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RESUMO

VANEGAS, L.H. Modelos de regressao log-simétricos na presenca de observagoes com
e sem censura: uma abordagem semiparamétrica. 2015. Tese (Doutorado) - Instituto de

Matematica e Estatistica, Universidade de Sdo Paulo, Sao Paulo, 2015.

O principal objetivo deste trabalho é proporcionar ferramentas estatisticas no contexto da
regressao semiparamétrica para analisar dados estritamente positivos e assimétricos na presenca
de observagoes censuradas (a esquerda ou direita mas nao informativa) e ndo censuradas. Sao
discutidos processos iterativos de estimacao de pardmetros com base nos algoritmos de esper-
anga/maximizacao, a esperanga/maximizacao restrita e backfitting. Propriedades assintoticas
dos estimadores de maxima verossimilhanca penalizada sdo estudados analiticamente e usando
experimentos de simulacdo. Discussoes sobre estimacao de graus de liberdade e intervalos de
confianca simultaneos sdo dadas e alguns procedimentos de diagnéstico, tais como residuos de
tipo desvio e medidas de influéncia local, sdo derivadas. O pacote ssym do R é desenvolvido.

Este pacote implementa as metodologias estatisticas abordados neste trabalho.

Palavras-chave: respostas assimétricas, estimativas de maxima verossimilhanca penalizada,
modelos semi-paramétricos, estimativas robustas, splines ctibicos naturais, B-splines, observagoes

censuradas.
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ABSTRACT

VANEGAS, L.H. Log-symmetric regressions models under the presence of uncen-
sored, left- or right-censored observations: a semi-parametric approach. 2015. Tese
(Doutorado) - Instituto de Matemética e Estatistica, Universidade de Sao Paulo, Sdo Paulo,
2015.

The main objective of this work is to provide statistical tools in the context of semiparametric
regression to analyze strictly positive and asymmetric data under the presence of uncensored and
non-informative left- or right-censored observations. Iterative processes of parameter estimation
based on the expectation/maximization, expectation/constrained-maximization and backfitting
algorithms are discussed. Asymptotic properties of the maximum penalized likelihood estimators
are studied analytically and by using simulation experiments. Discussions on effective degrees of
freedom estimation and simultaneous confidence intervals are given and some diagnostic proce-
dures, such as deviance-type residuals and local influence measures, are derived. The R package

ssym is developed. This package implements the statistical methodologies addressed in this work.

Keywords: skewness, asymmetric responses, maximum penalized likelihood estimates, semi-

parametric models, robust estimates, natural cubic splines, B-splines, censored observations.
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CHAPTER 1

INTRODUCTION

Linear normal models are of central interest in statistical modeling and various extensions
have been proposed in the sense of relaxing the error assumptions and the systematic component
form. In particular, the assumption of symmetric errors has been largely investigated, especially
in the last decade. The main attractive of this approach is the possibility of allowing both light-
and heavy-tailed error distributions. Other possible forms of extensions are concerned with the
assumption of nonlinear functions (parametric or nonparametric) in the systematic component
as well as for modeling the dispersion. In addition, linear normal models may be applied for
estimating the parameters of nonlinear multiplicative models with log-normal errors. The log-
normal is a well known asymmetric distribution for positive values, where its two parameters may
be interpreted as the median and the skewness (or the relative dispersion) of the distribution.
Then, by applying a logarithm transformation to the response of the multiplicative model one
may obtain a linear normal model from which the original parameters may be estimated. This
approach is the main motivation for studying the log-symmetric class and to developing this
work.

So that, applying the exponential transformation to the symmetric variables, a class of asym-
metric distributions for positive values is generated with the log-normal distribution being a
particular case. The former family of distributions, so-called log-symmetric class, includes bi-
modal distributions and covers light- and heavy-tailed error distributions such as log-Student-t,
log-power-exponential, log-hyperbolic, log-slash, log-contaminated-normal, and the extensions of
the harmonic law, Birnbaum Saunders and Birnbaum Saunders-t distributions, among others.
For all of these distributions the scale and power parameters may be interpreted as the median
and the skewness (or the relative dispersion), respectively. Shape parameters appear in some log-
symmetric distributions as, for instance, the degrees of freedom parameter in the log-Student-¢
distribution. Similarly to the log-normal case, multiplicative nonlinear models are proposed in
which the errors follow a log-symmetric distribution. However, the estimation, inference and
model checking are performed under the symmetric error model obtained after a logarithm
transformation to the response variable of the multiplicative model with log-symmetric errors.

This document is organized as follows. In Chapter 1, the log-symmetric class is derived and
some of its statistical properties as well as some of its members, are presented. Quantile-based
measures for the location, dispersion, relative dispersion, skewness and kurtosis are derived for
the log-symmetric class. Parameter estimation and inference under the classic and the Bayesian
approaches are discussed. Two applications to real datasets are provided. A multiplicative non-
linear model with log-symmetric errors is defined in Chapter 2, where the scale and power
parameters, which are interpreted as the median and the skewness (or the relative dispersion)
of the response variable distribution, may be modeled in a semi-parametric manner, so that, the
distribution of the response variable and a set of covariates are related by a sum of unspecified
functions whose functional forms are estimated from the data. Two possible modeling forms are
proposed with the respective joint iterative processes being based on the Fisher scoring and
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backfitting algorithms. Asymptotic properties of the maximum penalized likelihood estimators
are studied analytically and by using simulation experiments. Discussions on effective degrees
of freedom estimation and simultaneous confidence intervals are given and some diagnostic pro-
cedures, such as deviance-type residuals and local influence measures, are developed.

In Chapter 3, a very flexible accelerated failure time model is proposed, which is an extension
to handle non-informative left- and right-censored observations of the methods discussed in
Chapter 2. This model provides high versatility in its random and systematic components, but
it retains the well known appealing features of accelerated failure time models or log-location-
scale models. Similarly to the uncensored case, the median and the skewness (or the relative
dispersion) of the failure time distribution are explicitly modeled by semi-parametric functions.
The parameters are estimated by using nonlinear optimization algorithms such as Gauss-Seidel,
ECM and backfitting. Asymptotic properties of the maximum penalized likelihood estimators
are studied analytically and by using simulation experiments. Deviance-type residuals and local
influence measures are also derived.

Chapter 4 describes the capabilities and features of the new package ssym, which is an imple-
mentation of the log-symmetric models that is available from the Comprehensive R Archive Net-
work (CRAN) at ht t p: // CRAN. R- pr oj ect . or g/ package=ssym This package allows to fit
models under the presence of uncensored, left- and right-censored observations, where the median
and the skewness (or the relative dispersion) are explicitly modeled by semi-parametric functions
of covariates, whose nonparametric components are approximated by using natural cubic splines
or P-splines. This package enables performing residual analysis, as well as sensitivity studies
through local influence under usual perturbation schemes. Finally, in Chapter 5, the statistical
tools presented in the previous chapters are illustrated by analyzing some real datasets using
the R package ssym. Further examples can be found at http://cran. r-project. org/ web
/ packages/ ssyni ssym pdf .



CHAPTER 2

LOG-SYMMETRIC DISTRIBUTIONS

Data whose interest variable is continuous, strictly positive, and asymmetric with possible
outlying observations are commonly employed in various fields of practice. In fact, there is an
extensive body of literature about distributions whose support is the interval (0,00). Some of
the more flexible distributions include the generalized modified Weibull (Carrasco et al., 2008),
generalized Inverse Gaussian (see, e.g., Jorgensen, 1982), and generalized Gamma (Stacy, 1962)
distributions. However, according to Limpert et al. (2001), the log-normal distribution has been
successfully applied in an enormous range of applications. Thus, to describe the behavior of
strictly positive data, the log-symmetric distribution class is considered, because it is a gene-
ralization of the log-normal distribution that is flexible enough to include bimodal distributions
as special cases and distributions that have heavier/lighter tails than those of the log-normal
distribution.

Furthermore, the log-symmetric distributions are endowed with two interesting properties,
closure under change of scale and closure under reciprocals, which, according to Puig (2008),
are very desirable properties for distributions that are used to describe data with ratios of
positive magnitudes. The log-symmetric class also generalizes and makes more flexible the
distributions that have been developed to describe lifetimes under the assumption of accu-
mulated damage (e.g., the Birnbaum-Saunders (Birnbaum and Saunders, 1969)), Birnbaum-
Saunders-t (see, e.g., Barros et al., 2008; Paula et al., 2012) and generalized Birnbaum-Saunders
(Diaz-Garcia and Leiva, 2005) distributions) by introducing therein an additional parameter
that may be used to control the shape of the hazard function and to regulate the skewness and
the relative dispersion. Furthermore, as illustrated in this work, the log-symmetric class has sev-
eral desirable statistical properties that may make it preferable to alternative distributions. For
instance, the two parameters of the log-symmetric class are orthogonal and they may be inter-
preted directly as median and skewness, which are, in the context of asymmetric distributions,
the most meaningful measures of location and shape, respectively. In addition, the extension
of the log-symmetric class to the multivariate case is straightforward (Marchenko and Genton,
2010).

In this chapter, the log-symmetric class is characterized, and some of its main statistical
properties are studied. In particular, quantile-based measures of location, dispersion, skewness,
relative dispersion and kurtosis are derived, which are appropriate in the context of asymmetric
and heavy-tailed distributions. Inference under the classic and the Bayesian approaches are also
addressed. The practical use of the log-symmetric class of distributions is illustrated by describing
data on per capita gross domestic product, and body fat percentage, in which the performance of
the log-symmetric class is compared with that of some competitive and very flexible distributions
such as the generalized modified Weibull, generalized Inverse Gaussian, generalized Gamma, log-
skew-t (see, e.g., Azzalini et al., 2003) and Box-cox-t (see, e.g., Righy and Stasinopoulos, 2006)
distributions.
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2.1 Definition

Let Y be a continuous and symmetric random variable whose distribution belongs to the
symmetric class (see, e.g., Fang et al., 1990) that has location parameter —oco < p < 00, scale
parameter ¢ > 0 and density generator g(-). It is denoted as Y ~ S(u, ¢, g(-)). Its probability
density function is given by fy(y) = g[(y — 1)?/¢]//d for —oo < y < oo provided that g(u)>0
for >0 and fooou_%g(u)ﬁu = 1. Then, by setting T' = exp(Y’), a new class of distributions, the
so-called log-symmetric class, is obtained. It is denoted this class, whose support is the interval
(0,00), as T ~ LS(n, ¢,9(+)), where n = exp(p) and ¢ are its scale and power parameters,
respectively (see, for instance, Marshall and Olkin, 2007, chapter 7). The probability density
function of T reduces to ~

9(t?)

=

. a
where ¢ = log[(t/n)\/@]. The density generator g(-) may involve an extra parameter (or an

fr(t)

t>0, (2.1)

extra parameter vector), which is denoted here as (. Members of the class of distributions
characterized by (2.1) include the log-normal, log-Student-t, log-power-exponential, log-logistic
type I and II, log-hyperbolic, log-slash, log-contaminated-normal, harmonic law (see Puig, 2008,
and references there in), Birnbaum-Saunders (Birnbaum and Saunders, 1969), Birnbaum-Saun-
ders-t (see, e.g., Barros et al., 2008; Paula et al., 2012) and generalized Birnbaum-Saunders (see,
e.g. Diaz-Garcia and Leiva, 2005; Leiva et al., 2008) distributions. Note that the Birnbaum-
Saunders, Birnbaum-Saunders-t and generalized Birnbaum-Saunders distributions cited above
are special cases (in which ¢ = 4) of the (extended) homonymous distributions that will be
considered here. Similarly, the harmonic law cited above is a special case (in which ¢ = 1) of
the (extended) homonymous distribution that will be considered here.

2.2 Some statistical properties
If T~ LS(n,¢,g(-)) then, one can verify that:

(P1) The cumulative distribution function (cdf) of T' may be written as F.(t) = E,(t), where

F,(-) is the cdf of Z = (Y — p) /¢ ~ S(0,1,4(-)).

T*:(T/n)ﬁ ~ LS(1,1,9()), i.e.,, T* follows standard log-symmetric distribution.
c¢T ~ LS(cn, ¢,g(-)) for all constant ¢ > 0.

T¢ ~ LS(n°, ¢, g(+)) for all constant ¢ # 0.

(T'/n) and (n/T) are random variables that are identically distributed.

If E(T") and E(Z) exist, then E(T") > n".

If My (r) exists, then E(T") = My (r), where My (r) is the moment generating function of
Y =log(T).

(P8) The quantile function of T is given by ¥(q) = nexp(v/¢ Zé‘l))7 where ZéQ) is the 100(q)%
quantile of Z = (Y — u)//¢ ~ S(0,1,g(-)).

(P9) The Shannon entropy of 7', which is denoted as ET(T'), may be expressed as ET(T) =
log[n/@] + ET(Z), provided that ET(Z) and E(Z) exist.

(P10) If the W(-) function is such that log[W(x)] = hllog(x)], where h: R — R is an injective

and differentiable odd function, then the distribution of 7' = W(T™) is £LS(1,1,9(+)), where
g(u) = g{[" /W] /0 [ /w)].
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Let t = (t1,t2,...,t,)" be a random sample of size n from T ~ LS(n,¢,g(+)), in which ¢
is assumed to be known or fixed. Then, the maximum likelihood estimates (MLEs) of n and ¢
(which are denoted here as 7 and ¢, respectively) may be written as

n 2 1 nvfk iV: [10( /A)]2
h= {th(tk>} /k; ( ) i o 51 (t:) :gtk 7
£
k=1

)

. 1
where 1, = log[(tk/ﬁ)\/ﬂ and v(t) = —2¢/(t?)/g(t?) is a weight function induced by g(-), and

V(z?l),...,v(fn) is a set of positive weights if the g(u) function is monotonically decreasing
for u > 0, with ¢'(u) = dg(u)/Ou. Therefore, when v(¢;) > 0 for k = 1,...,n, the MLE of
n may be interpreted as a weighted geometric mean of t1,to, ... stn, whereas the MLE of ¢ is

proportional to a weighted arithmetic mean, for which v(fl), e ,v(fn) are the individual-specific
weights. Thus, the choice of g(-) may induce a v(-) function that enables one to estimate the
parameters using the maximum likelihood method in a manner that is robust to extreme or
outlying observations (i.e., the g(-) function may induce a v(t) function whose value decreases
as the ¢ value departs from the “centre" of the T distribution).

2.3 Members of the log-symmetric class

e Log-normal(n, ¢):
g(u) o exp [—%u] and v(t) = 1.

e Log-Student-t(n, ¢, ():

_ g1

g(u) [1 + %] i , (>0, and v(t) =

If ¢> (¢ + 1)%/4¢, then the function f7(t) is monotonically decreasing.

C+1
C+12

e Log-power-exponential(n, ¢, ():

2¢

|t| C+1
1+¢

1 1
g(u) x exp [—Eulié], —1<(¢<1, and v(t) =

The log-normal (( = 0) and the log-Laplace (¢ = 1) distributions are special cases. If
¢ =1 and ¢ > 1/4, then the function fr(¢) is monotonically decreasing. The distribution
of Y =log(T) is power exponential (Box and Tiao, 1973).

e Log-hyperbolic(n, ¢, {):

¢

g(u) xexp[—¢V1+u], (>0, and v(t)= Niwwrk

The log-normal(n, 02) distribution is a limiting case when ¢ — oo and ¢/¢ — o2. Simi-
larly, the log-Laplace(n, 0%) distribution is a limiting case when ¢ — 0 and ¢/¢? — 402
(Fonseca et al., 2012). If ¢ > (2, then the function fr(t) is monotonically decreasing. The
moments of T' are given by

ST
KO Vo

E(T")=n

7| < ¢/\/o,
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in which K, (¢)=2% foooxplexp[—%(x + i)} Oz is the modified Bessel function of third-order

and index r. The distribution of Y = log(7T) is symmetric hyperbolic (Barndoff-Nielsen,
1977).

Log-slash(n, ¢, {):

2 2
g(u)ocIGF(C—i—%,g) and v(t) = IGF(C—}—;,%)/IGF(C—F%,%)’

1

where ¢ > 0, IGF(a,z) = [exp(—tx)t* !0t is the incomplete gamma function for a > 0
0

and x > 0. The distribution of Y = log(T) is slash (Rogers and Tukey, 1972).

Log-contaminated-normal(n, ¢, ¢ = ((1,¢)"):

(1-¢a)
1

g(u) o /o exp [—%@U} + exp [—lu] , (1,6 € (0,1);

2

and

 Glaep|1- @5+ -q)
GiGexp|(1- )5 | + (1 -¢)

v(t)

The moments of T are given by

1—(
2C2

The mode of T' is within the interval (nexp(—¢/(2), nexp(—¢)). The distribution of ¥ =
log(T') is contaminated normal.

E(T") =7 eXP[%@“z]{Cl eXp{ ¢r2} +(1- Cl)} :

(extended) Birnbaum-Saunders(n, ¢, ():
1 2 91
g(u) o< cosh(u?)exp —?smh (u2)|, ¢>0,

and

_ sinh(t) [4cosh(?) 1
V() = t [ < cosh(t)] ’

where sinh(-) and cosh(-) represent the hyperbolic sine and cosine functions, respectively.
The weighting v(¢) of the Birnbaum-Saunders distribution increases as |t| also increases.
In addition, the Birnbaum-Saunders distribution is bimodal if ¢ > 2 and ¢ < o((), where

2

14+ /1+ 22
ol¢) = (VI+2¢ —3)| —— =0
14++/142

Note that o(¢) < 1 for all ¢ > 2. The moments of T" are given by (Rieck, 1999)

~exp(1/¢?)
V2

where 77 = (ry/¢ +1)/2 and r} = (rv/¢ — 1)/2. The distribution of Y = log(T) is sinh-

E(TT) =" [KTT(1/<2) + KT§(1/<2)] )
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_ 2
normal (Rieck and Nedelman, 1991). From the properties (P3) and (P4), T = n(T/n) V¢ ~
Birnbaum-Saunders(n, 4, ¢), i.e., T exhibits the probability distribution proposed by
Birnbaum and Saunders (1969).

e (extended) Birnbaum-Saunders-t(n, ¢, = (¢1,C2)'):

_ Go+1

g(u) x COSh(U%)[CQC% + 4sinh2(u%)} Y, G>0, >0
and
(t) = sinh(t)[4(C2+1)cosh(t) 1 }
W (oC?+4sinh?(t)  cosh(t) ]’

The Birnbaum-Saunders-t distribution is bimodal if (; > 21/1 4+ 1/{s and ¢ < [v(t1)t1]?,
where t; = log [\/tg -1+ to] and tg is given by

2C2 }é

1
to = 5[(C2+1)+C12C27_4

N

X [(@ + 3)+\/(C2 +3)2+2(C+1)((FGe—4) +4¢

The distribution of Y = log(T') is sinh-t (see, e.g., Barros et al., 2008; Paula et al.,

2012). From the properties (P3) and (P4), T = n(T/n)\% ~ Birnbaum-Saunders-t(n, 4, =
(C1,¢2)), i.e., T exhibits the probability distribution studied by Barros et al. (2008) and
Paula et al. (2012).

e (extended) Generalized Birnbaum-Saunders(n, ¢, =(¢1,¢2)"):
1 4 . 91
g(u) o< cosh(u2) x he, ?smh (u2)|, ¢ >0,
1
where he,(-) represents the kernel of the symmetric distribution (indexed by the extra
parameter (») that describes the cumulative damage, where he(u) > 0 for v > 0 and
fooouféh@(uwu = 1. The distribution of Z* = (2/¢;)sinh(f) is given by fz+(z) = h¢,(2?)
(Leiva et al., 2008). The Birnbaum-Saunders, Birnbaum-Saunders-t and slash-Birnbaum-
Saunders distributions are special cases (Balakrishnan et al., 2009).

e (extended) Harmonic-law(n, ¢, ¢):

sinh(t)

g(u) x exp[—(cosh(u%)} , (>0, and v(t)=¢ .

