos uma medida de associação, logo depois de fazer uma análise dessas medidas. Imediatamente, apresentamos as propriedades de tal medida, surgindo, nesse ponto, sua conexão forte com acoplamentos. Essa medida de associação, em seusvalores extremos, percorre uma série de considerações feitas por De Finetti (1953), numa proposta para o estudo de campos de coincidência de opiniões. Todos esses resultados, válidos para o caso contínuo, são revisados no caso discreto.Retomando aquela medida de associação, apresentamos um estudo de uma possível 'função preditora', que é intuída a partir da medida e sua invariância ante transformações não decrescentes. A saber, encaramos a teoria de adequacidade, na procura deum ambiente, no qual seja possível fazer uma predição, de 'certo modo' razoável, baseados nos dados que contenham toda a informação pertinente a ser usada, para a predição de uma quantidade não observável, em geral, ou, em qualquer forma, umavariável da qual temos informação passada. Nessa predição encontra-se implícita uma redução da dimensão dos dados, observáveis, que leva em conta a estrutura de associação entre seus componentes, através da função de distribuição acumulada, dovetor considerado. Neste trabalho apresentamos uma proposta de metodologia preditiva, baseada nas propriedades das estruturas asociadas. Tal metodologia é fundamentada na função de distribuição acumulada obtida a partir do banco de dados ou ) registros, que possuem estruturas de associação. Para o desenvolvimento da metodologia, apresentamos os fundamentos teóricos das estruturas associadas, acrescentando novos resultados. Apresentamos ainda um método de validação dametodologia proposta, através de resultados que estabelecem uma relação entre as estruturas associadas e a medida 'tau' de Kendall
Title in English
not available
Abstract in English
This monography presents a new methodology for prediction based on the association structure of the random variables envolved. The methodology uses the empirical cumulated distribution function obtained in a previous observed data. The theoryneeded to develope the method is presented in details and some new results are obtained. To validate the method we present results relating the association structures with the Kendall 'tau' measure of association
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29