Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2001.tde-20210729-125507
Document
Auteur
Nom complet
Daniela Guiol
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2001
Directeur
Titre en portugais
Comportamento assintótico de estimadores da entropia para cadeias de ordem inifnita com perda de memória exponencial
Mots-clés en portugais
Entropia
Matemática Aplicada
Resumé en portugais
Nesta tese, apresentaremos resultados sobre as flutuações de dois estimadores da entropia para uma classe de cadeias de ordem infinita. Consideraremos uma cadeia estacionária de ordem infinita, isto é, na qual as probabilidades de transição dependem de todo o passado. Faremos a hipótese habitual em teoria de informação que a cadeia assume valores no alfabeto finito. Duponhamos também que a memória do passado decresce com velocidade exponencial. A partir de uma amostra finita da cadeia, de comprimento n, consideraremos a k-ésima distribuição empÃrica de um cilindro de comprimento k como sendo a freqüência relativa do cilindro na amostra. Nesta tese, será estudado caso em que esse comprimento k é uma função crescente do comprimento da amostra, isto é, k=k(n). Consideraremos dois estimadores da entropia. O primeiro deles é a k-ésima entropia empÃrica. Ele é definido como a razão entre a esperança, com respeito á distribuição empÃrica do logaritmo da probabilidade dos k-cilindros e o próprio comprimento k. O segundo deles é a k-ésima entropia empÃrica condicionada. Ele é definido considerando-se a esperança, com respeito à distribuição empÃrica do logaritmo da probabilidade condicional empÃrica. No capÃtulo 4 se encontram as condições originais desta tese. Os resultados principais são os Teoremas 4.6.4 e 4.6.5. Demonstramos no Teorema 4.6.4. que a k-ésima entropia empÃrica condicionada tem flutuações gaussianas em torno da verdadeir entropia do processo. Demonstramos também, no Teorema 4.6.5, que o mesmo não acontece com a entropia empÃrica de ordem k. Nossos resultados valem se k(n) , 1 sobre 2 log A log n. Esta é uma condição natural, já que log A é majorante da entropia do processo e que, em um contexto de aplicação concreta, a entropia do processo não é conhcida a priori. Os teoremas 4.6.4 e 4.6.5 respondem a uma questão deixada em aberto desde o artigo de Iosifescu (1965). Em particular o Teorema 4.6.5 ) aponta para uma diferença crucial entre cadeias de Markov e cadeias de ordem infinita
Titre en anglais
not available
Resumé en anglais
not available
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées
cliquant ici.