• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.2000.tde-20210729-123002
Documento
Autor
Nombre completo
Marina Vachkovskaia
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2000
Director
Título en portugués
Modelos de percolação multi escalar
Palabras clave en portugués
Percolação
Processos Estocásticos
Resumen en portugués
Estudamos as propriedades de conectividade de conjunto complementar no modelo de percolação de Poisson multi escalar e no modelo de percolação de Mandelbrot em dimensão arbitrária. Usando um resultado sobre a majoração de campos aleatórios dependentes por campos de Bernoulli, provamos que se o parâmetro de seleção é menor do que um certo valor crítico então escolhendo o parâmetro de escala suficientemente grande é possível garantir a ausência de percolação no conjunto complementar. Os resultados para o modelo de Mandelbrot são generalizados para o caso de um mosaico k-simétrico d-dimensional. O resultado obtido é aplicado ao modelo de percolação multi escalar por elo. Estudamos também o modelo Booleano de Poisson no caso de raio aleatório p não limitado. Para uma classe de modelos de percolação de longo alcance tais que as probabilidades p(x,z) de elo (x,z) ser aberto satisfazem algumas condições de regularidade e 'sigma'z pertence a'Z POT. 2' p(x,z) = 'infinito' provamos que a percolação ocorre mesmo se os elos maiores do que um certo número (que depende da família de probabilidades {p(x,z)}) forem cortados. Apresentamos também um exemplo de um modelo dependente de longo alcance para o qual isto não vale
Título en inglés
not available
Resumen en inglés
We study the connectivity properties of the complementary set in Poisson multiscale percolation model and in Mandelbrot's percolation model in arbitrary dimension. By using a result about majorizing dependent random fields by Bernoulli fields, we prove that if the selection parameter is less than certain critical value, then, by choosing the scaling parameter large enough, we can assure that there is no percolation in the complementary set. The results for the Mandelbrot's model are generalized for the case of k-symmetric d-dimensional mosaic. The obtained result is applied to multiscale bond percolation model. We also study Poisson Boolean model in the case of unbounded radius. We prove that for a class of a long-range percolation models for which connection probabilities p(x,z) satisfy some regularity properties, and such that 'sigma'z'pertence a'Z POT. 2' p(x,z) = 'infinito', percolation still will occur even if one truncates all edges lenght of which exceeds some certain constant (which in this case dependes on the family of connectivity probabilities {p(x,z)}). We also present an example of dependent long-range percolation model for which this is not true
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.