The moments of T are given by

E(T") =7

Vé
where r* = ry/¢. The mode of T is n[{fl(\/gb +¢2 - \/5)} . From the properties (P3)

— 1 —
and (P4), T = n(T/n)v% ~ Harmonic-law(n, 1, (), i.e., T exhibits the probability distribu-
tion studied by Puig (2008).

The values of the individual-specific weights v(t) are strictly positive for the log-normal,
log-Student-t, log-power-exponential, log-slash, log-hyperbolic, log-contaminated-normal, har-
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Figure 2.1: Graphs of the density function of the log-power-ezponential (n = 1,¢,( = 0.5) (a),
Birnbaum-Saunders-t (n = 1,6, = (6,4)7) (b), log-Student-t (n = 1,¢,¢ = 4) (c), and harmonic-law
(n=1,¢,(=0.1) (d) distributions.

monic law, Birnbaum-Saunders (for ¢ < 2) and Birnbaum-Saunders-t (for (; < 24/1+1/(2)
distributions. Furthermore, for distributions with tails that are heavier than those of the log-
normal distribution (e.g., the log-Student-t, log-power-exponential (for 0 < ¢ < 1), log-slash,
log-hyperbolic (for small {) and log-contaminated-normal distributions) the individual-specific
weights tend to be smaller as ¢ departs from the “centre" of the T' distribution. Therefore, for
distributions that have heavier tails, the MLEs of  and ¢ are less sensitive to extreme or out-
lying observations than for the log-normal distribution. Similar results hold for the distributions
that were developed to describe lifetimes under the assumption of cumulative damage. In fact,
one can verify that the weights of extreme or outlying observations for the Birnbaum-Saunders-¢
distribution are (relatively) smaller than those for the Birnbaum-Saunders distribution. Figure
2.1 shows the probability density functions of some log-symmetric distributions. This figure
illustrates the flexibility of the log-symmetric class.

2.4 Summary of the shape

The measures that are most frequently used for assessing the location, dispersion, relative
dispersion, skewness and kurtosis are based on moments. However, because of their derivation,
such measures may be not appropriate in the context of asymmetric distributions. Furthermore,
sometimes the moments are not finite or are quite difficult to calculate. Therefore, in this section,
quantile-based measures of the location, dispersion, relative dispersion, skewness and kurtosis
for the log-symmetric class are derived; these measures, exist even for distributions for which no
moments exist, are appropriate in the context of asymmetric distributions, are easier to calculate
and/or interprete than those based on moments, and are invariant under changes in the extreme
tails of the distribution. Furthermore, some of these measures (i.e., those used to measure the
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relative dispersion, skewness and kurtosis) are invariant under location-scale transformations
(see, e.g., Groeneveld and Meeden, 1984).

2.4.1 Location

The median of T ~ LS(n,¢,g(-)) is n, and the mode(s) of T may be written as M, =
nexp(t,+/@) provided that f/(¢) is continuous in M., in which ¢,. is(are) the solution(s) of

—v(t)t = /¢ restricted to v'(t)t%sign(t) > \/Psign(t),

where v/(t) = dv(t)/0t. In addition, it is possible to verify that M, <n if both g(u) is monoton-
ically decreasing for u>0 and f (t) is continuous in M.

2.4.2 Dispersion
The interquartile range of T' ~ LS(n, ¢, g(-)) may be expressed as

— 9(0.75) — 9(0.25) = 2 sinh<\/g$ Z8) s e (0,00).

2.4.3 Relative dispersion
The coefficient of quartile variation (Zwillinger and Kokoska, 2000, page 17) is given by

_ 9(0.75) = 9(0.25) _ 075
T 9(0.75) + 9(0.25) tanh(\/;bzg ) . we(0,1),

where tanh(-) is the hyperbolic tangent function. Note that w is a monotonically increasing
function of ¢ for fixed ¢. According to Bonett (2006), o may be preferable to the coefficient of
variation for describing the relative dispersion in asymmetric distributions.

2.4.4 Skewness

A quantile-based measure of skewness (see, e.g., Groeneveld and Meeden , 1984; Hinkley,
1975) is given by

g — M) +001—0)~29(1/2)
VT 90— -0

= cosech (ﬁZé‘”) — cotanh (\/52 éQ)) ,

where 3(q) € (0,1), ¢ € (0, 3), and cotanh(-) and cosech(-) represent the hyperbolic cotangent
and cosecant functions, respectively. A simple derivative reveals that for all ¢ € (0, %) the measure
of skewness s(q) is a monotonically increasing function of ¢ for fixed {. Therefore, ¢ may be
interpreted as the skewness of T" for fixed (.

2.4.5 Kurtosis

The kurtosis proposed by Moors (1988) reduces to

_9(7/8)—9(5/8)+0(3/8)—9(1/8)
B 9(6/8)—19(2/8)
(

sinh(\/azj/& _ Sinh( \/azép/s))

N

where ¢ € [0, 00).

The main conclusion of this section is that, irrespective of the value of ¢, n is the median
of the T distribution. Similarly, irrespective of the value of 1, ¢ is the skewness (or the relative
dispersion) of T for fixed (.
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2.5 Maximum likelihood estimation

The log-likelihood function of the interest parameters can be written as

n

L(6) = —5 log(¢) — > log(ti) + Y loglg(E{)):

To calculate the maximum likelihood estimate of @ = (n,$)", denoted as 0, the system of
equations given by <U77(9), U¢(9)):<8L(9)/6ﬁ, 6L(9)/8<§>:(0, 0) is solved using the Fisher scoring
algorithm, where

U(6) =— log[H(tk/ n)v(f’“)]

ne P
and
U46) = nLly ()2
¢ 20 2 VAsk )tk

The (expected) Fisher information matrix, which is denoted as K(0), is given by

0
[£o(O) = 11/4¢% ]

where dgy(¢) = E[v3(Z2)Z?% and f,(¢) = Ev*(2)Z%] for Z ~ S8(0,1,9(-)). For instance, the
quantity dg(C) is equal to 1, (¢ + 1)/(C + 3), {2'7T[(3 = ¢)/2]}/{(1 + O)’T[(1 + ¢)/2]} and
2—1—5%— @ {1 —erf <%) } exp <C2_2> when T is assumed to exhibit the log-normal, log-Student-t,
log-power-exponential and Birnbaum-Saunders distributions, respectively, where I'(+) represents
the gamma function and erf(z) = (2/y/7) [; e~ dt. Similarly, the quantity f4(¢) is equal to 3,
3(¢+1)/(¢+3) and ((+3)/(¢+1) when T is assumed to exhibit the log-normal, log-Student-¢ and
log-power-exponential distributions, respectively (see, e.g., Cordeiro et al. (2000); Villegas et al.

(2013)). Then, the Fisher scoring algorithm becomes
Algorithm 1.1

w(0) =~ E00(0) 0000") = [0/

Step 1. Initialize the counter as [ = 0 and set the initial value to 0.

Step 2. Based on Y calculate the following expressions:

I+1 y T 1 p(ffgl)>
g+ = @ H[tk/n()] and

k=1

B 2 A GNFOIE
log[pT1)] —10g[¢(l)]+m{” 1ZV<% >[tk } - 1},

S|=

where tél) = log{(tk/n(”)l/\/@} and p(t) = v(t)/dg(C).

Step 3. Update I = (I +1) and 80).
Step 4. Repeat steps 3 and 4 until convergence of 2108

Because the MLEs of  and ¢ for the log-normal distribution have closed forms, they can be
used as initial values for the iterative procedure for other log-symmetric distributions. Because
some distributions, such as the log-Student-¢, log-power-exponential (for 0 < ¢ < 1), log-slash,
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log-hyperbolic and log-contaminated-normal distributions, may be obtained as a power mixture
of log-normal distributions (see, e.g., Andrews and Mallows, 1974; Barndoff-Nielsen, 1977; West
, 1987), the EM algorithm (Dempster et al., 1977) can be used in those cases to develop an more
efficient iterative process for parameter estimation. Then, for these distributions the Step 2 of
the Algorithm 1.1 reduces to

(4D {ﬁtv )

k=1

and

??‘

}1/ ) V(z,g”)

n

Ut = p—1 V(tk )[log tk/n )]

k=1

Moreover, according to Balakrishnan et al. (2009), some distributions of the generalized Birnbaum-
Saunders class (e.g., the Birnbaum-Saunders-¢ and slash-Birnbaum-Saunders distributions) can
be obtained as scale mixtures of Birnbaum-Saunders distributions. Thus, the EM algorithm can
also be used in those cases to develop a more efficient iterative procedure of parameter estima-
tion. For example, under the Birnbaum-Saunders-¢ distribution the joint iterative process for 7
and qg becomes

Algorithm 1.2

Step 1. Initialize the counter as m = 0 and set the initial value to 0.

Step 2. Calculate u(™ = (ugm), e ,u%m))—r based on 8™ as follows:
(m) _ G(Ge+1)

(0 for k=1,...,n

(3G + [25imb(E(™)] i

Step 3. Calculate d (Cl/[u(lm)]%> v d (Cl/[u%m)]%) where

d;(()—2+é—g{ \F/ exp(— 8t}exp(%).

Step 4. Calculate fy (Cl/[ugm)]%) seen [y <C1/[u$lm)]%), where

o) = E{(4 sinh(2)cosh(z)z/¢* — tanh(2)z) 2}, and  exp(z) ~ Birnbaum-Saunders(1, 1, ().

g

Step 5. Initialize the counter as [ = 0 and set the initial value to 0&0) =9,

Step 6. Perform the following algorithm based on H(l)

(A) Compute the following expressions:

(FOu
pUF) = 50 { [tk/n ]p e } and

log[¢p"*V)] = log[ep®] + -
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where

(,il),ul(c )): (tk ,uk. )/Zd*({/ ) k=1,...,n,

and

o+ + _ sinh(¢) [4cosh()u 1
vt u) = t [ ¢? cosh(f)} '

(B) Update I = (I +1) and 8%V

(C) Repeat steps (A) and (B) until convergence of o).
Step 7. Update m = (m +1) and 8™ = o).

Step 8. Repeat steps 2, 3, 4, 5, 6 and 7 until convergence of om).

The usual regularity conditions of large sample theory are fulfilled by all of the log-symmetric
distributions listed above except for the log-Laplace distribution (i.e., the log-power-exponential
distribution for ¢ = 1) (see Cordeiro et al. (2000)). Thus, the asymptotic distribution of the
maximum likelihood estimator of 6 is the following:

Vi (¢> ¢)—>N ( [W/Sl o 4¢2/[fgo<<>—1]D'

Hence, 7 and qg are asymptotically independent.
2.5.1 Measuring goodness-of-fit

The goodness-of-fit is quantified using the following statistic, which is quite intuitive and has
the advantage of graphical representation:

! Z ‘(I) (k) (k)
b

where E(-) is the cumulative distribution function of T, " is the k-th order statistic of £, v

is the expectation of the k-th order statistic for a random sample of size n of a standard normal
distribution and ®(-) is the cumulative distribution function of a standard normal distribution.
Note that ®~1[E (¢ (1))], e @—1[5;(5("))] represent an ordered random sample from a standard
normal distribution and 7 and qg are a consistent estimators. Then, smaller values of T indi-
cate better goodness-of-fit. Graphically, the criterion Y indig:ates that the smaller the difference
between the normal Q-Q plot of ®~1[F (¢ (1))], cee <I>*1[FT(f(n))] and a straight line (with zero
intercept and unit slope), the better the goodness-of-fit. One advantage of this criterion is that
it allows for graphically evaluating the appropriateness or agreement with the data of the tails
(heavier or lighter) and/or the unimodality /bimodality of the distribution postulated for 7.

2.5.2 Choosing the extra parameter value

The density generator g(-) considered in the T distribution involves the extra parameter
¢, which is assumed to be known or fixed in the estimation process described above. This
assumption ensures easy calculation of confidence regions and hypothesis testing for n and ¢
using Wald- and Rao-type statistics because the Fisher information matrix is diagonal. The
motivation for this assumption also comes from the paper by Lucas (1997), which demonstrated
that the robustness against outlying observations of Student-t models remains only if the degrees
of freedom are fixed instead of estimated using the maximum likelihood method. In addition,
Kano et al. (1993) (and references therein) reported difficulties in calculating the extra parameter
using the maximum likelihood method for the power exponential and contaminated normal



2.6 2.6. BAYESIAN INFERENCE 13

distributions. Thus, to consider a unified approach for log-symmetric distributions, it is proposed
choosing the extra parameter value by minimizing the YT statistic. In fact, if the estimator
¢ = argmin is consistent; and dg(-) and f4(-) are continuous functions, then the multivariate
Slutsky’s theorem allows one to demonstrate that the ¢ value may be replaced with the value
obtained by minimizing the T statistic without changing the asymptotic distribution of 7 and
¢.

To investigate the performance of the proposed criterion, a simulation study is performed.
First, a sample of size n is generated from a standard log-symmetric distribution. The resulting
sample is used to estimate n and ¢ using the maximum likelihood method and to choose the
extra parameter value by minimizing the T statistic. This process is replicated R = 5000 times.
To consider different simulation scenarios, different log-symmetric distributions are used (i.e.,
the log-Student-t, log-power-exponential, log-hyperbolic, log-slash and Birnbaum-Saunders dis-
tributions) and the sample size is modified by considering n = 50, 100, 200, 400 and 800. As
summary measures, the median (M) and interquartile range (IR) of the R chosen extra param-
eter values are considered. The results are presented in Table 2.1. It can be observed that in all
scenarios, the median of the extra parameter values yielded by the proposed method tends to
the true value as the size of the sample increases. Similarly, the variability around the median
decreases as the size of the sample increases. These results indicate that for large sample sizes,
the difference between the extra parameter value yielded by the proposed method and the true
parameter value is small. Therefore, for large sample sizes, the inference on 1 and ¢ could be
based on the asymptotic distribution described above even when the extra parameter value is
unknown but has been chosen using the proposed method.

Table 2.1: The median (M) and the interquartile range (IR) of the R = 5000 chosen extra parameter
values by minimizing the Y statistic.

Distribution n =50 n = 100 n = 200 n = 400 n = 800

1.80 | 1.10 | 1.90 | 0.70 | 1.95 | 0.50 | 2.00 | 0.40 | 2.00 | 0.20
3.30 | 3.10 | 3.60 | 2.30 | 3.80 | 1.80 | 3.90 | 1.23 | 3.95 | 0.90
4.60 | 6.20 | 5.20 | 4.80 | 5.50 | 3.70 | 5.80 | 2.60 | 5.90 | 2.60
5.40 | 9.50 | 6.40 | 7.90 | 7.00 | 6.10 | 7.60 | 4.50 | 7.85 | 3.20
0.1 {0.17 | 0.39 | 0.14 | 0.33 | 0.12 | 0.23 | 0.11 | 0.17 | 0.10 | 0.12
0.2 |0.26 | 046 | 0.23 | 0.35|0.22 | 0.25 | 0.21 | 0.17 | 0.20 | 0.13
0.3 [ 032|046 |0.31 034|031 026 |0.30]|0.19 | 0.30 | 0.13
0.4 (039|044 ]0.39|0.38|0.40 | 0.26 | 0.40 | 0.19 | 0.40 | 0.14
1.0 | 0.95 | 2.00 | 1.00 | 1.60 | 1.00 | 1.10 | 1.00 | 0.80 | 1.00 | 0.50
1.1 | 1.01 | 2.20 | 1.03 | 1.50 | 1.08 | 1.10 | 1.10 | 0.80 | 1.10 | 0.60
1.2 | 1.05 | 220|110 | 1.60 | 1.13 | 1.20 | 1.18 | 0.80 | 1.20 | 0.60
1.3 | 1.10 | 2.20 | 1.15 | 1.70 | 1.20 | 1.10 | 1.25 | 0.90 | 1.30 | 0.60
0.8 | 0.75|0.30 | 0.78 | 0.21 | 0.79 | 0.16 | 0.81 | 0.12 | 0.80 | 0.08
0.9 [0.80|0.34|0.85|0.26 |0.89|0.20|0.89|0.14 | 0.90 | 0.10
1.0 | 0.89 | 0.39 | 0.92 | 0.33 | 0.98 | 0.24 | 0.99 | 0.16 | 1.00 | 0.13
1.1 | 0.97 | 0.41 | 1.03 | 0.36 | 1.06 | 0.25 | 1.08 | 0.20 | 1.10 | 0.15
1.5 | 1.20 | 1.80 | 1.30 | 0.90 | 1.40 | 0.60 | 1.40 | 0.50 | 1.50 | 0.30
2.0 | 170|170 | 1.80 | 1.10 | 1.90 | 0.80 | 2.00 | 0.50 | 2.00 | 0.30
2.5 | 210 | 1.90 | 2.30 | 1.30 | 2.40 | 0.80 | 2.40 | 0.50 | 2.50 | 0.40
3.0 | 275|220 | 285 1.40 | 2.95 | 1.00 | 2.95 | 0.60 | 3.00 | 0.40

Log-Student-t

o O B N Y

Log-power-exp.

