Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2005.tde-20210729-142747
Document
Auteur
Nom complet
Suzi Alves Camey
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2005
Directeur
Titre en portugais
Blocos de consenso, esquemas regenerativos e estimação em tempo polinomial de longas amostras de cadeias de Markov ocultas
Mots-clés en portugais
Processos Estocásticos
Resumé en portugais
Esta tese propõe duas abordagens para estimar a seqüência oculta de uma cadeia de Markov oculta: blocos de consenso e blocos de regeneração. Em ambos os casos os algoritmos resultantes dependem de um número de operações que cresce polinomialmente com o tamanho da seqüência. Na primeira abordagem, quebramos a seqüência visível em blocos e estimamos a seqüência oculta de acordo com a maioria de símboos que enxergamos na seqüência visível. Na segunda abordagem, utilizamos a estrutura regenerativa da cadeia para decompor em edois blocos independentes. Obtivemos limites superiores para a probabilidade de erro de estimação com os dois métodos. Na segunda abordagem, utilizamos o método de Monte Carlo markoviano e o algoritmo de Metrópolis para construir iterativamente a seqüência de instantes de regeneração e os blocos correspondentes de estados ocultos, dada a seqüência visível da cadeia. Na demonstração dos resultados foram utilizados resultados de esquemas regenerativos, o método de Chernoff e a desigualdade de Hoeffding. Esta tese tem também uma componente computacional. Com efeito, desenvolvemos rotinas em R que implementam os diversos algoritmos propostos. Também fizemos simulações que ilustram a funcionalidade dos algoritmos.
Titre en anglais
not available
Resumé en anglais
not available
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées
cliquant ici.