Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.2004.tde-20210729-141613
Documento
Autor
Nombre completo
Victor Hugo Lachos Davila
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2004
Director
Título en portugués
Modelos lineares mistos assimétricos
Palabras clave en portugués
Pesquisa E Planejamento Estatístico
Resumen en portugués
Modelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado.
Título en inglés
not available
Resumen en inglés
not available
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29