Log-hyperbolic

Log-slash

Birnbaum-Saunders

2.6 Bayesian Inference

The method for inference about the interest parameters using the classical approach is based
on the asymptotic properties of the maximum likelihood estimator. Therefore, for small sample
sizes, such inference may be inadequate. Furthermore, some distributions, such as log-Laplace
distribution, do not satisfy the usual regularity conditions; consequently, for such distributions,
parameter inference cannot be performed using the standard method. Thus, this section considers
inference using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. One
of the main advantages of Bayesian inference is that it is exact and available for any parametric



14 CHAPTER 2. LOG-SYMMETRIC DISTRIBUTIONS 2.6

model. For simplicity, it is supposed that n and ¢ are independent and have the following prior
distributions:
n ~ log-normal(a,,b,) and ¢ ' ~ Gamma(cg,dy),

where a,, > 0, b, > 0, ¢4 > 0 and dy > 0 are assumed to be known. Next, we describe how
samples are drawn from the posterior distribution of 6.

2.6.1 Log-normal, log-Student-t, log-slash, log-contaminated-normal, log-hyperbo-
lic and log-Laplace distributions

One can sample from a joint posterior distribution of 7 and ¢ using Gibbs sampling (see, e.g.,
Gelfand and Smith, 1990), which involves successive sampling from the complete conditional
densities. Because some distributions, such as the log-Student-t, log-slash, log-contaminated-
normal, log-hyperbolic and log-Laplace distributions, may be obtained as a shape mixture of log-
normal distributions, the algorithm can be easily developed using a data augmentation scheme,
in which the complete conditional densities are known distributions. Next, a simple algorithm
is described.

Algorithm 1.3

Step 1. Set the initial value of the parameter vector to 0.

Step 2. Based on o sample ult1) = (uglﬂ), e ,ugﬂ)) independent as follows:

(A) Log-normal: P[USH) =1]=1

(B) Log-Student-t:

1012
oeh,6 ~ Gamma (4,5 ([i] + ).

where u ~ Gamma/(a, b) represents a random variable with probability density func-
tion given by f(u) oc u®~ ! exp(—bu).
(D) Log-slash:

2 1 1r~72
uk|77(l),¢(l) NTGamma( C;_ ,5[15]51)] ; (0, 1)),

where TGammaf(-, -; (0,1)) represents a random variable with truncated gamma dis-
tribution within the interval (0, 1) (see, e.g., Nadarajah and Kotz, 2006).

(E) Log-contaminated-normal:

. . 1 G2 [=(1)]2
(2 with probability p oc (5 (1exp _E[t

k
l l
Uk‘ﬁ()’éf)()'\‘ 1 (1) 2
1 with probability ¢ o< (1 — ¢1)exp <—§ [tk } )
(F) Log-Laplace:

w00~ c16 (5. 57" 1)

where u ~ GIG(a, b, ¢) is a random variable with generalized Inverse Gaussian distri-
bution (see, e.g., Hormann and Leydold, 2013) and density function given by

F(u) o utLexp (—%[b/u 4 Cu]> .

(G) Log-hyperbolic:
1 112
w7, 0 GIG<§, 70" + 1,<2> |
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15

Step 3. Based on ul*b and ¢®, sample n(*Y as follows:
n!u(l“), ¢(l) ~ log-normal <a(l+1), b(lH)) , where

(A) Log-normal, log-Student-¢, log-slash and log-contaminated-normal:

p(I+1)

n_ (I+1) -1 (l) L0HD 0N
p(+1) — Z Uy, l + i and otD H tk
— o0 by,

(B) Log-Laplace and log-hyperbolic:

b(l‘H)

1/ (1+1) —1 o0 L\ °
plt1) — Z ¢(l + b_ and oY) = Ht
n

k=1

Step 4. Based on ultV) and n(*1 sample ¢U+D as follows:
qﬁ*l‘u(l“),n(l“) ~ CGamma, <g + c¢,d(l+1)> 7 where

(A) Log-normal, log-Student-¢, log-slash and log-contaminated-normal:

1< t 2
I+1) k (1+1)
dU+D — 3 Z [log (n(l+1)>] uy, + dg.

k=1

(B) Log-Laplace and log-hyperbolic:

1 te \1°
l+1 - Yk
=2 [ ()]

k=

Step 5. Repeat steps 2, 3 and 4 until convergence is reached.

2.6.2 Harmonic law, Log-power-exponential (—1 < ¢ < 1), Birnbaum-Saunders and

Birnbaum-Saunders-¢ distributions

For these distributions, the posterior conditional densities of n given ¢ and ¢ given n are
unknown. Therefore, samples from the complete conditional densities are drawn using the
Metropolis-Hastings method (see, e.g., Chib and Greenberg, 1995). Next, a simple algorithm

is presented.

Algorithm 1.4

Step 1. Set the initial value of the parameter vector to 0.

Step 2. Based on 8%) sample n* from the log-normal(a(+1), b(”l)) distribution, where

p(I+1)

plt) — (" 1 - d o) = ol
= A¢(l)+bn and a Htk )

where A > 0 is a tunning parameter. Then, a new value nt1) = n* is accepted with

probability

fo(n|¢'Y)
mm{l W}, where
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o [l ol (2}

Step 3. Based on nt1) and ¢ sample 1/¢* from the Gamma(c(+) | dU+1) distribution, where

2
(+1) _ 1 (I+1)
c = +c¢ and  d( 2)\2[ ( 1>} +dy.
Then, a new value ¢+ = ¢* is accepted with probability

* [0 (141)
min{ 1, M} , where

f¢(¢(l) ’n(l-l-l))

gt [ Lt 077t (2).

Step 4. Repeat steps 2 and 3 until convergence is reached.

The value of the tuning parameter in the Algorithm 1./ may be set to A = Var(log(T™)), where
T* exhibits a standard log-symmetric distribution.

2.6.3 Unknown extra parameter

When the extra parameter ¢ is unknown, an additional step may be included in the algorithms
described above to draw samples from the posterior conditional distribution of { given 0; it is
assumed that ¢ and 0 have independent prior distributions. For instance,

(A) Log-hyperbolic distribution:

¢ is assumed to exhibit the log-normal(c¢,d¢) distribution. Thus, (* is sampled from the
log—normal(c(l),)\) distribution, where A > 0 is a tunning parameter. A new value ¢(+1) =
(* is accepted with probability given by

#44(1
mm{l, %} , where

Fe(Clw) o< Kay/Q)]~ exp< [Zuk]—ﬂ[ (%)D

(B) Log-slash distribution:
¢ is assumed to exhibit the Gamma(c¢,d,) distribution. Then, based on ult) ¢+ g

sampled from the Gamma(cél+1),dél+1)) distribution, where c(clJr ) =c¢ +n and d(l+1)

- Z log(ul ™)) + d..

(C) Log-contaminated-normal distribution:
¢1 ~ Beta(ce,,d¢,) and (o ~ TGamma(cg,,de,;(0,1)) are independent. Then, based on
ultD p+1) and o+, CQ(lH nd C( U are sampled from the TGamma(c élﬂ) d(lH) :(0,1))

(+1) d(l+1)) distributions, where c( = L+ ZI( (1) = (2), d(l+1) de, +

and Beta(c;," ', d¢,

St =1, ¢ M=, + 11 =) and déi“ e, + 5 PI =),

(D) Birnbaum-Saunders distribution:
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1/¢? is assumed to exhibit the Gamma(c¢,d;) distribution. Based on 71 and ¢(+1),
1/[¢U+1]2 is sampled from the Gamma(cél+1),dél+1)) distribution, where cé”l) =cc+ 5

and d! "V =237 sinh?(#@) + d.
k=1

Maximum likelihood estimates for the same family of distributions may be used as initial
values for Algorithm 1.8 and Algorithm 1.4. Inferences about the parameters or functions of
them are available from the approximate posterior marginal density. For example, it is possible
summarize the simulated posterior distribution of 17 and ¢ by computing the summary statistics
(i.e., the posterior means, medians, and standard deviations) and credible intervals. In the case of
non-informative priors, comparisons with the maximum likelihood approach may be performed.

2.7 Applications
2.7.1 Gross domestic product

Gross domestic product (GDP) divided by midyear population is known as the per capita
GDP. The per capita GDP is most likely the best measure of a country’s overall well being.
The GDP is the sum of the gross value added by all resident producers in the economy and any
product taxes and minus any subsidies that are not included in the value of the products. It is
calculated without making deductions for depreciation of fabricated assets or for depletion and
degradation of natural resources. The data set considered here corresponds to the per capita
GDP (current US$) of 190 countries during 2010, and it was downloaded from the World Bank’s
DataBank website (htt p:// dat abank. wor | dbank. or g/ dat a/ ).

Maximum likelihood estimation

Table 2.2: Values of —2L(0), AIC and BIC for the fitted distributions to the GDP data.

Log |Birnbaum| Log Box | General.|General.| General.
normal | Saunders | skew-t | Cox-t |Modified| Gamma | Inverse

Weibull Gaussian
—2L(9) 3919.61| 3902.82 (3919.58|3919.58| 3920.06 | 3921.62 | 3905.74
AIC [3923.60| 3906.82 |3927.58|3927.58| 3928.06 | 3927.62 | 3911.75
BIC [3930.10| 3913.31 |3940.57|3940.57| 3941.05 | 3937.36 | 3921.49

Table 2.2 lists the goodness-of-fit statistics —2L(0), AIC (Akaike, 1973) and BIC (Schwarz,
1978) for the log-normal, Birnbaum-Saunders(¢ = 2.2), log-skew-t, Box-cox-t (see e.g. Rigby and Stasinopoulos
, 2006), generalized modified Weibull, generalized Gamma and generalized Inverse Gaussian dis-
tributions fitted to the GDP data. The extra parameter  of the Birnbaum-Saunders distribution
was chosen by minimizing the criterion Y, as illustrated in Figure 2.2(a).

The Birnbaum-Saunders(¢ = 2.2) distribution has the lowest —2L(), AIC and BIC values
among all the fitted models; thus, it could be considered to be the E)est model in the sense
of these information measures. Figure 2.2(b) shows a plot of ®~1[F (¢ “N] versus v for the
fitted Birnbaum-Saunders distribution; this plot indicates that the distribution describes the
data adequately. A plot of the Birnbaum-Saunders(( = 2.2) density distribution is shown in
Figure 2.3(a) (together with the data histogram). Similarly, Figure 2.3(b) presents the empirical
cumulative distribution function of the per capita GDP and the cumulative distribution function
of the Birnbaum-Saunders (¢ = 2.2) model. The maximum likelihood estimates (and the corres-
ponding approximate standard errors, which are given in parentheses) of the model parameters

of the fitted Birnbaum-Saunders(¢ = 2.2) distribution are

7 = 4891.135(427.07) and ¢ = 3.187(0.21).
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Figure 2.2: (a) Graph of Y under the Birnbaum-Saunders distribution; (b) plot of <I>’1[FT(§(M)] versus
0™ under the Birnbaum-Saunders(C = 2.2) distribution fitted to the GDP data.
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Figure 2.3: (a) Histogram and (b) empirical cumulative distribution function of per capita GDP (current
US3) of 190 countries during 2010.

Because the Birnbaum-Saunders(¢ = 2.2) distribution was identified as the best model, and from
the properties (P3) and (P4) described in Section 2.2, one can conclude that the probability
distribution of any macroeconomic indicator that can be expressed as ¢;7? also belongs to the
log-symmetric class, where T represents the per capita GDP during 2010 and ¢; > 0 and ¢ # 0
are known constants. The Birnbaum-Saunders(¢ = 2.2) distribution was also fitted to the per
capita GDP for 2009; /) = 4823.88(424.96) and ¢ = 3.313(0.22) were obtained. Then, ignoring
the variability associated with the point estimates of 1 and ¢ it may be concluded that the
median of the per capita GDP distribution increased in 2010, whereas in the same year, the
skewness and relative dispersion of the per capita GDP distribution decreased. Similarly, the
modes of the per capita GDP distributions were US$ 466.056 and US$ 500.174 in 2009 and 2010,
respectively.

2.7.2 Bayesian inference

It is consider the prior distributions described in Section 2.6 with hyperparameters fixed as
follows: a, = 1, b, = 10000, ¢4 = 0.0001, dy = 0.0001, ¢, = 0.0001, and d¢ = 0.0001. This
setup allows for comparisons with the maximum likelihood approach. One chain of size 110000
for each parameter was simulated, and the first 10000 iterations were discarded to eliminate the
effect of initial values. To avoid correlation, a spacing of size 10 was used, thereby obtaining an
effective sample of size 10000. Table 2.3 lists the summary statistics of the posterior distribution
and the 95% credible interval for the parameters of the log-normal and Birnbaum-Saunders
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models fitted to the GDP data. The statistic DIC (see, e.g., Gelman et al., 2004) presented in
Table 2.3 indicates that the Birnbaum-Saunders model describes the data better than the log-
normal model. The inferential results are very similar to the results obtained using the maximum
likelihood approach. Figure 2.6 displays the history of the chains and the approximate posterior
marginal densities of the parameters 1 and ¢ for the Birnbaum-Saunders model.

Table 2.3: Posterior mean, median, standard deviation (SD) and 95% credible interval for parameters
of the log-normal and Birnbaum-Saunders distributions fitted to GDP data.

Log-normal

Mean Median SD 2.5% 97.5% DIC
n | 4843.55 | 4808.20 | 541.03 | 3870.75 | 5978.52 3993 61
¢ 2.35 2.33 0.25 1.92 2.88

Birnbaum-Saunders

Mean Median SD 2.5% 97.5% DIC
n | 4837.86 | 4821.61 | 362.48 | 4181.02 | 5573.93
¢ 3.25 3.23 0.30 2.70 3.90 | 3910.80
¢ 2.20 2.19 0.19 1.84 2.60

2.7.3 Body fat percentage

This data set, collected from the Australian Institute of Sport, consists of 13 variables mea-
sured on 102 male and 100 female athletes, and it was downloaded from the website ht t p: / / www. st at sci . or
The main objective of this analysis is to describe the distribution of the body fat percentage of
athletes. This distribution is expected to be bimodal because the data set comprises of male and
female athletes.
Table 2.4 lists the goodness-of-fit statistics —2L(8), AIC and BIC for the log-normal, Birnbaum-
Saunders-t(¢ = (4.5,4)"), log-skew-t, Box-cox-t, generalized modified Weibull, generalized Gamma
and generalized Inverse Gaussian distributions fitted to the body fat percentage of athletes. The
extra parameter ¢ of the Birnbaum-Saunders-¢ distribution was chosen by minimizing the crite-
rion Y, as illustrated in Figure 2.5(a). The Birnbaum-Saunders-t({ = (4.5,4)") distribution has

the lowest —2L(0), AIC and BIC values among all the fitted models; thus, it could be conside-

red to be the best model. Figure 2.5(b) shows a plot of <I>_1[FT(t~<k))] versus v for the fitted
Birnbaum-Saunders-t distribution; this plot indicates that the distribution describes the data
adequately. A plot of the Birnbaum-Saunders-t(¢ = (4.5,4)") density distribution is shown in
Figure 2.6(a) (together with the data histogram). Similarly, Figure 2.6(b) presents the empiri-
cal cumulative distribution function of the body fat percentage and the cumulative distribution
function of the Birnbaum-Saunders-t(¢ = (4.5,4)") model. The maximum likelihood estimates
(and the corresponding approximate standard errors, which are given in parentheses) of the
model parameters of the fitted Birnbaum-Saunders-t(¢ = (4.5,4)") distribution are

i = 12.467(0.278) and ¢ = 0.09116(0.0058).

Therefore, the median and the modes of the distribution of body fat percentage are 12.46%,
7.63% and 17.31%, respectively.
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Figure 2.5: (a) Graph of T under the Birnbaum-Saunders-t distribution; (b) plot of (Ifl[FT(fm)] versus
0" under the Birnbaum-Saunders-t (( = (4.5,4)" ) distribution fitted to the data of body fat.
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Table 2.4: Values of —2L(é), AIC and BIC for the fitted distributions to the body fat percentage of
athletes.

Log |Birnbaum | Log Box |General. |General.| General.
normal |Saunders-t| skew-t | Cox-t |Modified| Gamma | Inverse

Weibull Gaussian
—2L(9) 1262.24| 1224.38 |1255.15]1261.21| 1260.68 | 1264.32 | 1269.02
AIC |1266.24| 1228.38 |1263.15]1269.21| 1268.68 | 1270.32 | 1275.02
BIC |1272.86| 1235.00 |1276.39(1282.44| 1281.92 | 1280.24 | 1284.94

1.0

0.08
|
0.8

0.06
|
0.6

Density
04

o -
(=1
/ — B-S-t

T T T T T T T T T T T T T T
5 10 15 20 25 30 35 5 10 15 20 25 30 35

Cumulative Distribution Function

0.00
|
0.0
|

Body fat percentage Body fat percentage

Figure 2.6: (a) Histogram and (b) empirical cumulative distribution function of the body fat percentage
of athletes.
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CHAPTER 3

LOG-SYMMETRIC REGRESSION MODELS

Linear and nonlinear regression models are commonly applied in areas such as Biology, Chem-
istry, Medicine, Economics and Engineering. The analysis based on models under normal errors
and constant variance is the most popular when the variable of interest is continuous due to
desirable statistical properties and a comprehensively developed theory. Nevertheless, the appli-
cation of such models may be inadequate in certain scenarios commonly found in practice. For
instance, as shown by Vanegas and Paula (2015a), ignoring the skewness of the response vari-
able distribution may introduce biases into the parameter estimates and/or the estimation of
the associated variability measures. To address this problem, certain proposals have been made
in the literature to replace the normality assumption by more flexible classes of distributions.
For example, in the context of asymmetric and heavy-tailed responses, Lin et al. (2009) derived
diagnostic methods in nonlinear skew-t-normal regression models; Cancho ef al. (2010) studied
nonlinear skew-normal regression models using classical and Bayesian approaches; Lachos et al.
(2011) introduced heteroscedastic nonlinear regression models based on scale mixtures of skew-
normal distributions; and Labra et al. (2012) derived diagnostic methods for the class of regres-
sion models introduced previously by Lachos et al. (2011).

