• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2000.tde-20210729-123002
Document
Author
Full name
Marina Vachkovskaia
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2000
Supervisor
Title in Portuguese
Modelos de percolação multi escalar
Keywords in Portuguese
Percolação
Processos Estocásticos
Abstract in Portuguese
Estudamos as propriedades de conectividade de conjunto complementar no modelo de percolação de Poisson multi escalar e no modelo de percolação de Mandelbrot em dimensão arbitrária. Usando um resultado sobre a majoração de campos aleatórios dependentes por campos de Bernoulli, provamos que se o parâmetro de seleção é menor do que um certo valor crítico então escolhendo o parâmetro de escala suficientemente grande é possível garantir a ausência de percolação no conjunto complementar. Os resultados para o modelo de Mandelbrot são generalizados para o caso de um mosaico k-simétrico d-dimensional. O resultado obtido é aplicado ao modelo de percolação multi escalar por elo. Estudamos também o modelo Booleano de Poisson no caso de raio aleatório p não limitado. Para uma classe de modelos de percolação de longo alcance tais que as probabilidades p(x,z) de elo (x,z) ser aberto satisfazem algumas condições de regularidade e 'sigma'z pertence a'Z POT. 2' p(x,z) = 'infinito' provamos que a percolação ocorre mesmo se os elos maiores do que um certo número (que depende da família de probabilidades {p(x,z)}) forem cortados. Apresentamos também um exemplo de um modelo dependente de longo alcance para o qual isto não vale
Title in English
not available
Abstract in English
We study the connectivity properties of the complementary set in Poisson multiscale percolation model and in Mandelbrot's percolation model in arbitrary dimension. By using a result about majorizing dependent random fields by Bernoulli fields, we prove that if the selection parameter is less than certain critical value, then, by choosing the scaling parameter large enough, we can assure that there is no percolation in the complementary set. The results for the Mandelbrot's model are generalized for the case of k-symmetric d-dimensional mosaic. The obtained result is applied to multiscale bond percolation model. We also study Poisson Boolean model in the case of unbounded radius. We prove that for a class of a long-range percolation models for which connection probabilities p(x,z) satisfy some regularity properties, and such that 'sigma'z'pertence a'Z POT. 2' p(x,z) = 'infinito', percolation still will occur even if one truncates all edges lenght of which exceeds some certain constant (which in this case dependes on the family of connectivity probabilities {p(x,z)}). We also present an example of dependent long-range percolation model for which this is not true
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.