• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2005.tde-20210729-141801
Document
Author
Full name
Valéria Troncoso Baltar
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2004
Supervisor
Title in Portuguese
Análise fatorial múltipla para tabelas de contingência
Keywords in Portuguese
Análise Multivariada
Abstract in Portuguese
Atualmente muitos estudos de diferentes iniciativas governamentais e acadêmicas buscam identificar um Sistema Nacional de Inovação em Saúde. Esses estudos tentam carcterizar os setores de atividade econômica envolvidos em Saúde. Nesta dissertação a caracterização baseia-se nos registros da versão 4.1 do Diretório dos Grupos de Pesqui8sa no Brasil (Gpesq-4), no qual os mesmos registram Saúde como área do conhecimento científico ou setor de atividade econômica em quaisquer de suas linhas de pesquisa. No Gpesp-4, os grupos podem registrar até três áreas do conhecimento e até três setores econômicos. O fato des estas variáveis apresentarem multiplicidade de respostas e, além disso, em uma das variáveis termos a presença de ordem de importância, tronou a análise destes dados um desafio e uma forte motivação para estudar as alternativas disponíveis para este tipo de problema. O objetivo foi buscar alternativas de análise para esta situação e o resultado são quatro formas diferentes para traçar este retrato do sistema, relacionando as áreas e os setores. A primeira solução é uma análise de Correspondência Simples (ACS) para uma tabela de múltipla resposta com todos os cruzamentos de área e setor, onde o total da tabela supera o tamanho da população. A segunda solução também é uma ACS, porém em uma tabela de contingência na qual temos as combinações observadas entre áreas e entre setores. Uma terceira solução é o uso da Análise de Correspondência Múltipla (ACM) para indicadores de cada área e de cada setor e por último, Análise Fatorial Múltipla para Tabelas de Contingência (AFMTC), na qual levamos em conta a ordem de importância que os respondentes agregaram aos setores econômicos. Nesta dissertação, descrevemos essas três técnicas, com maior ênfase para AFMTC, desenvolvemos o programa em R para sua aplicação e apresentamos as análise dos dados do Gpesq-4.
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.