Although the models studied in these papers are attractive, they have certain limitations,
for instance, modeling the mean instead of the median, assuming that the skewness parameter is
constant across the observations and do not admit the presence of nonparametric effects. There-
fore, this work provides a unified theoretical framework for semi-parametric regression analysis
based on log-normal, log-Student-¢, Birnbaum-Saunders, Birnbaum-Saunders-t, harmonic law
and other right-skewed and strictly positive distributions, in which both, the median and the
skewness (or the relative dispersion) of the response variable distribution are explicitly modeled.
In this setup, here termed log-symmetric regression models, both the median and the skewness
(or the relative dispersion) are described using semi-parametric functions of explanatory vari-
ables, in which their nonparametric components are approximated by natural cubic splines (see,
e.g., Green and Silverman, 1994; Lancaster and Salkauskas, 1986) or P-splines (Eilers and Marx
, 1996). The flexibility provided by the systematic component under this model lies in its ca-
pacity to relate the distribution of the response variable with a set of covariates using a sum of
arbitrary functions, whose functional forms are estimated from the data. Under this approach,
the parameter interpretation is based on the multiplicative effects of the covariates acting on the
median and the skewness (or the relative dispersion) of the distribution of the response variable.
However, if the skewness (or the relative dispersion) is specified to be constant, the multiplica-
tive effect of the covariates directly affects the quantiles (of any order) of the distribution of
the response variable, which turns the parameter interpretation simpler. Moreover, some of the
log-symmetric distributions exhibit heavier tails than those of the log-normal one, which allows
to estimate the model parameters in a robust manner under the presence of extreme or outlying
observations.

23
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In the context of nonparametric and semi-parametric models, it is possible to cite some of the
most important contributions. For example, Hastie and Tibshirani (1990) introduced the class of
generalized additive models, and Righy and Stasinopoulos (2005) introduced the generalized ad-
ditive models for location, scale and shape (GAMLSS), which address the semi-parametric mixed
joint modeling of all parameters in a general class of distributions. Rigby and Stasinopoulos
(2006) illustrated the use of semi-parametric models based on Box-cox-t distribution. Wood
(2006) studied generalized additive models using the R statistical package to illustrate their
applications. Recently, Tbacache-Pulgar ef al. (2013) derived diagnostic tools in symmetric ho-
moscedastic semi-parametric models; Wu and Yu (2014) studied quantile regression based on
both, partially linear single-index models and partially linear additive models.

In this chapter, the log-symmetric regression models are introduced. A detailed description
of the parameter estimation process is also provided, which combines Fisher scoring, backfitting
and expectation-maximization (EM) algorithms. Discussions on effective degrees of freedom
estimation and simultaneous confidence intervals for nonparametric components are given, and
some diagnostic procedures, such as deviance-type residuals and local influence measures, are
derived. The asymptotic behaviour of the maximum penalized likelihood estimator is studied
under a fixed-knot assumption. A simulation study, which concerns with the behavior of the
maximum penalized likelihood estimates in log-symmetric regression models, is also presented.

3.1 Formulation of the model

Let ¢4, ...,t, be measurements of a quantitative interest characteristic performed on n sub-
jects or experimental units, which are assumed to be realizations of n independent random vari-
ables T1, ..., T, whose distribution is continuous, strictly positive, right-skewed and heavy /light-

tailed. Thus, T} is assumed to be obtained as
Ty = i &%, k=1,...n, (3.1)

where 7, > 0 and ¢, > 0 represent the median and the skewness (or the relative dispersion),
respectively, of the T}, distribution, whereas &1, ...,&, is a set of independent and multiplicative
random errors that exhibit a standard log-symmetric distribution with the extra parameter (or
extra parameter vector) ¢, whose probability density function is given by

feu (€ 9() = ég{[log@]?}, £>0, (3.2)

for some function g(u), where g(u) > 0 for v > 0 and fooou_%g(u)au = 1. Furthermore, the
quantile of order 0 < w < 1 of T}, can be written as
ﬁT*(w) = Nk [ﬁg(w)]\/@a

where ¥,(w) is the quantile of order w of . The class of distributions for the model error in-
cludes the standardized versions of the log-normal, log-Student-¢(¢), log-power-exponential (¢),
log-contaminated-normal(¢ = ({1, ¢2) ), log-hyperbolic(¢), log-slash(¢), Birnbaum-Saunders(),
Birnbaum-Saunders-t(¢ = ((1,¢2)") and harmonic law(¢) distributions. From the statistical
properties of the class of distributions described in (4.2), one may conclude that the distribu-
tion of T belongs to the same family compared with the model error. The distribution of T is
flexible enough to include bimodal distributions as special cases (e.g., Birnbaum-Saunders and
Birnbaum-Saunders-t distributions for some combinations of ¢ and () and distributions that
have heavier (e.g., log-Student-t, log-slash, log-contaminated-normal, log-power-exponential for
0 < ¢ < 1 and log-hyperbolic for small ¢) and lighter (e.g., log-power-exponential for —1 < { < 0
and log-hyperbolic for large () tails than those of the log-normal distribution.

Otherwise, it is assumed that g and ¢y, are related to explanatory variables by either of the
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following setups:

(1) (I1)

nk = n(xk, B) and log(nk) = %, B + Z f (ary) and (3.3)

q
lo =w, + £ (brr); d
g(¢k) Wk‘ R T';l ¢r( k, ) 10g(¢k‘) = W/—i‘r’y + Zl f¢r(bk77‘)’

where xj = (xg,ak,l,...,ak,p/)T and wj = (w;,bk71,...,bk,q/)—r are vectors of explanatory
variables for ny and ¢y, respectively; log[n(x, -)] is a continuous and twice differentiable function
forall 3 € Qp; 8= (B1,...,Bp) andvy = (71,...,7,) " are vectors of unknown parameters; fnj(a)
(j=1,...,p) and f¢r(b) (r =1,...,¢") are continuous, smooth and nonparametric functions
of the quantitative explanatory variables a and b, respectively; and {3 is a compact set with
interior points. The matrices X = (x§,...,x5)", W = (w},...,w’)" and D, = on/oB" are
assumed to be of full column rank for all B3 € Qp, where n = (n(x1,8),...,17(Xn,3))". The
functions f17j(a) (j=1,...,p') and f¢r(b) (r=1,...,q) are approximated by using natural cubic
splines (see, e.g., Green and Silverman, 1994; Lancaster and Salkauskas, 1986, sections 4.6 and
4.7) or P-splines (Eilers and Marx, 1996).

3.1.1 Natural cubic splines
Let min(a;), max(a;), min(b,) and max(b,) be the minimum and the maximum values of
(a1,...,an;) and (bi,,...,by), respectively. From two sets of pre-selected knots such that
min(a;) = ajq) < ajg) < ... < i) = max(a;) and min(b,) = by(1) < bpg) < ... < byg) =
max(b,), the values of { (a1,),....f (an;) and f¢ (b1,r),- - ,f(25 (bn,r) can be approximated by
J J T T
(fnj(al,j)’ s af;]j(an,j))T = Nn]- 7'-7;‘7- and (fd)r(bl,r)’ s afw(bn,r)) N T

or " Pr?

- ¢ - )T

N N . . Lo _ .M .M T . _
where Nnj and N, ~are basis matrices; T, = (Tj’l,...,ijj{) and T, = (TT71,...,Tr’q,T are
vectors of unknown parameters; pj’» and ¢|. are the sizes of the knot vectors, which satisfy 3 <
p; < p; and 3 < ¢, < @, where p; and g, are the number of different values in (a1,,...,an,;)

and (b1, ...,bnr), respectively. For i = 1,...,p; — 1 define h; = a;(;1) — a;@). Then, the
approximation of fn_(a) via natural cubic splines can be written as
J

(a —aju) (aj(i+1) — a)
f,(a) = =, [agen] + =1, ;0]
1 R IO @j(it1) — A\
- g(a = aji)(aji+1) — a) { (1 + T>fnj[aj(i+1)] + <1 e fnj[aj(i)] ;
for a;;) < a < ajiy, i =1,. ..,pj’» — 1. In addition, f ( ) is a twice-differentiable function on

[aj(l),aj(p]{)] f/ fa;)] = f [ i@ ] =0 and N 1=1, To avoid overfitting, the approximations

of f (-) and f4> () via natural cubic splines COHSlder the following penalty terms:
b r

)\~ " 2 )\ . )\ " 2 )‘
—i/[f (0] ot = -+ M7 and -2 /[f ()| ot = == N+

n;j 2 ér 2 b br  or’

respectively, where )\n, > 0 and )\¢ > ( are smoothing parameters and M and M are
J

T

symmetric and nonnegative definite matrices. The structures of N N M and M do not
depend on T, or T¢ and their explicit forms may be found in Appendlx A. If the set ‘of knots

coincide Wlth]the set of different values of the explanatory variable, then this approach becomes
the topic studied by Green and Silverman (1994).
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3.1.2 P-splines

Let p; and g, be the sizes of the internal knot vectors for { (-) and f¢ (+), respectively. From
¥ r
two sets of pre-selected knots, a;1) < i agd) < Gy < - GGG 2d)) and b1y <
.. br(ler?) <... bj(c]}erf) <...b the values Off;j(alj), . ,fnj(anj) and f¢r(b1r), c ’fzbr(bnT)
can be approximated by

r(§.+2d2)’

(¢ (arg),-of ()" =N, 4, and (£ (bip)--of (bur)T =N, 7,

where a;(1 g7 = min(a;), @G dl) = max(a;), b1 raty = min(b,), and b vaty = max(b,);
Nn]- and NW are B-splines basis matrices of degree dj < 3 and d:) < 3, respectively (see Boor
, 1978); T, = T 9 4 )T are vectors of unknown parameters of

1) .
(i1, Tl and 7, = (7,7, .. T

dimension pjf = ;53 + dj —landgq. =q.+ df — 1, respectively. Then, the approximation of { (a)
J

via P-splines can be written as

ZB adn—l ﬂ,

where

a— a;; Qi 14+d") — a
Bi(a; d? —-1) = i [ON Bi(a; d? -2)+ Jt+d)) Biy1(a; d? -2),
@ji+d]) — (i) @it 14d7) ~ Tjit1)

in which B;(a; —1) = 1if a;;) < a < aj(;41) and Bj(a; —1) = 0 otherwise (see, e.g., Wood (2006,
page 148); Lancaster and Salkauskas (1986, page 90)). Thus, the k-th row of Nnj is given by
[Bi(ay,j;d] —1),.. BJ  (akj;d] —1)] and N, 1,7; = 1,. To avoid overfitting, the approximations
of fnj(-) and fm(-) via P-splines consider the following difference penalty terms of order §J77 >0

and gf? > 0, respectively:

A 2 A .
— S AT =T s

where A7, = 71 — 47 M = D)Ds, M = DDy, with D» and D, as the matrix
Jsi Jsi yi— ' S S br <7 or S5 Sr

representations of the difference operators A and A , respectively.

One of the advantages of this model is the high flexibility of their random and systematic
components, because it considers a rich class of distributions with many desirable properties
for the model error/response, and it has the capacity to assume parametric, semi-parametric
or nonparametric systematic components. The second main advantage of this model is the the
easy and straightforward interpretation of the results because the parameters 1 and ¢, which
may be directly interpreted as the median and the skewness (or the relative dispersion) of the T’
distribution, are explicitly modeled as semi-parametric functions of explanatory variables. The
third main advantage is the simplicity of calculation of confidence regions and hypothesis testing
based on the Wald- and Rao-type statistics due to the orthogonality between the regression
parameters associated with n and ¢ (provided that the extra parameter ¢ is assumed to be
known or fixed).
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3.2 Parameter estimation

In matrix form, (3.3) may be expressed as

(1) (D
n=n(X,8) and log(n) = X8 + Nm 7.-771 +ot NT? /Tn , and
log(¢) = W + N, 7, +...+N, 7, log(¢) =W + N, 7, +...+N, 7, .

where n = (n1,...,00) ", @ = (¢1,...,¢n) ", X = (x1,...,%,)" and W = (wy,...,w,)". This
model exhibits identification problems (see, e.g., Fahrmeir et al. (2013, pages 50 and 536); Wood
(2006, page 163)). For instance, if a constant ¢ # 0 is added to 7,, and at the same time c is

subtracted from 7" , the sum N [ , Tl ] + N [ -, 1= N Ty T, + N + —cl,
3

]/ 7]/ 77/

remains the same, i.e., log(n) does not change 1f T ~ changes to T —l— cl and 7, = changes to
J

T, = 1, . Then, to avoid identification problems, 7. (] =1,... ) and 7, (r=1,...,q)are
J 5!
restricted to satisfy 1TT = 1T/ 7, = 0. These hnear constraints may be introduced by writing
the model in terms of N T Mnj (j=1,...,p) and N, 7, M¢T (r=1,...,q¢), in which
N n . _ n _ UEARE'N n
N"j o N’?j C], ) Tnj o Cj Tnj’ Mn]- o [C7 ] Mnjcj )
X ¢ L TN
Nd)r - N¢r C’r ) T¢r - Cr T¢r’ and M@A - [Cr ] M@nc'r )

where C (of dimension p’; x (pj — 1)) and C (of dimension ¢, X (g,. — 1)) are obtained via the
QR decomp051t10n of 1, and L, respectlvely (see, e.g., Wood (2006, page 45)), in which they

]
are such that [Cj] Cj =1,  and [C K C with I, as the identity matrix of order ¢.
J

1 / 1

Then, the parameter vector is given by 8 = (,BT,fy T, T and 0 = (,BT T,’y T, T under
)"

the setups (I) and (IT), respectively, where T, = (T

nl""’Tnp/) and T, = (T

PR ¢q/

Similar to Cordeiro and Andrade (2011), the estimation of @ is performed by fitting a sym-
metric heteroscedastic semi-parametric model to the transformed response variable (i.e., Y =
log(T)), in which the systematic component of the location parameter is given by ux = log(n),
k=1,...,n, and the systematic component of the dispersion parameter ¢, is a semi-parametric
function with logarithmic link, where the nonparametric functions are approximated by natural
cubic splines or P-splines, and the extra parameter ( is assumed to be known or fixed. For
a known (, this approach generalizes the random and systematic components of the linear
log-Birnbaum-Saunders, the nonlinear log-Birnbaum-Saunders and the linear log-Birnbaum-
Saunders-t models proposed by Rieck and Nedelman (1991), Lemonte and Cordeiro (2009) and
Paula et al. (2012), respectively. Then, the parameter estimates are the values that maximize
the penalized log-likelihood function of €, which is denoted here as PL(8) = L(0) + P(8), where
L(@) and P(@) represent the log-likelihood function (which is based on the joint distribution of
Y1,...,Y,, whose observed values are denoted here as y = (y1,...,%,) ") and the penalty term
of 0, respectively. The penalty term of @ may be written as

(1) (I1)

DY
[ T — "7] (i’r T
T¢TM¢TT¢T and P(0) = Z 2 ]] T, Z M(MT(M
j=1

under the setups described by I and II, respectively, in the expression (3.3). The log-likelihood
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function of 0 is given by

L(0) = L br),
k=1

in which Ly (s, @) = loglg(z2)] — 3 log(¢y) is the contribution of the k-th individual to the
function L(0), where 2z, = (yx — k) /v ér for k= 1,...,n. In the next section, explicit forms of
the score function and the Fisher information matrix are provided.

3.2.1 Score function and Fisher information matrix

The score function or estimating equation of  is given by dPL(8)/00" = U(@) — M8, in

which Tl
D, Q D(y —n)

= TWTl(s—1)) and M = diag{0,, M, }
%NI(S -1)

[XTQ "Dy (y — p)]
6)] |NQ'Dy(y - k) 0 M = diag (M M}
= an = dia, ,

IWT(s—1,) & ¢

%NI(S -1)

under the setup (II), where g = (1,..., )", Q@ = diag{¢1,..., dn}, D, = diag{vi,...,va},

s=waf, . vnz) LN = [N N LM = diag{0,, ML M, = diag{\, M, ...\ M, },
N, = [N¢1""’N¢q/]’ M, = diag{0,, M, }, M, = diag{\, M, ,..., )‘%/ M¢q/}’ 0, is a t x t zero
matrix, and vy = v(2x) = —2¢'(27)/g(27) for k = 1,...,n. Note that the estimate of 6, 6, is the

solution of the equation U(@) = M#.

Assuming that p and €2 are the true parameter values, the Fisher information matrix may
be calculated as —E[0PL(8)/0000"] = K(0) + M, in which K(8) = diag{K(0),K,(0)}, where

K,(6) = dy(¢)(D; 27'D,) and KJB):%)_I(WTW)

under the setup (I), whereas

KW(H) = dg(() (XTQ_li) and K¢(0) =

fg(o —1 (WTW)
4

under the setup (IT), in which X = [X,N,] and W = [W,NA.

3.2.2 Iterative process

The iterative process of parameter estimation considers the backfitting algorithm (see, e.g.,
Hastie and Tibshirani, 1990; Wood, 2006) to accomplish each step of the Fisher scoring algo-
rithm. Define N =X and N¢ = W for j = r = 0. Then, for a fixed value of the smoothing

J
parameter A = ()\; , )\(—;)T, the iterative process to estimate 8 reduces to:

Algorithm 2.1

Step 1. Initialize the counter as [ = 0 and set the initial value to 0.

Step 2. Based on 8" do the following:
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(A.1) Under the setup (I) described in (3.3) compute

41 l 1 -1 1 l l l
8" = {my'T"ea 0y} T e {8 + (1/d, ()P (v — 1)}

A.2) Under the setup (II) described in (3.3), solve the following equations for B(ZH) and
( p : g eq

T:H) (j =1,...,p) via the backfitting algorithm:
J
/B(zﬂ) {XTQ 1X] 1XTQ_1 [y(z) B N .T(l+1):|’
1) nj My

70
(+1 To-1 * T . (+1)
- [Nmﬂ(l) N +)\mMm] NTQ !y [ YN 7 ]

m nj
J#1

' -1
(1+1) T -1 * T 1] ~® (14+1)
T [N Q(z) N +A an/] an/ Q(l) [y - E N T ],

71 / p p np/ 4 f nj M5
J#Dp

where A» = A /dg(¢) and 7 =pu" + (1/dg(C))DEl\z) (y — ") is a working response
5 §

variable.

Step 3. Solve the following equations for 'y(lH) and T;l:l) (r =1,...,q") via the backfitting
algorithm:

~1
Ay = (WTW) WT{z‘” -y~ r;i“)},
r#0

r —1
+1 ¢ 1+1
ATV INTN M ] N7 oSN AL
1 L o1 %1 ¢ P91 b1 w or  br

T

S ~1
(1+1) ~) (1+1)
r =|INTN 4+XM N'{z"-y' N ~ ,
by @ by Pyl ¢

¢q/ i 7 q o oy ¢r  br

where )\;:4)\¢T/(fg(C)—1) and 7% = 1o g[d)(n]

variable.

