• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2001.tde-20210729-125507
Document
Author
Full name
Daniela Guiol
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2001
Supervisor
 
Title in Portuguese
Comportamento assintótico de estimadores da entropia para cadeias de ordem inifnita com perda de memória exponencial
Keywords in Portuguese
Entropia
Matemática Aplicada
Abstract in Portuguese
Nesta tese, apresentaremos resultados sobre as flutuações de dois estimadores da entropia para uma classe de cadeias de ordem infinita. Consideraremos uma cadeia estacionária de ordem infinita, isto é, na qual as probabilidades de transição dependem de todo o passado. Faremos a hipótese habitual em teoria de informação que a cadeia assume valores no alfabeto finito. Duponhamos também que a memória do passado decresce com velocidade exponencial. A partir de uma amostra finita da cadeia, de comprimento n, consideraremos a k-ésima distribuição empírica de um cilindro de comprimento k como sendo a freqüência relativa do cilindro na amostra. Nesta tese, será estudado caso em que esse comprimento k é uma função crescente do comprimento da amostra, isto é, k=k(n). Consideraremos dois estimadores da entropia. O primeiro deles é a k-ésima entropia empírica. Ele é definido como a razão entre a esperança, com respeito á distribuição empírica do logaritmo da probabilidade dos k-cilindros e o próprio comprimento k. O segundo deles é a k-ésima entropia empírica condicionada. Ele é definido considerando-se a esperança, com respeito à distribuição empírica do logaritmo da probabilidade condicional empírica. No capítulo 4 se encontram as condições originais desta tese. Os resultados principais são os Teoremas 4.6.4 e 4.6.5. Demonstramos no Teorema 4.6.4. que a k-ésima entropia empírica condicionada tem flutuações gaussianas em torno da verdadeir entropia do processo. Demonstramos também, no Teorema 4.6.5, que o mesmo não acontece com a entropia empírica de ordem k. Nossos resultados valem se k(n) , 1 sobre 2 log A log n. Esta é uma condição natural, já que log A é majorante da entropia do processo e que, em um contexto de aplicação concreta, a entropia do processo não é conhcida a priori. Os teoremas 4.6.4 e 4.6.5 respondem a uma questão deixada em aberto desde o artigo de Iosifescu (1965). Em particular o Teorema 4.6.5 ) aponta para uma diferença crucial entre cadeias de Markov e cadeias de ordem infinita
 
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
GuiolDaniela.pdf (6.04 Mbytes)
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.