• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2000.tde-20210729-122749
Documento
Autor
Nombre completo
Paulo de Tarso Marques Rosa
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2000
Director
Título en portugués
Modelos de 'credit scoring': regressão logística, 'chaid' e real
Palabras clave en portugués
Estatística Aplicada
Resumen en portugués
O mercado financeiro de varejo brasileiro encontra-se em um momento de expansão da concessão de crédito, ocasionando um forte aumento na demanda por ferramentas capazes de avaliar o risco de inadimplência dos potenciais contratantes de produtos de crédito. Modelos estatísticos, denominados modelos de 'Credit Scoring', estão sendo utilizados para esta finalidade. Neste trabalho, descrevemos as caracteristicas dos processo de concessão de crédito e a partir de uma amostra de dados, fornecida por uma instituição financeira brasileira, aplicamos e comparamos três técnicas para classificação de clientes: a Regressão Logística Múltipla, o CHAID e o REAL. As duas primeiras técnicas são bastante utilizadas por profissionais do mercado e a terceira, trata-se de um novo algoritmo de Árvore de Classificação, sendo a primeira vez que é aplicado ao problema. Vantagens e desvantagens de cada um dos métodos são apresentadas
Título en inglés
not available
Resumen en inglés
Cosumer credit is an extremely significant factor in Brazilian economic expansion. Financial institutions are looking for efficient tools to evaluate the risk of consumer loans. Some statistical Credit Scoring Models have already been used for this evaluation. In this study we apply three methods in a sample set of applicants from a Brazilian Bank. Two of these methods, Multiple Logistic Regression and CAID, are well known and have good reputation in the financial community. The third method, the REAL, is a new decision tree algorithm and was adapted to be as a credit scoring technique. We compare the performance of these three methods to the data. We discuss the avanteges and disadvantages of each method
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.