0) . _
T fg(C) r(s” —1,) is a working response

Step 4. Update | = (I + 1) and 0"

Step 5. Repeat steps 2, 3 and 4 until convergence of 0"

Because distributions such as the log-Student-t, log-power-exponential (for 0 < ¢ < 1), log-
contaminated-normal, log-slash and log-hyperbolic can be obtained as a power mixture of the
log-normal distribution (see Andrews and Mallows, 1974; Barndoff-Nielsen, 1977; West, 1987)
the EM algorithm (Dempster et al., 1977) can be applied to obtain an more efficient process. In
these cases, |U = u ~ log-normal(1, h(u)) and the density generator of the & distribution may

be written as g(t?) = fR+{ [t/\/ ]/\/ }fU )Ou, where ¢(-) is the density function of the
standard normal distribution, hA(u) > 0 for v > 0 and fy(+) is the probability density function

(or probability mass function) of the random variable U. The E step of the EM algorithm is
accomplished by calculating v(z,(gm)) = EU[l/h(U) | Y = yi; 9<m)} for k =1,...,n. The M step

(m)

is accomplished by maximizing PL )(0) =L (6) + P(8) with respect to 8, where

(o) zélog{¢{zk¢@>]/@}.
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Then, the iterative process of parameter estimation for a fixed value of the smoothing parameter
reduces to the following form:

Algorithm 2.2

Step 1. Initialize the counter as m = 0 and set the initial value of the parameter vector to 0"
Step 2. Calculate Dx)):diag{v(zim)), () from 0.

0)

Step 3. Initialize the counter as [ = 0 and set the initial value as 91 o

Step 4. Based on 9:) and 6™ do the following:

(A.1) Under the setup (I) described in (3.3) compute

- DT a1 ) o DY L DT 3 — 1 am () [ (D) (D) 0
3 _{[Dﬁ] Q(UD(V)DB} Dy e, D(V){Dﬁ,@ t(y—p )}.

(I+1)

(A.2) Under the setup (II) described in (3.3), solve the following equations for 8 and
T:H) (j =1,...,p) via the backfitting algorithm:
J
) ToTolm™ w] T e—lm (™ (1+1)
g = [xTe D X] X", D) [y— N, 7 ]
J#0
) [T a1 (™) T A1 (™) (+1)
T _Nm Q(l) D(V) Nm - )\m Mm] Nm Q(l) D(V) [y o Z Nnj T } ’
i#1
ay | (m) - (m) (14+1)
_INT o-1p™ T o-1p™ |« _
Nt - an/ Q(l) D(V) an/ + )\np/ an/ ] an/ Q(l) D(V) I:y Nnj T”]j :| :
- J#p’

B) Solve the following equations for '7(l+1) and 77 (r = 1,...,q") via the backfittin
g g

[od
algorithm:
-+ T -1+ 0) 0) (+1)
= () W) < N
r#£0
W+ g T -1 T 0) o] (+1)
T¢1 o _N¢1N¢1 + 2)\¢1M¢1:| N¢>1 { |:10g <¢ ) ts i| Nd)r T¢>r }’
r#1
a+y | - 0) ) (@+1)
o INTN 420 M | NT [1og<¢ >+s ]— N AL
¢q/ ¢q, ¢>q/ <Z5q/ ¢>q/ ¢q, ¢r  br
§ r#q’
o (m)yr (D19 (m)yr (D12 T
where s~ = (v(zy, )z °—1,...,v(2, )z, —1) .

(C) Update I = (I +1) and 6.
(D) Repeat steps (A), (B) and (C) until convergence of GE:).

(m) @

Step 5. Update m = (m+1)and 8~ =0, .

Step 6. Repeat steps 2, 3, 4 and 5 until convergence of 0"

The EM algorithm also is applied when the distribution of the model error is Birnbaum-
Saunders-t(¢ = ({1,¢2)") because it may be obtained as a shape mixture of the Birnbaum-
Saunders distribution (Balakrishnan et al., 2009). In this case, £|U = u ~ Birnbaum-Saunders(1, 1, (1/1/u)
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and the density generator of the ¢ distribution is g(t?) = fR+{¢ [t, C1/v/u] } fu(u)ou, where é(-, )
is the probability density function of a standard sinh-normal distribution with extra parameter

¢, and fy(u) i exp(—uCz/2). The E step of the EM algorithm is accomplished by cal-
culating u;m = EU[U | yr; O 0" } for kK = 1,...,n. The M step is accomplished by maximizing

(m) (m)

PL () =L (0)+ P(0) with respect to 8, where

Zlog{ [%Cl/ )]/\/@}-

Next, the resulting iterative process for a fixed value of the smoothing parameter is described.

Algorithm 2.3

Step 1. Initialize the counter as m = 0 and set the initial value of the parameter vector to 0"

Step 2. Calculate u™ = (u(lm), . ,u;m))Tfrom 0" in the following manner:
2
m 1
u;{): Gle+1) for k=1,...,n.

(3 + [2 sinh(z,g’"’)} ’

Step 3. Calculate DE:;) = dlag{d*( 1/[u(1m)]2>, . ,d;( 1/[u;m)]%) }, where

4 o 2 € ) 2
dg(o_2+?_T{1_ﬁ/o exp(—t)@t}exp(<2>.

Step 4. Calculate D?}j) = ldiag {f ( 1/[u(1m)]2), - ( 1/[u (m)] >} where

f2(¢) = B (4sinh(Z)cosh(2)Z/¢* — tanh(2)Z)*] - 1,
where Z exhibit a standard sinh-normal distribution with extra parameter (.
Step 5. Initialize the counter as [ = 0 and set the initial value as 0 — 9"
Step 6. Based on OS) and 8™ do the following:
(A.1) Under the setup (I) described in (3.3) compute

(I+1) (OFay m) 17} (OFay (m) () (1)
& :{[Dﬁ] Q; D(dg)Dﬁ} Dy ", 1D, {Dﬁ,a + Dy — )}, where

@ (m)

W (m 5 4 sinh(z)cosh(z)u tanh(z
D(p)_dla‘g{ (z17u1 )7"-7p(zn7un )},p(Z,U): ( ) ( ) - ( )

2R (G u) 2 di(Gjuz)

A.2) Under the setup (II) described in (3.3), solve the following equations for B(ZH) and
( p : g eq
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T;;_H) (j =1,...,p") via the backfitting algorithm:

(I4+1) _ [ T v—11m (™) ] T 14 (M) (l) (I+1)
B =X, DyyX| X 2, D,y N7, |

70

) e T L™ T v (m) | ) (1+1)

r = NI DN, +AmMn] N, &, D(d)[ -2 N7, ]
i#1
any [ ! m oo (1+1)
_INT T m
ﬁp/ - an/ Q D( )N + )\ p M :l an/ Q D(d )|: # N’?]' Tﬁj :| )
B J#p

where S/( = u 4 D(p) (y — um) is a working response variable.

141 141
Y and Y (r=1

(B) Solve the following equations for ~ ,

algorithm:
= (WD W) WD a0 - YN
r#0

41 [T (m) T [0 (1+1)
= _N DN, +A M } N'D [ YN 7 }
r#1

,...,q") via the backfitting

-1
I I T [0 (1+1)
oy =N, P, TA M ] N D(fq)[ N, T }

where 7 = log|¢

(C) Update I = (I + 1) and 0:)
(D) Repeat steps (A), (B) and (C) until convergence of 05:)

Step 7. Update m = (m + 1) and 0" = 9:).

Step 8. Repeat steps 2, 3, 4, 5, 6 and 7 until convergence of 0"

Note that the iterative estimation process consider a set of individual-specific weights (v(z,gl)), k=
1,...,n), which are related to the relative importance of each individual in the iterative estima-
tion process and are dependent on the standardized difference between the observed response
and the fitted value. For further details on the function v(-) see Section 1.3. Hereinafter, 7,

= log () and qgk represent the fitted values of ng, ur = log(ng) and ¢y, respectively, for
k=1,....n

3.3 Asymptotic theory

Let 9, B, v, 7, and T, represent the maximum penalized likelihood estimators of 6, 3, ~, T,
and 7, respectively. Under the absence of nonparametric effects in the systematic component
(3.3), the model setup coincides with the topic addressed by Cysneiros et al. (2010), which descri-
bed the asymptotic properties of 9, such as consistency, efficiency and normality. The asymptotic
behaviour of 8 under the general case of the systematic component (3.3) is studied here by using
a framework of fixed-knot (see Wu and Yu, 2014; Yu and Ruppert, 2002), which implies that
the penalty matrices and the size of 7, and 7, are not dependent on the sample size n. Next,
the required conditions for some asymptotic results be valid, are listed.

Conditions:
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1. There is 7'75:] € R% ! such that f7j(a) = Nnj;(a)Tf] for all a € (a;,a;), j=1,...,p". Then,

J

T T\ |
o (0] (0] :
Ty =\ [T0 |2 |7, is the true parameter vector for 7.

n 1 p
2. There is 7, € R%~! such that £, (b) = N (b)7" for all b € (b, b), 7 = 1,...,¢". Then,

T

[0] 1" [0] s th £

To =\ |To, | |Ts, 1s the true parameter vector for 7.
q

3. The usual regularity conditions of large sample theory are fulfilled (see Cox and Hinkley,
1974, chapter 9). This conditions ensure that

(a) n_lK(G[O]) — 2(9[0]), where K(O[O]) and 2(9[0]) are positive definite matrices,

n— oo
T T T TN\ T
and 0" = <[,@[Oq , [TS]} , [’7[0]} , [T;ﬂ} ) is the true parameter vector for 6.
_1 /0] (0] D
(b) K2(07)U(6) —— N(0.I).

() n1uU(6") L= 0.

n—0o0

(d) nl[%(em) +K(0[O])} ﬁ 0.

2 2
(e) nl[g;‘Tg(e) — ZGZSOQT) (0[0])} ﬁ 0 for all @ in line segment joining @ and

0
9[]

4. The smoothing parameter may be dependent on the sample size. Let A" be the value of
the smoothing parameter under a sample of size n. Then, H)\(n) | — X< oo
n—oo

Theorem 1. Under (1)-(4) it follows that 0 is a consistent estimator of 0[0], and

1,00 [0] P (0] D
K3 (") [K(6") + M] (8- 0") 2 N(0,1).
Under (1)-(4) and for large sample sizes, 8 is an unbiased estimator of 0" whose variance-
covariance matrix may be written as

-1

K(0")[K(6") + M| -

Var [9] = [K(O[O]) + M}

Var[8] 0
0 Var [fy] ’

in which 8 = (,BT,TWT)T, B = (BT, An—r)T v = (VT,TJ)T and 4 = (’AyT,i';—)T. The variance-
covariance matrices Var [,Z?] and Var [%/]

Var[3] = t |
4

Varl3] = o [W W 4 M) C(WW)[WW M

under the setup (I) described in (3.3), where M; = (4/(f4(¢) — 1))My. Similarly, under the
setup (II) described in (3.3), Var [B] and Var[ ] are given by

1
and

(D5 @ 'Dg)~

-1

-1

Var[g] = d; 5 X0 XM %ﬂrli) XXM
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and

WW M| (WW) W WM

N 4
varli] = 7575 |

where M; = (1/dy(¢))M,,. An intuitive estimator of the asymptotic variance-covariance matrix
of 6 reduces to Var [9] evaluated at the 6 estimate.

3.4 Testing no effect of covariates

In this section, testing no effect of an explanatory variable whose effect is nonparametrically
modeled, is discussed. If the interest effect was specified as qu(a) for some j = 1,...,p/, testing

no effect of the explanatory variable a on 71, means assessing if indeed (£ (a1,5), ... ,fn_(amj))T =

. . j j

Nn]_ +n7 = c1, for some constant c. Because Nny_ 1,,{ =1, testing no effect of a implies assessing
' b J

Hy : 7""]_ = clp{ versus Hj : 7""]_ #* clp{. Under the new parametrization, which was introduced in

J J
previous sections to avoid identification problems, testing no effect of a on 17 means assessing
the following hypothesis system

O — .o
Ho: Cjr, = clpj versus  Hy : Cj7, # clpjr (3.4)

Let L,,, = [1,,—L] be a contrast matrix. Thus, (3.4) may be written as Hy : L C T, =0,
)
versus Hy : L, C:Tnj # 0, . However, because rank( p,) = rank(Cj ) =p;— 1, (3.4) also may
| i ) :

J
be written as
Hp : T, = 017;—1 versus Hj : us # Op](_l.

Therefore, the effect of a on 17 may be considered as being “null” for “small” values of the following
statistic

_ aTvar s 14
F, = s Var {7, |7, ,

which, asymptotically and under Hg, exhibits a chi-square distribution with pj’» — 1 degrees of
freedom. Similar results hold for testing no effect of an explanatory variable b on ¢, whose effect
was specified by f, (b) for some r =1,...,¢".

3.5 Simultaneous confidence intervals

Let 100(1 — «)% be the desired simultaneous confidence level of CI(laj ), . CILO‘J), where
Iy = {f eR:[f, (ar,) — ] < & (1 - §)[Var(E, (a,w»))]%} is the normality-based 100(1 —

a*)% confidence interval of f, (ak. j), with Var(f,]]_(akd)) being the estimate of Var(fnj(ak,j)). The

simultaneous confidence level of CIgO‘] ), . ,CIfla; ) can be calculated as
n » n
p { N [t (@) € cz;§j>]} —1- {U I, (axs) ¢ CTL; }}
k=1 1

21— { (ak,;) ¢CIk]]
>1- nnja ,

where 7, is the number of different values in (a1,...,an;). Thus, according to the Bonferroni

method, a* is set to a* = O‘/ﬁm so that the simultaneous confidence level of CI(l?j*)’ e ,CI(O‘?) is

at least 100(1—a)%. Similar results hold for the simultaneous confidence intervals of exp [f, (ak.7 i)l
f, (br,) and exp[f, (by)]. The simultaneous confidence intervals may be used to mformally test-
ing no effect of an explanatory variable whose effect is nonparametrically modeled. In fact, a
straight line of zero slope that may be located within the simultaneous confidence intervals is
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an informal evidence of null effect of the interest covariate.
3.6 Degrees of freedom

This section deals with the approximate calculation of the degrees of freedom used in the
estimation of n and ¢. For this purpose, an analogy with the parametric linear case is established.
Indeed, it is can be seen that, at the convergence of the Algorithm 2.1, the estimates of 8 and
4 under the setup (II) can be written as

B=[K(0)+M]'[Ud) +K/60)8]
- (X' QX+ M) X0 XB + (1/dy(O))Diy(y — &)
and

= [K,(6) + M,]"'[U,(8) + K,(6)7]

— (W W+ M)W WA+ (2/(f,(0) - )6 - 1,)],

>

where €2, ﬁ(v), v = log(7), and 8 represent £2, D(y), p = log(n), and s avaliated at the estimate
of 8. By analogy with the parametric case, the degrees of freedom used in the median submodel
are given by df(n) = tr(Hﬁ), where tr(H) represents the trace of H, and H, is a matrix such

that log(f) = X8 = H, [y,(9)], in which y,(8) = XB + (1/dy(¢))D) (v — f2) is a local response
variable. According to Eilers and Marx (1996), df(7) can be written as

df() =ur[X(X @ X +M) X 0]
—uv{(X'Q'X+M) X2 X}
—u{[1+Q M Q¥

dlm(M;) )
T2 i

(m)

positive definite matrix such that X0 'X = Q%Q%, and dim(M:) is the number of rows (or
columns) of M: Note that the first eigenvalues of Q_%M:Q_% and M: are zero. Therefore,

where a;"” > 0 are the eigenvalues of the nonnegative definite matrix Q7%M:Q7%, Q% is a

. 1l 1 v .
Moreover, because the number of eigenvalues equal to zero of Q 2M77Q 2 and M, coincide,

— P’
it follows that dim(M, ) > df(f) > p+ > ag;), where a,(g) is the number of eigenvalues of
j=1

M}j equal to zero. Finally, also by analogy with the parametric case, the number of degrees of
freedom associated with the i-th covariate corresponds to the i-th element of the main diagonal

of X' @ 'X+M) X' 0 'X.
Similarly, because log(¢p) = W7 = I:I¢ [y¢(9)], where I:I(p = W(WTW + Mg)_IWT, the
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degrees of freedom used in the skewness submodel are given by
df(p) = tr{ (W'W + M;)*WTW}
ek 11
—u{[1+Q M Q¥ "}
dim (M)

=g+ Z

i=q+1 1+a

(¢)

where ;7 > 0 are the eigenvalues of the nonnegative definite matrix Q_%M;Q_%, and Q% is

.- . . =7 | xx7 1 1 .
a positive definite matrix such that W W = Qé Q%. Because the number of eigenvalues equal

. q
to zero of Q_%M¢Q_2 and M coincide, it follows that dim(M ) > df(¢) > g+ Z ag)r), where
(0)

ay,” is the number of eigenvalues of M, equal to zero. Moreover, the number of degrees of
freedom associated Wlth the i-th covarlate corresponds to the ¢-th element of the main diagonal

of (W W+M¢) 'W'W.

3.7 Choosing the smoothing parameter

Choosing the smoothing parameter by using a criterion that ensures a compromise between
“low” model complexity and “high” goodness-of-fit was considered by Hastie and Tibshirani
(1990), Rigby and Stasinopoulos (2005), Wood (2006) and Wu and Yu (2014). Then, in this
work, the value of the smoothing parameter A is chosen by minimizing the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC) through an outer iteration. The
AIC and BIC criteria are given by

AIC(IA) = —2L(O|\) + 2[df(A|A) + df(B|N)]
and
BIC(B|A\) = —2L(0]|\) + log(n)[df (A|A) + df (p|A)],

where 9|}\, 7| and (}S|}\ are the estimates of 8, m and ¢ given a particular value of the smoothing
parameter A, respectively.

