• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2005.tde-20210729-141935
Document
Author
Full name
Ulisses Umbelino dos Anjos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2005
Supervisor
Title in Portuguese
Desenvolvimento e análise de estruturas de dependência via cópulas
Keywords in Portuguese
Probabilidade
Abstract in Portuguese
Neste trabalho apresentamos vários resultados relacionados com a teoria de cópulas. É feita uma representação para distribuições bivariadas que utiliza uma nova medida de dependência local que denominamos função Spearman e estudamos suas propriedades. Apresentamos a cópula associada a estrutura de dependência de estatísticas de ordem bivariadas, mostramos uma relação de recorrência assim como os limites de Fréchet associados. Finalmente, mostramos alguns resultados relacionados com a análise da dependência de vetores aleatórios não sobrepostos, apresentando uma adaptação do método de Cohen para cópulas em que deste modo pode-se construir uma (n'IND.1' +n'IND.2')-dimensional cópula C consistente com as cópulas n'IND.1'-dimensional cópula C'IND.1' e n'IND.2'-dimensional cópula C'IND.2' associadas com as marginais multivariadas dadas. Apresentamos também outra ferramenta que utiliza cópulas para estudar a estrutura de dependência de vetores aleatórios não sobrepostos em que as marginais são as distribuições de Kendall associadas aos vetores aleatórios.
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.