• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2011.tde-20220712-125006
Documento
Autor
Nombre completo
Tadeu Augusto Ferreira
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2011
Director
Título en portugués
Previsão da volatilidade de séries financeiras via máquina de suporte vetorial
Palabras clave en portugués
Estatística Aplicada
Resumen en portugués
A previsão da volatilidade tem ganhado cada vez mais importância. Ela é um elemento crucial no cálculo de muitas atividades financeiras e, por isso, prevê-la com exatidão tem se tornado indispensável. Muitos artigos têm aparecido na literatura recente, aplicando a Máquina de Suporte Vetorial para previsão e estimação de variáveis concernentes ao contexto dos mercados financeiros. Nesta dissertação buscamos realizar a previsão da volatilidade com o uso de um modelo GARCH, baseado em Máquina de Suporte Vetorial, denominado SVM-GARCH, introduzido recentemente na literatura. Para este propósito apresentamos uma introdução aos Kernels e à Maquina de Suporte Vetorial para Regressão. Para contornar o problema da volatilidade ser um fenômeno não observável, realizamos, sob situação controlada, simulações de processos GARCH, nos quais temos acesso à verdadeira volatilidade para comparar com os valores previstos. Não poderíamos deixar de aplicar a Máquina de Suporte Vetorial para a previsão de volatilidade em séries financeiras reais, e para tal fim, usamos o método na série dos retornos do Índice Bovespa. Atenção especial foi dada, em ambos os casos, à simulação e à série dos retornos do Ibovespa, para a verificação dos efeitos da variação dos parâmetros do SVM no erro absoluto médio de previsão, por meio de análise de sensibilidade. O modelo SVM-GARCH é comparado com os modelos GARCH Padrão, EGARCH, Médias Móveis e EWMA. Para avaliar o desempenho preditivo entre os modelos, utilizamos uma variante robusta do teste Diebold-Mariano. Após a comparação, foi constatado um desempenho superior do modelo SVM-GARCH quanto à previsão da volatilidade em relação aos demais modelos.
Título en inglés
not available
Resumen en inglés
not available
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2022-07-13
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.