3.8 Simulation Results I

This section presents a simulation study to assess the statistical properties of the maximum
penalized likelihood estimates in log-symmetric regression models under two scenarios, denoted
by A and B. For this purpose, a data set of size n is simulated in each scenario, in which the
response variable is generated from a log-symmetric distribution, where its median (1) and its
skewness (or relative dispersion) (¢) can be written as

(A) (B)
{ n = exp(Biz1 + Bza?), {log(n) = P11 + Boxz + £ (a), (3.5)
log(¢) = 171 + f4(a), log(¢) = m121 + f(a),

under the scenarios A and B, respectively, in which 21 ~ Bernoulli(0.5), x5 ~ log-normal(1, 1),
f(a) = 5a + sin(2ma), f(a) = 1.2[1.166 — sin(7ra)], and a is a sequence of seventy values in the
interval [0.05,0.95], which is replicated several times until the sample size is reached. The val-
ues assigned to the parameters are f; = 2, fo = 0.5, 83 = 10 and v; = —0.2. To describe
the random component, several log-symmetric distributions (e.g., log-normal, log-Student-t,
log-slash, log-hyperbolic, log-power-exponential, log-contaminated-normal, Birnbaum-Saunders
and Birnbaum-Saunders-¢) and several values of their extra parameters are considered. The most
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of these distributions exhibit heavier tails than those of the log-normal distribution. The gen-
erated sample is used to fit a log-symmetric model with the systematic component described
in (3.5); however, the functional forms of f(-) and f() are assumed to be unknown. Then,
under the scenario A described in (3.5), the function f(-) is approximated by a natural cu-
bic spline with eight knots (given by ¢(a,0/7),q(a,1/7),q(a,2/7),...,q(a,7/7), in which ¢(a,t)
is the quantile of order ¢ of a). Similarly, under the scenario B described in (3.5), the func-
tions f(-) and f(-) are approximated by cubic P-splines with eight internal knots (given by
q(a,0/7),q(a,1/7),q(a,2/7),...,q(a,7/7)), and a difference penalty term of order 2. The smooth-
ing parameters are chosen by minimizing the AIC criterion. This process is replicated R = 5000
times, keeping the values of x1, x5 and a fixed. For the R estimates of 1, 82, 83 and 7, the follow-

A~ R ~(i

ing summary measures are calculated: i) empirical expected value, i.e., § = R~ 0" ), where "
i=1

is the estimate of 0 in the i-th replication; i) coverage rate of the normality-based 95% confidence

A R NG ~(3) A ~(3) A
interval, i.e., CR() = 100x R~ IHH() -0 | /[Vé%(&)]%, [0, 1.96]] , where Véf(@) is the estimate
i=1

A~

of Var(0) in the i-th replication, and I[z,0] = 1 if z € © and I[z, 0] = 0 in other cases; and i)
p-value of the one-sample Kolmogorov-Smirnov test (see Conover, 1971) to judge the normality
of the sample ém, e ,é<R). Additionally, as a summary measure of the R estimates of the non-
parametric functions f(-) and f(-), the coverage rate of the simultaneous normality-based 95%

. R n .. o

confidence intervals is used, i.c., CR(f) = 100 x R713" [] Iﬂf(')(ak) — f(ay,)| /[vé%(f(ak))]%,@],
i=1k=1

where © = [0,® (1—0.05/271)], 7 = 70 is the number of different values of a in the sample, and

~

f<r)(ak) and ng(f(ak)) are the estimates of f(ay) and Var(f(ay)) in the i-th replication, respec-
tively. The results are presented in Tables 3.1 and 3.2 under the scenarios A and B, respectively,
described in (3.5).

The results indicate that the empirical expected values are close to the true values of the
parameters. The coverage rates of the 95% confidence intervals for (51, 2, f3 and ~; are close
to the nominal values, mainly under scenario A. In addition, the Kolmogorov-Smirnov test
indicates that the empirical distributions of the estimates of 81, 2, 83 and ~y; are fairly close to
the normal distribution. Also, the coverage rates of the simultaneous 95% confidence intervals
for £(-) and f(-) are higher than 90%, except under the Birnbaum-Saunders model in the scenario
B. In conclusion, the maximum penalized likelihood estimators of 81, B2, B3 and 1 seem to be
approximately unbiased, and their distributions seem to be approximately normal, even though:
i) the size of the sample is not very large; ii) the systematic component of the fitted models
is slightly complex; i) in most cases, the distribution of the random error exhibits heavier
tails than those of the log-normal distribution; and iv) the value of the smoothing parameter
is unknown but estimated by minimizing the AIC criterion. However, the variance of these
estimators seem to be slightly underestimated, especially under the Birnbaum-Saunders model.
In addition, the interval estimates of f(-) and f,(-) exhibit good behavior because in most cases,
their coverage rates are close to the nominal values, mainly under scenario A.

3.9 Diagnostic methods

In this section, some diagnostic methods such as deviance-type residuals for the median
and the skewness (or relative dispersion) submodels, overall goodness-of-fit criterion, and local
influence measures under log-symmetric regression models, are addressed.

3.9.1 Individual goodness-of-fit

To evaluate the goodness-of-fit of the median and skewness (or relative dispersion) submodels,
the measure known in the statistical literature as deviance is considered. Then, the deviance for 1
given ¢, denoted as D(7)]¢), and the deviance for ¢ given 7, denoted as D(¢|#), are defined. The
deviance value is always non-negative, and the lower is its value, the better is the goodness-of-fit
of the assessed submodel. Thus, the deviance-type residuals (see, e.g., Davison and Gigli, 1989;
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Table 3.1: Results of the simulation study I under the scenario A and n = 140.

o 0 CR(@) p-value of K-S test CR(f)

Error distribution

B1 | B2 Ba " B1 B2 Bs 71 Br | B2 | Bs | M fy

log-normal 2.00 | 0.50 | 10.00 | -0.20 | 93.42 | 92.28 | 92.10 | 93.64 | 0.81 | 0.62 | 0.79 | 0.50 | 89.24
log-Student-t(4) 2.00 | 0.50 | 10.00 | -0.21 | 93.10 | 92.50 | 92.12 | 93.58 | 0.92 | 0.21 | 0.94 | 0.51 | 93.74
log-Student-t(6) 2.00 | 0.50 | 10.00 | -0.20 | 92.78 | 92.64 | 92.98 | 93.76 | 0.99 | 0.31 | 0.89 | 0.97 | 92.20
log-Student-t(8) 2.00 | 0.50 | 10.00 | -0.20 | 93.60 | 92.90 | 92.26 | 94.14 | 0.91 | 0.04 | 0.78 | 0.99 | 91.78
log-Student-t(10) 2.00 | 0.50 | 10.01 | -0.20 | 93.56 | 92.44 | 92.28 | 94.32 | 0.31 | 0.96 | 0.90 | 0.96 | 92.34
log-power-exp.(0.2) | 2.00 | 0.50 | 10.00 | -0.20 | 93.36 | 92.98 | 92.58 | 93.50 | 0.90 | 0.50 | 0.34 | 1.00 | 90.72
log-power-exp.(0.3) | 2.00 | 0.50 | 10.01 | -0.20 | 93.18 | 92.54 | 92.56 | 93.62 | 0.84 | 0.30 | 0.84 | 0.95 | 90.58
log-power-exp.(0.4) | 2.00 | 0.50 | 10.01 | -0.20 | 93.40 | 92.74 | 92.36 | 94.12 | 0.69 | 0.14 | 0.75 | 0.73 | 91.36
log-power-exp.(0.5) | 2.00 | 0.50 | 10.01 | -0.21 | 93.00 | 92.22 | 91.66 | 93.48 | 0.44 | 0.10 | 0.91 | 0.68 | 91.26
log-hyperbolic(1.0) | 1.99 | 0.50 | 10.01 | -0.20 | 93.00 | 92.82 | 92.70 | 94.04 | 0.53 | 0.62 | 0.22 | 0.92 | 92.46
log-hyperbolic(0.9) | 2.00 | 0.50 | 10.00 | -0.20 | 93.46 | 92.52 | 92.48 | 94.36 | 0.69 | 0.30 | 0.34 | 0.67 | 91.70
log-hyperbolic(0.8) | 2.00 | 0.50 | 10.01 | -0.20 | 93.62 | 93.10 | 92.88 | 94.50 | 0.53 | 0.29 | 0.13 | 0.47 | 92.82
log-hyperbolic(0.7) | 2.00 | 0.50 | 10.00 | -0.20 | 94.42 | 92.50 | 92.44 | 94.02 | 0.62 | 0.04 | 0.76 | 0.56 | 92.60
log-slash(1.5) 2.00 | 0.50 | 10.01 | -0.20 | 93.42 | 92.16 | 93.14 | 94.36 | 1.00 | 0.14 | 0.53 | 1.00 | 92.84
log-slash(1.4) 2.00 | 0.50 | 10.01 | -0.20 | 93.92 | 92.16 | 92.60 | 94.54 | 0.56 | 0.48 | 0.99 | 0.54 | 92.64
log-slash(1.3) 2.01 | 0.50 | 10.00 | -0.21 | 93.56 | 92.64 | 92.32 | 94.46 | 0.73 | 0.43 | 0.70 | 0.64 | 93.26
log-slash(1.2) 2.00 | 0.50 | 10.00 | -0.21 | 93.63 | 92.30 | 91.96 | 94.06 | 0.95 | 0.19 | 0.95 | 0.79 | 92.92
log-cont-nor(0.3,0.3) | 2.00 | 0.50 | 10.00 | -0.20 | 93.12 | 92.30 | 92.34 | 94.60 | 1.00 | 0.08 | 0.58 | 0.80 | 91.64
log-cont-nor(0.5,0.3) | 2.00 | 0.50 | 10.00 | -0.20 | 93.02 | 91.92 | 92.08 | 94.78 | 0.99 | 0.14 | 0.87 | 0.77 | 91.00
log-cont-nor(0.7,0.3) | 2.00 | 0.50 | 10.01 | -0.20 | 93.18 | 91.92 | 92.06 | 94.34 | 0.87 | 0.02 | 0.90 | 0.40 | 90.64
log-cont-nor(0.9,0.3) | 2.00 | 0.50 | 10.01 | -0.20 | 93.26 | 92.30 | 92.56 | 94.26 | 0.94 | 0.03 | 0.76 | 0.80 | 90.10
B-S(O 1) 2.00 | 0.50 | 10.00 | -0.20 | 93.48 | 92.48 | 91.92 | 93.64 | 0.83 | 1.00 | 0.78 | 0.52 | 89.24
-S(0.3) 2.00 | 0.50 | 10.00 | -0.20 | 93.38 | 92.34 | 91.92 | 93.66 | 0.78 | 0.96 | 0.68 | 0.36 | 88.90
-S(0.5) 2.00 | 0.50 | 10.00 | -0.20 | 93.56 | 92.34 | 91.68 | 93.50 | 0.88 | 0.98 | 0.85 | 0.72 | 88.28
-S(0.7) 2.00 | 0.50 | 10.00 | -0.20 | 93.68 | 92.08 | 92.00 | 93.42 | 0.43 | 0.97 | 0.58 | 0.89 | 87.80
B-S- t(O 1,4) 2.00 | 0.50 | 10.00 | -0.20 | 93.58 | 92.62 | 92.38 | 93.46 | 0.68 | 0.81 | 0.89 | 0.95 | 93.34
B-S-¢(0.3,4) 2.00 | 0.50 | 10.00 | -0.20 | 93.52 | 92.64 | 92.48 | 93.36 | 0.79 | 0.93 | 0.97 | 0.99 | 92.96
B-S-t(0.5,4) 2.00 | 0.50 | 10.00 | -0.21 | 93.63 | 92.70 | 92.59 | 93.85 | 0.74 | 0.97 | 0.85 | 0.97 | 92.70
B-S-£(0.7,4) 2.00 | 0.50 | 10.00 | -0.21 | 93.93 | 92.72 | 93.13 | 93.89 | 0.80 | 0.94 | 0.96 | 0.89 | 90.71

Pierce and Shafer, 1986) for the median and the skewness (or relative dispersion) submodels
are defined as the signed square root of the contribution to the deviance of each individual.
The residuals may be employed to identify observations marginally discrepant and to assess the
appropriateness of the proposed submodel.

Goodness-of-fit of the median submodel

The deviance for 7 given dA) reduces to

where fif is the value of u € R that maximizes the function Lg(u, gzgk) Hence,

D(7|¢

k=1

D(7)|¢) =

-3 e

) =2 [Lk(ljkaék) - Lk(ﬂkaék)] ;

D(#|¢) becomes



3.9 3.9. DIAGNOSTIC METHODS 39

Table 3.2: Results of the simulation study I under the scenario B and n = 210

. 0 CR(9) p-value of K-S test CR(f)
Error distribution
B1 | B ol B1 B2 7 Br | P 7 £, fs
log-normal 1.98 1 0.50 | -0.21 | 93.56 | 92.80 | 91.66 | 0.98 | 0.55 | 0.75 | 93.12 | 90.00

log-Student-t(4) 1.9710.50 | -0.21 | 92.86 | 93.10 | 92.66 | 0.84 | 0.48 | 0.46 | 90.94 | 91.82
log-Student-t(6) 1.98 1 0.50 | -0.20 | 93.04 | 93.00 | 93.92 | 0.87 | 0.88 | 0.80 | 91.74 | 91.26
log-Student-t(8) 1.98 1 0.50 | -0.21 | 93.18 | 93.18 | 92.64 | 0.96 | 0.94 | 0.83 | 92.14 | 91.22
log-Student-¢(10) | 1.98 | 0.50 | -0.20 | 93.28 | 93.28 | 92.94 | 0.81 | 0.94 | 0.79 | 92.72 | 90.88

log-power-exp.(0.2) | 1.98 | 0.50 | -0.21 | 92.44 | 92.54 | 92.78 | 0.56 | 0.84 | 0.99 | 91.46 | 90.18
log-power-exp.(0.3) | 1.97 | 0.50 | -0.21 | 93.82 | 92.60 | 93.08 | 0.96 | 0.61 | 0.93 | 90.26 | 90.42
log-power-exp.(0.4) | 1.98 | 0.50 | -0.21 | 92.84 | 92.60 | 92.40 | 0.90 | 0.33 | 0.99 | 90.28 | 91.18
log-power-exp.(0.5) | 1.97 | 0.50 | -0.21 | 92.06 | 92.14 | 92.80 | 1.00 | 0.93 | 0.94 | 90.06 | 91.60
log-hyperbolic(1.0) | 1.98 | 0.50 | -0.21 | 93.20 | 92.61 | 92.96 | 0.87 | 0.99 | 0.98 | 90.43 | 90.92
log-hyperbolic(0.9) | 1.98 | 0.50 | -0.20 | 93.26 | 92.84 | 92.88 | 0.80 | 0.94 | 0.97 | 90.20 | 91.82
log-hyperbolic(0.8) | 1.99 | 0.50 | -0.21 | 92.60 | 91.98 | 93.10 | 0.87 | 0.20 | 0.95 | 91.10 | 91.28
log-hyperbolic(0.7) | 1.99 | 0.50 | -0.21 | 93.06 | 92.38 | 93.50 | 0.77 | 0.20 | 0.66 | 91.04 | 92.22

log-slash(1.5 1.99 1 0.50 | -0.21 | 93.60 | 92.66 | 93.36 | 0.70 | 0.74 | 0.84 | 90.68 | 91.38

)
log-slash(1.4) 1.9910.50 | -0.21 | 92.47 | 92.59 | 93.15| 0.99 | 0.33 | 0.98 | 90.00 | 91.66
log-slash(1.3) 1.98 1 0.50 | -0.20 | 92.63 | 92.29 | 93.12 | 0.97 | 0.92 | 0.86 | 90.05 | 90.85
log-slash(1.2) 1.97 1 0.50 | -0.21 | 92.94 | 92.71 | 92.31 | 0.48 | 0.95| 0.99 | 90.67 | 91.86
log-cont-nor(0.3,0.3) | 1.99 | 0.50 | -0.21 | 92.98 | 92.10 | 92.80 | 0.77 | 0.53 | 0.98 | 90.40 | 90.94
log-cont-nor(0.5,0.3) | 1.98 | 0.50 | -0.21 | 93.16 | 92.22 | 92.38 | 0.69 | 0.57 | 0.49 | 90.80 | 90.84
log-cont-nor(0.7,0.3) | 1.99 | 0.50 | -0.21 | 93.18 | 92.22 | 91.76 | 0.77 | 0.64 | 0.38 | 90.38 | 90.28
log-cont-nor(0.9,0.3) | 1.99 | 0.50 | -0.21 | 93.28 | 92.38 | 92.40 | 0.47 | 0.83 | 0.84 | 90.70 | 90.92
B—S(O 1) 2.00 | 0.50 | -0.21 | 93.04 | 92.28 | 90.60 | 0.92 | 0.37 | 0.68 | 91.60 | 87.68
-5(0.3) 2.00 1 0.50 | -0.21 | 93.28 | 92.38 | 91.00 | 0.68 | 0.78 | 0.69 | 91.80 | 88.36
-5(0.5) 2.00 1 0.50 | -0.21 | 93.24 | 92.28 | 91.12 | 0.88 | 0.98 | 0.67 | 92.34 | 88.06
-S(0.5) 1.99 1 0.50 | -0.21 | 93.16 | 92.32 | 90.82 | 0.97 | 0.93 | 0.77 | 92.94 | 87.72
B-S- t(O 1,4) 2.00 | 0.50 | -0.21 | 92.82 | 91.22 | 92.30 | 0.72 | 0.52 | 0.87 | 91.20 | 90.64
B-S-t(0.3,4) 2.00 1 0.50 | -0.20 | 92.70 | 91.40 | 93.02 | 0.84 | 0.47 | 0.80 |91.28 | 91.04
B-S-t(0.5,4) 2.00 1 0.50 | -0.21 | 92.88 | 91.50 | 93.12 | 0.87 | 0.75 | 0.74 | 92.14 | 90.80
B-S-(0.7,4) 1.99 | 0.50 | -0.21 | 92.84 | 91.56 | 93.24 | 0.45 | 0.54 | 0.97 | 93.14 | 90.14

where dk(n\d)) may be interpreted as the contribution of the k-th observation to the deviance
of 7 given ¢. Therefore, dk(n|qb) may be used to define a residual associated with 7 (i.e., a
measure of the individual goodness-of-fit in the median submodel) as follows:

(NI

ta(30) = sign(2)fdi (91 ®)]

If the function g(-) is monotically decreasing for u > 0, then di(7)|¢) = 21og[g(0)/g(2)], where
Zr = (yp — /jk)/[ék]%, k = 1,...,n. The residual ¢,(2;) is an odds and twice differentiable
function of 2. Hence, the distribution of ¢,(2;) is symmetric around zero if the distribution
of 2 is symmetric around zero. Table 3.3 provides the expressions of dk(fﬂ(}b) for some log-
symmetric distributions.
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Table 3.3: Expressions of dk(f]|(}5) for some log-symmetric distributions.

Distribution di(71|®)
log-normal 2}3
22

log-Student-t (¢ +1)log (1 + %)

log-power- R

exponential |2k ’2/(<+1)
log-hyperbolic 2 [m _ 1]

Binrbaum 4 . R R

Saunders ?Smhz(zk) — log [COShQ(Zk)L (<2

Goodness-of-fit of the skewness (or the relative dispersion) submodel
The deviance for (}5 given 7) reduces to

n

D(¢|f) =2) [Lk(ﬂkﬂgk) - Lk(ﬂkaék)] ;

k=1

where ¢y, is the value of ¢ € R* that maximizes the function Lk (fix, @). Then, D((}b|f7) becomes
D(¢l7) =) di(@l).
k=1

where dy,(@]77) = 21og[g(0®)/g(33)] —log[22/0?] is a non-negative and monotone increasing func-
tion of the difference between 2,3 and ¢?, which may be interpreted as the contribution of the
k-th observation to the deviance of (2) given 7). If the function Ly (ji, ¢) has just one critic point,
then p is the solution of the equation v(p)o? = 1. dk(dA)]fy) may be used to define a residual
associated with ¢y, (i.e., a measure of the individual goodness-of-fit in the skewness (or relative
dispersion) submodel) as follows:

SIS

to(2k) = sign(2)[di(@lR)]2.

The residual t4(2x) is an odds function of 2; such that t4(£[e|) = 0. Thus, t4(Zx) is symmetric

around zero if Z; is symmetric around zero. Table 3.4 provides the expressions of dk((25|f7) for
some log-symmetric distributions.

Table 3.4: Expressions of dk((}bm) and o> for some log-symmetric distributions.

Distribution d(&|7) o’
log-normal 2;% -1~ log(éi) 1
52
log-Student-t (C+1)log (C i Zk) —log(27) 1
¢+ 1
log-power- | . 9/(c41) 52 —(14¢) (1+0)
exponential |21 (1+¢) —log[£3(1+¢) J|(1+¢)
log-hyperbolic| 2¢ [, [1+22 —/1+ 92] —log(2}/0%) %
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3.9.2 Overall goodness-of-fit

The overall goodness-of-fit is measured through the following statistic, which has the advan-
tage of graphical representation as it is based on the quantile-quantile plot (see, e.g., Waller and Turnbull

, 1992):
,12 ‘@ Aoc) <k) ’

where F.() is the cumulative distribution function of log(§); 2" is the k-th order statistic of

Z1,...,%n; and 0" is the expectation of the k-th order statistic in a sample of size n of the

standard normal distribution. The quantile residuals (see, e.g., Cysneiros and Vanegas, 2008;
Dunn and Smith, 1996) are given by <I>_1[F;*(ék)], k =1,...,n, and are used here as overall
residuals (i.e., a measure of the individual goodness-of-fit). Therefore, if the estimates coin-
cide with the true values for 1, ¢ and (, the order statistics of the overall residuals, given

by {<I> [F (A(l))], ce, @7 [@*(A(n))]}, represent an ordered random sample from the standard
normal distribution. The smaller is the value of T, the better is the goodness-of-fit. Graphi-
cally, the criterion Y indicates that the smaller is the difference between the normal Q-Q plot
of the overall residuals and a straight line (with zero intercept and unit slope), the better is
the goodness-of-fit. In addition, if ¢ is unknown, its value may be selected by minimizing the T

statistic as illustrated by Vanegas and Paula (2014b).
3.9.3 Influence or sensitivity analysis

The general idea of diagnostic methods is to study changes in the model estimates under per-
turbations in the model/data. Individual cases or clusters that, when deleted, lead to substantial
changes in the model estimates, particularly inferential changes, are classified as influential. The
perturbed log-likelihood function is the usual way to study the influence of perturbations in the
model/data on the parameter estimates. A natural extension to semi-parametric models is to
consider the penalized log-likelihood function as follows

PL(0|w) = L(0|w) + P(0),

where PL*(@|w) denotes the perturbed log-likelihood function and w = (wi,...,w,)" is the
perturbation vector. A general procedure that does not require the elimination of observations,
proposed by Cook (1986) and called local influence, consists of studying the influence of small
perturbations in the model/data on the parameter estimates. The idea is to study the behavior
of the penalized likelihood displacement LD,, = 2{PL(8) — PL(0, o)} around the no perturbation
vector w,, such that PL(0) = PLY(0|w,), where éw denotes the maximum penalized likelihood
estimate under the perturbed model. The suggestion of Cook (1986) is to consider the normal
curvature in the direction d, such that ||d|| = 1, defined as

Ca(8) = 2|d"N (6, w,)[I(8)] A6, w,) d], (3.6)

where A(8, w) = §?PL(0|w)/900w " and J(8) = 9*>PL(6)/0006" . To have a curvature invariant
under uniform change of scale, Poon and Poon (1999) proposed the conformal normal curvature
defined as Cj(0) = C4(8)/21/tr(VTV), where V = AN(8,w,)[J(0)]*A(8,w,). This curvature
allows that 0 < C;(0) < 1 for any umtary direction d. A maximum curvature, denoted by
C},....» is obtained in the direction dj ., where Cj  is the largest eigenvalue of V//tr(VTV),
and d;‘nax is its corresponding eigenvalue. The local influence measure can be used to identify
observations that may jointly influence the fitted model, and it is calculated from the eigenvector
that corresponds to the highest eigenvalue of the matrix of conformal normal curvature. Similarly,
the total local influence measure can be used to identify observations that may individually
exert influence on the fitted model, and it is calculated from the main diagonal of the matrix of

conformal normal curvature.
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Next, the expressions of J(8) and A(6,w,) under two usual perturbation schemes are pro-
vided.

Second derivative matrix

The second derivative matrix §%L(0)/0090" is given by

T 1 n 2 T 1 vd
o -D, 0 D(C)Dﬁ—l—kzl Zv(z)D{) -D,Q:DW
J(0) = =

—WTﬂféD(é)Dﬂ -W D(Q)W
under the setup (I) described in (3.3), whereas

X'@'DyX -X QDLW
J(6) = w7 oL ~ =7 7

~W'Q DX —W Dy W
under the setup (II) described in (3.3), where D¢y = diag{ci,...,cn}, D(g = diag{cy,...,cn},
D, = diag{c,...,c,}, Dg’f}): 82;%/8&8&/] for i,i' = 1,...,p, ¢ = v(zk) + V'(2k)2k, Tk =
v(zk) 2k + 25V (21) /2, and ¢, = Czp/2-

Case-weight perturbation scheme

Under this perturbation scheme wqg = (1,...,1)" and A(0,w,) is given by

under the setup (II) described in (3.3), where ]j(z) correspond to D(,) = diag{z1,...,2,} eval-
uated at the @ estimate.

Response perturbation scheme

Under this perturbation scheme gy, is replaced by yliw) = yp+wi and wg = (0,...,0)". Then,

) D Q D,
A(o)wo): BTA_l ~
W Q "D
under the setup (I) described in (3.3), whereas
Tl

under the setup (II) described in (3.3), where ]j(c) and ]5(6) correspond to D) = diag{ci,...,cn}
and D) = diag{cy,...,¢,} evaluated at the € estimate, respectively.
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3.10 Simulation Results I1

The probability distributions of the deviance-type residuals are unknown. Therefore, in this
section, some of their statistical properties are studied via Monte carlo simulation. For this
purpose, the simulation scenarios A and B that were described in section 3.8, are considered
once again. To describe the random component, several log-symmetric distributions and several
values of their extra parameters are considered. The simulated samples from each scenario are
used to estimate the parameters of the models in (3.5) as described in section 3.8. Afterwards,
the deviance-type residuals of the median and skewness (or relative dispersion) submodels are
calculated for each individual in the sample. This process is replicated R = 5000 times, keeping
the values of the explanatory variables fixed. Then, the R values of the residual of the k-th
individual (i.e., t(élil)), e ,t(é,iR)), where t(ég)) is the deviance-type residual of the individual
k in the r-th replication) are used to calculate the empirical values of the mean, coefficient of
skewness and quantiles of order 97.5% and 99.5% of t(Zx). Finally, as summary measures, the
means of the n values of these four statistics are calculated. Tables 3.5 and 3.6 present the results
for t,(2) and t42) under the simulation scenarios A and B, respectively.

It can be seen that in all cases the values of the mean and coefficient of skewness are quite
close to zero, which indicates that the deviance-type residuals have approximately zero mean,
and they exhibit probability distributions approximately symmetric around zero. Additionally,
it can be seen that, the quantiles of order 97.5% and 99.5% of the distribution of the deviance-
type residuals are dependent on the error distribution. However, the simulation results also
show that in most cases, the individuals/observations whose deviance-type residuals (i.e., t,(2))
are outside the interval (-3,3) may be considered to be marginally discrepant in the median
submodel. Similarly, the simulation results suggest that, the individuals whose deviance-type
residuals (i.e., t42)) are outside the interval (-3,3) may be considered to be marginally discrepant
in the skewness (or relative dispersion) submodel. Nonetheless, because the joint probability
distribution of ¢(21), ..., t(Z,) is unknown, the normal probability plots with simulated envelopes
are recommended to identify discrepant/outlying observations in both submodels.
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Table 3.5: Results of the simulation study II under the scenario A and n = 140.

Error distribution b2) Ll2)
Mean | Skewness | Q. 97.5% | Q. 99.5% | Mean | Skewness | Q. 97.5% | Q. 99.5%

log-normal 0.000 0.002 1.939 2.474 0.001 -0.003 2.151 2.771
log-Student-£(10) 0.000 0.002 2.282 2.980 0.002 0.001 2.177 2.816
log-Student-t(8) 0.000 0.002 2.169 2.813 0.000 0.004 2.168 2.787
log-Student-t(6) 0.000 0.002 2.112 2.727 0.000 0.002 2.157 2.790
log-Student-t(4) -0.001 -0.002 2.072 2.680 -0.001 0.001 2.152 2.785
log-power-exp.(0.2) 0.000 -0.002 2.055 2.589 0.000 -0.002 2.135 2.780
log-power-exp.(0.3) | -0.001 -0.001 2.110 2.651 0.001 0.002 2.136 2.800
log-power-exp.(0.4) | -0.001 0.001 2.161 2.702 0.001 0.002 2.148 2.833
log-power-exp.(0.5) | -0.001 0.003 2.211 2.756 0.002 0.000 2.149 2.888
log-hyperbolic(1.0) 0.000 -0.001 2.226 2.797 -0.002 -0.001 2.122 2.747
log-hyperbolic(0.9) 0.000 0.001 2.244 2.815 0.001 -0.001 2.118 2.750
log-hyperbolic(0.8) 0.000 0.001 2.252 2.820 0.001 -0.002 2.112 2.740
log-hyperbolic(0.7) 0.000 0.002 2.268 2.833 0.001 -0.001 2.115 2.740
log-slash(1.5) 0.001 0.005 2.222 3.022 0.002 -0.004 2.211 2.834
log-slash(1.4) -0.001 -0.004 2.252 3.054 -0.001 -0.002 2.216 2.853
log-slash(1.3) 0.000 0.004 2.303 3.111 0.001 0.000 2.226 2.865
log-slash(1.2) -0.014 0.067 2.494 3.367 -0.028 0.070 2.244 3.044
log-cont-nor(0.3,0.3) | 0.000 0.003 2.162 2.751 0.000 -0.003 2.153 2.759
log-cont-nor(0.5,0.3) | 0.000 0.005 2.153 2.670 0.002 0.002 2.127 2.753
log-cont-nor(0.7,0.3) | 0.000 0.003 2.082 2.594 0.000 0.002 2.119 2.751
log-cont-nor(0.9,0.3) | 0.000 0.003 1.993 2.511 -0.001 0.000 2.131 2.763
B—S(O 1) 0.000 0.001 1.937 2.470 0.001 0.000 2.151 2.774
-5(0.5) 0.000 0.001 1.919 2.443 0.002 0.001 2.150 2.772
-S(1.0) 0.000 0.002 1.887 2.394 0.002 0.006 2.149 2.784
-S(1.5) 0.000 0.000 1.842 2.331 0.002 0.000 2.146 2.775
B-S- t(O 1,4) -0.001 0.001 2.173 2.793 -0.001 0.001 2.173 2.793
B-S-¢(0.5,4) 0.001 0.003 2.255 2.901 0.000 0.001 2.162 2,777
B-S-#(1.0,4) 0.026 -0.049 2.205 2.694 0.014 -0.058 2.076 2.665
B-S-#(1.5,4) 0.039 -0.027 2.159 2.624 0.030 -0.004 2.079 2.668




3.10

3.10. SIMULATION RESULTS II

45

Table 3.6: Results of the simulation study II under the scenario B and n = 210.

Error distribution b2) Ll2)
Mean | Skewness | Q. 97.5% | Q. 99.5% | Mean | Skewness | Q. 97.5% | Q. 99.5%
log-normal 0.000 -0.001 1.940 2.492 0.001 -0.001 2.158 2.778
log-Student-t(4) 0.001 0.003 2.298 3.007 0.002 0.003 2.188 2.821
log-Student-t(6) 0.000 0.001 2.182 2.840 0.002 0.001 2.174 2.802
log-Student-#(8) 0.000 -0.003 2.116 2.760 0.001 -0.006 2.166 2.787
log-Student-£(10) 0.000 0.001 2.082 2.700 0.001 0.000 2.163 2.783
log-power-exp.(0.2) | 0.000 0.002 2.061 2.619 0.000 0.000 2.154 2.799
log-power-exp.(0.3) 0.000 0.001 2.116 2.675 0.002 0.004 2.170 2.854
log-power-exp.(0.4) 0.001 0.001 2.172 2.725 -0.001 0.001 2.177 2.903
log-power-exp.(0.5) 0.000 -0.003 2.219 2.768 -0.001 0.001 2.197 3.001
log-hyperbolic(1.0) 0.000 0.005 1.814 2.513 0.001 0.013 1.698 2.428
log-hyperbolic(0.9) 0.000 -0.001 2.247 2.834 0.000 -0.002 2.129 2.755
log-hyperbolic(0.8) 0.000 0.000 2.264 2.849 0.000 -0.001 2.129 2.756
log-hyperbolic(0.7) 0.001 0.000 2.276 2.856 0.001 0.001 2.128 2.757
log-slash(1.5) 0.006 -0.037 2.081 2.767 0.019 -0.039 2.152 2.798
log-slash(1.4) -0.037 0.057 2.123 2.967 -0.041 0.022 2.142 2.647
log-slash(1.3) -0.075 0.016 2.245 3.282 -0.040 0.096 2.174 2.937
log-slash(1.2) -0.032 0.015 2.255 3.248 -0.029 -0.009 2.175 2.847
log-cont-nor(0.3,0.3) | 0.000 0.002 2.172 2.764 0.000 -0.002 2.159 2.773
log-cont-nor(0.5,0.3) | 0.000 0.001 2.156 2.690 0.001 0.003 2.136 2.763
log-cont-nor(0.7,0.3) | 0.000 0.000 2.084 2.611 0.001 -0.001 2.129 2.750
log-cont-nor(0.9,0.3) | 0.000 0.000 1.991 2.533 0.000 -0.001 2.143 2.772
B—S(O 1) 0.000 -0.001 1.935 2.486 0.000 -0.004 2.152 2.775
-5(0.3) 0.000 0.001 1.919 2.460 0.001 0.002 2.154 2.781
-5(0.5) 0.000 0.001 1.885 2.411 0.002 0.001 2.153 2.773
-5(0.7) 0.000 0.001 1.839 2.348 0.001 0.000 2.148 2.773
B-S- t(O 1,4) 0.000 0.001 2.303 2.995 -0.001 -0.002 2.186 2.813
B-S-¢(0.3,4) 0.000 0.003 2.271 2.937 0.000 -0.001 2.176 2.798
B-S-£(0.50,4) 0.000 0.001 2.216 2.844 0.001 0.000 2.164 2.787
B-S-£(0.7,4) 0.000 0.000 2.151 2.750 0.001 0.001 2.156 2.779
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CHAPTER 4

CENSORED LOG-SYMMETRIC REGRESSION MODELS

Accelerated failure time models or log-location-scale models with a specified error distri-
bution and non-informative right-censored observations (see, e.g., Bagdonavicius and Nikulin,
2001, Chapter 5) have received a lot of attention in recent years. This type of models and the rel-
ative risk or Cox models (see, e.g., Kalbfleisch and Prentice, 2002, Chapter 4) are competitive.
The accelerated failure time model is appealing as it allows to specify a multiplicative effect of
covariates acting on the quantiles (of any order) of the failure time distribution, which enables a
straightforward parameter interpretation. Although these regression models are very interesting,
they have limitations, for instance, usually just one parameter of the failure time distribution
is modeled, and they do not admit the presence of nonparametric effects in their systematic
component. Therefore, in this work, a very flexible accelerated failure time model is proposed,
where the location and scale parameters of the log-lifetime distribution are modeled by using
semi-parametric functions of explanatory variables, and whose nonparametric components are
approximated by natural cubic splines or P-splines. The flexibility provided by the systematic
component under this model lies in its capacity to relate the distribution of the lifetime (or fail-
ure time) with a set of covariates using a sum of arbitrary functions, whose functional forms are
estimated from the data. Obviously, if the log-scale parameter is specified to be constant, this
approach retains the direct link between the multiplicative effect of covariates and the quantiles
(of any order) of the failure time distribution. In addition, if the location and scale parameters of
the log-lifetime distribution are specified to be affected by covariates, the regression parameters
can be interpreted by taking into account their multiplicative effect acting on the median and the
skewness (or the relative dispersion) of the failure time distribution. Furthermore, the random
component of the model is described by a very flexible class of probability distributions (i.e., the
log-symmetric class), which in turn induces a wide range of shapes for the failure or hazard rate
function (e.g., increasing, decreasing and upside-down bathtub shaped). Particular cases of this
approach include models based on the Birnbaum-Saunders and Birnbaum-Saunders-t distribu-
tions, which have been extensively studied in the context of failure times under the fatigue or
cumulated damage assumption (see, e.g., Barros et al., 2008; Paula et al., 2012). In addition,
some of the log-symmetric distributions exhibit heavier tails than those of the log-normal one,
which allows to estimate the model parameters in a robust manner under the presence of extreme
or outlying observations. Finally, due to the properties of the log-symmetric class, the statistical
methodology addressed in this chapter can also be used to analyze strictly positive data under
the presence of non-informative left-censored observations.

The remainder of this chapter concerns with the formulation of the model setup, termed here
as censored log-symmetric regression model. Iterative processes of parameter estimation based
on Gauss-Seidel, backfitting and expectation-constrained /maximization (ECM) algorithms are
presented. An approximate method to calculate the degrees of freedom used in the estimation
process, is also discussed. Asymptotic behaviour of the maximum penalized likelihood estimator
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under a fixed-knot assumption is studied, analytically and by using simulation experiments.
Diagnostic methods including deviance-type residuals, overall goodness-of-fit criterion based on
a quantile-quantile plot, and local influence measures, are also derived.

4.1 Formulation of the model

Let T7,...,T; be the lifetime of n objects or individuals. These lifetimes are described by
independent, strictly positive and right-skewed random variables belonging to the log-symmetric
class, which is flexible enough so that distributions with lighter and heavier tails than the log-
normal ones, as well as distributions with bimodality, are particular cases. Thus, T}; is assumed
to be obtained as

Ty =y £/, k=1,...,n, (4.1)

where 7, > 0 and ¢, > 0 represent the median and the skewness (or the relative dispersion),
respectively, of the T}" distribution, whereas 1, ...,&, is a set of independent and multiplicative
random errors exhibiting a standard log-symmetric distribution with the extra parameter (or
extra parameter vector) ¢, whose probability density function is given by

feu(€:9()) = ég{[log@]?}, £>0, (12)

for some function g(-), where g(u) > 0 for u > 0 and foooufég(u)(?u = 1. Furthermore, the
survival function and the quantile of order 0 < w < 1 of T}} can be written as

1
5.0 = S (/m) V| and 0. (w) = w0
respectively, where S(-) and ¥ (w) represent the survival function and the quantile of order w
of &, respectively. The behaviour of T™* is frequently characterized by its failure or hazard rate
function, denoted by R,.(t) = f,.(t)/S,.(t). Figure 4.1 illustrates the flexibility of R, .(t) under
some log-symmetric distributions.

Moreover, it is assumed that the median (7)) and the skewness (or the relative dispersion)
(¢r) of the distribution of T} are given by

10g(77k) = X;;FIB + f;ll(akJ) + ...+ fﬁp/(ak7p/) and

(4.3)
log(dr) = Wiy +1 (bet) +.-. +E (beg),
q

where x} = (XZ, ag1, - - - ,akvp/)T and wj = (W,;r, bi1s - - - ,bkvq/)T are explanatory variables values

for gy, and ¢y, respectively; B = (B1,...,8,)" and v = (y1,...,7,) " are vectors of unknown pa-

rameters; f (a)(j=1,...,p) and f¢ (b) (r =1,...,q") are continuous, smooth and nonparametric
J T

functions of the quantitative explanatory variables a and b, respectively, which are approximated
by using natural cubic splines (see, e.g., Green and Silverman, 1994; Lancaster and Salkauskas,
1986, sections 4.6 and 4.7) or P-splines (Eilers and Marx, 1996). The matrices X = (x},...,x5)"
and W = (w},...,w?)T are assumed to be of full column rank. In addition, there are n in-
dependent and positive random variables C1,...,C), that represent censoring times and are
independent of T}, ..., T). Then, the observed bivariate data, (¢1,d1),..., (tn,0,), are assumed
to be realizations of (T1,61), ..., (T, 0n), where Ty, = min(T}, C) and & = I(T} > Ck), in which
[(-) is the indicator function. Due to the properties of the log-symmetric class, the formulated
model is a log-location-scale model or an accelerated failure time model, where the log-lifetime

distribution belongs to the symmetric class, that is,

Yy =log(Ty) =log(mk) + Vou &, k=1,...,n,

in which & = log(&1),...,&) = log(&,) are independent and identically distributed errors exhibit-
ing standard symmetric distribution (i.e., fe: (§;9(+)) = g(£?)). Particular cases of the formulated
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Figure 4.1: Graph of the hazard rate function under log-hyperbolic (n = 1,¢,( = 1) (a), Birnbaum-

Saunders (n = 1,6, = 3) (b), log-Student-t (n = 1,¢,( = 10) (¢), and Birnbaum-Saunders-t (n =
1,¢,¢ = 3) (d) distributions.

model include log-normal, Birnbaum-Saunders and Birnbaum-Saunders-t models.

4.2 Parameter estimation

Similar to the uncensored case, to allow the model identification, the systematic component
(4.3) of the formulated model is written as

log(n) =XB+N 7 +...+N T and

oM np/ np/

(4.4)
log(¢p) = Wy + N7, +...+ N¢q,7¢q,v
where 7 = (N1,...,m)", @ = (¢1,...,0n) ", Nnj(j =1,....,p)) and N, (r = 1,...,¢) are

basis matrices of dimension n x (p; — 1) and n x (g, — 1), respectively; s (j=1,...,p) and
7, (r =1...,q') are unknown parameter vectors to be estimated, of dimension (p; — 1) and
(q. — 1), respectively. In addition, to avoid overfitting, a quadratic penalty term is introduced,
in which M, (j=1,....,p") and M, (r = 1,...,q') are square penalty matrices of dimension
(p;- —1) and (q. — 1), respectively. Note that the structure of N and M is dependent on the type
of spline (natural cubic spline or P-spline) which will be used to approximate each one of the
functions £ (1)(j = 1,...,p") and £ ()(r=1,...,¢).
J (s
The estimation of @ is performed by fitting a symmetric heteroscedastic semi-parametric
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model to the transformed lifetime (or censoring time) (i.e., Y = log(7')), in which the systematic
component of the location parameter is given by pr = log(nk), K = 1,...,n, and the systematic
component of the dispersion parameter ¢ is a semi-parametric function with logarithmic link,
where the nonparametric functions are approximated by natural cubic splines or P-splines, and
the extra parameter { is assumed to be known or fixed. For a known (, this approach generalizes
the random and systematic components of the models discussed by Barros et al. (2008) and
Li et al. (2012).

Let y1,...,yn be the observed values of Y7 = log(T1),...,Y, = log(T},). Thus, the penalized
log-likelihood function of @ is given by PL(0) = L(6)+P(8), where the penalty term of 6 becomes

A 7\
P(6) = Z %T;qu-"j t Z > TM@ Tor
r=1

j=1

and the log-likelihood function of @ is given by

L(8) = Y~ {6k log[t — Fe(z)] + (1 = 8)Lilrues 61) .

k=1

in which log[l — Fg«(#)] and Ly(uk, ¢x) = loglg(27)] — % log(¢x) are the contributions of a
censored and an uncensored observations to the log-likelihood function of 0, respectively, z; =
(Yk — t) /v Pk, e = log(ny), and Fe«(-) is the cumulative distribution function of £*.

4.2.1 Score function and Hessian matrix

The score function or estimating equation of 8 is given by OPL(0)/00 = U(@) — M6, where

XTQ7'Dy(y — )]
U(6) N Q 'D)(y — ) S
= and M = dia, M, b

] Wi -1) s (M, M)

INJ(5-1)

where y = (yl,...,yn) L= (ul,...,u_n)T, Q= djag{¢1,...,¢n}, D) = diag{ffl,...,ffn},
S= (i) N, =[N, N, ], M, = diag {0, M, }, M, :diag{)\n Mm,.. A M,
N, = [N¢1""’N¢q/]7 M, = diag{Oq,qu}7 M, = diag{)\¢1M¢ yeens ¢/ } i = (1 —

5k)V(Zk) + Iy, Rg*(zk)/zk], S = (1 - 5k)V(Zk)Z]3 + 5k[R§*(zk)zk + 1], and Rg*(zk) = g(zk)/[l —
F¢«(2z1,)]. Obviously, the maximum penalized likelihood estimate of @, denoted as 0, is the solution
of U(#) = M.

Moreover, the hessian matrix of @ is given by 0°PL(0)/0008" = J(0) — M, where

Tl o  FTo—ln 7
sy | @ TO] | X FPeX X8 EDeW
J(M(G) J¢¢(9) —WTQ_%D(E)X —WTD(Q)W

in which D) = diag{ci,...,cn}, D) = diag{ci,...,cn}, D) = diag{c;,...,c,}, & =
(5kRé*(zk)+(1—5k)[v(zk)+v’(zk)zk], 2Ek = 5k[R£*(Zk)+R/£*(Zk)Zk] —|—(1—5k)[2v(zk)zk+z,%v’(zk)],
¢, = kae/2, X = [X,N)], and W = [W,N_].

4.2.2 Iterative processes

To solve the equation U(@) — MO, the Newton-Raphson method can be used. However,
in this work, the nonlinear Gauss-Seidel algorithm (see, e.g., Ortega, 1970, page 219) is used
instead, as it allows to employ in each iteration a diagonalized version of the hessian matrix
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J(0), which in turn facilitates the introduction of the backfitting algorithm. Let 8 = (8, TTT)T

and 4 = (v, TI)T be the parameter vectors associated to the median and the skewness (or the
relative dispersion) submodels, respectively. Then, for fixed value of the smoothing parameter,
the resulting algorithm is as follows

Algorithm 4.1

— (0)
Step 1. Initialize the counter and the parameter vector as I = 0 and 8(0) = (B ,:y(o)).

_(+1) _ _
Step 2. Calculate 3 as the vector that maximizes PL(,B,fy(l)) with respect to 3 (i.e., the so-

lution of UW(B, '7“)) = I\_/IW,B with respect to 3). To do this, the Newton-Raphson algorithm
is used, in which each one of its stages is accomplished by using the backfitting algorithm.
_(41)
Step 3. Calculate 5/<l+1) as the vector that maximizes PL(3 ' ,7) with respect to 4 (i.e., the
_(1+1) _

solution of U (B ,%) = M,4 with respect to ). . To do this, the Newton-Raphson
algorithm is used, in which each one of its stages is accomplished by using the backfitting
algorithm.

D _ 41

Step 4. Update I = (I + 1) and 6¢+D = (8, 5""").
Step 5. Repeat Steps 2, 3, and 4 until converge of 7108

The efficiency of the proposed algorithm can be improved by introducing the Expectation /-
Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993) when the error distri-
bution is a power mixture of the log-normal distribution (see Andrews and Mallows, 1974;
Barndoff-Nielsen, 1977; West, 1987). In these cases, Yi|[0r = 0, Uy = ug] ~ Normal(pg, orh(ug)),
YAYE > yk, 6 = 1,Up = ug] ~ TNormal(pk, pph(ug), (yx, 00)) and the density generator

of the &* distribution is g(z?) = fR+{qﬁ(z/\/h(u))/«/h(u)}fU(u)ﬁu, where TNormal(u, ¢, A)
represents a truncated normal distribution that lies within the interval A, exhibiting location

parameter p and scale parameter ¢, ¢(-) is the density function of the standard normal distri-
bution, h(u) > 0 for u > 0, and fr/(-) is the probability density function (or probability mass

function) of U. Thus, the E step of the ECM algorithm is accomplished by calculating \7(2,(;)) =
. W N0 . 0
E[1/h(U) ¢ > 50" and in(zy) = By [ 21 /B0 ) VRO [1 = @ (/RO ) [} 1Y > s 6

for censored observations; and V(zlil)) = EU{l JRU) Y = yr; 0(!)] for uncensored observations,

with ®(-) being the cumulative distribution function of the standard normal distribution. The

_(1+1) _

two CM steps are accomplished by calculating 3 as the argument that maximizes PI_(I)(,B, ;YU))
_ _(I+1)

with respect to 3, and, then, by calculating '7““) as the argument that maximizes PI_(Z)(,@ )

with respect to 7, where PLU)(H) = I_(l)(G) + P(6), and

n O 2, ~O =072 . 2
‘loy=-3> {m(z}j’) (= k) o Ly (1= () W) o 8 } :

k=1

in which mg) and fn,(j) represent my = g + /o m(zr)/V(z) and my = u% + Vor [m(zk) (yr +

) + Vx| /v(z) avaliated at 0 respectively. Then, for fixed smoothing parameter, the re-
sulting algorithm is described as follows

Algorithm 4.2

Step 1. Initialize the counter and the parameter vector as [ = 0 and () = (B(OZSI(O)).
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Step 2. Calculate \7(2?)), V(2 ()) from 81 where v(z;) = v(z3) = —2¢(22)/9(z2) for uncen-
sored observations, and v(zj) is descrlbed in Table 4.1 for censored observations.

@

Step 3. Calculate m,(f) and m,,~ from 0" for the censored observations, where

Vor  9(2)
(Zk) 1— Fg*(zk)

o Vo [ g(z})
g = p + v(z:) T F;(zk) (e + 1) + Vx| -

and

= pi +

_(1+1) _ _

Step 4. Calculate 3 as the vector that maximizes PLU)(,B,'V(Z)) with respect to 3. To do this,

the Newton-Raphson algorithm is used, in which each one of its stages is accomplished by
using the backfitting algorithm.

(I+1)
Step 5. Calculate ﬁaﬂ) as the vector that maximizes PL(I)(,B ,7) with respect to 7. To do this,

the Newton-Raphson algorithm is used, in which each one of its stages is accomplished by
using the backfitting algorithm.

Step 6. Update [ = (I + 1) and 8.
Step 7. Repeat Steps 2, 3, 4, 5 and 6 until convergence of 2108
Hereinafter, 7, fir = log(7y) and & represent the fitted values of ny, py = log(ny) and ¢,
respectively, for k=1,...,n
4.3 Degrees of freedom

The numer of degrees of freedom used to estimate 1 and ¢ are frequently employed to
quantify the model complexity. In this section, a method to calculate it is discussed. To do this,
it can be seen that, at the convergence of the Algorithm 3.1 (in particular, the convergence of
the Newton-Raphson processes described by the Steps 2 and 3), the estimates of 8 and 4 can
be written as

B=[-3,0+M] [u® 1,05

_ 'XTQ”]“)(C)X+MWFXTQ "D [ﬁ(iD(v)(y — i) +Xf3}, and
5= [-9,00)+ M| [U8) - 3,(0)4]

= W'D, W+M, _1WT13(9) Ef)j(s ~-1,)+ W"y]7

where Q, ﬁ(c), [, E, ~, ]5(9), ]AD(;,) and § represent 2, D, @, B8,7,D (©)> D(v) and s avaliated
at the estimate of 8. By analogy with the parametric case the degrees of freedom assomated
to the estimate of m can be estimated by df(n) = tr(H n), where H = X[X O D( )X +

— 1 lsTa1a . . B S : _ .
Mn] X Dy is such that log(77) = H, [y,(6)], in which y,(8) = X3 + D(JD(;,) (y —p)is

a local response variable. Then, according to Eilers and Marx (1996), it is possible to write
—  — 71-1_ 1.
df(i) = r{ X' @ DX +M,| X'Q DX}

—u{[1+Q*M,Q73] '}
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=

where [I+Q~ M ,Q ] is a positive definite matrix, a( " > 0 are the eigenvalues of Qféﬁan
and dim(M) is the number of rows (or columns) of M, in which Q% is a positive definite

T oA—1.~ —
matrix such that X' 2 DX = Q%Q%. Because the number of eigenvalues equal to zero of

Qfél\_/[qué and M coincide, it follows that dim(l\_/IW) > df(n) >p+ i a,(g), where a,(g) is the
number of eigenvalues of 1\/L7j equal to zero. =

The degrees of freedom associated to the estimate of ¢ can be estimated as df(¢) = tr(H,),
where ﬂ W[WTﬁ(Q)W +M¢]71W]AD(Q) is such that log(¢) = ﬂ¢ [y¢(9)], in which y¢(9) =
W+ + 1D © )( —1,) is a local response variable. Then, according to Eilers and Marx (1996), it
is p0551b1e to write

dim(M,)

g+ Y ——

r=q+1 1+a1"

where where [I + Qféﬁané] is a positive definite matrix, %(525) > 0 are the eigenvalues of

Qfémd)Q*% and Q% is a positive definite matrix such that WTﬁ(Q)W = Q%Q%. Because the

number of eigenvalues equal to zero of Q_%M¢Q_% and M¢ coincide, it follows that dim(M¢) >

N g
df(¢) > ¢+ 21 a((;)r), where O‘Ebor) is the number of eigenvalues of M, ~equal to zero.
r=

4.4 Assymptotic theory

Under the absence of nonparametric effects in the systematic component (4.3), the model
setup coincides with the topic addressed by Bagdonavicius and Nikulin (2001, chapter 4), which
described the asymptotic properties of 6. The asymptotic behaviour of 6 under the general
case of the systematic component (4.3) is studied here by using a framework of fixed-knot (see
Wu and Yu, 2014; Yu and Ruppert, 2002), which implies that the penalty matrices and the size
of 7, and 7, are not dependent on the sample size n. Next, the required conditions for some
asymptotic results be valid, are listed.

Conditions:

1. There is 7'75(;] € R% ! such that fq],(a) = NT]Tj(a)TE] for all a € (a;,a;), j=1,...,p". Then,

J

n 1 p

[0] 0" 01" L
T = <[T ] e [Tn /} > is the true parameter vector for 7.
2. There is T ' ¢ R%—1 guch that £, (b) = NJ(b)TdEO] for all b € (b,,b,), r = 1,...,q". Then,

P1 by

.
[;] = ([T[O]] yeens [T[ : ] > is the true parameter vector for 7.

3. The regularity conditions described by Borgan (1984, section 4) and Bagdonavicius and Nikulin
(2001, chapter 4) are fulfilled. This conditions ensure that

T T T T\T
(a) nilU(H[O]) _)L 0, where 0" — ([,B[O]] , [Tg)]] , [’y[o]] , [Tf] > is the true param-
n o

eter vector for 6.
(b) n_lJ(G[O]) — —2(0[0]), where 2(9[0]) is a positive definite matrix.
n— oo
(c) n=1J(0") ., —2(0[0]) for all @ in line segment joining 6 and 0"

n—oo
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Table 4.1: Expressions for v(zy) under some log-symmetric distributions.

Distribution

(1 — Fee(z)]v (21)

log-Student-t

log-slash

log-contaminated-normal

1 B/ D 2)
[C/(C+ 1] [1 = Fulzpo ¢+ 1]

GGl — (2 C2)] + (1 = [ — ()]

log-hyperbolic

(oo
2K(¢) flog(szr ZiH) exp[—(cosh(t)]0t

1 F(+,¢) is the cumulative distribution function of a random variable €, such that exp(e) exhibits
a standard log-symmetric distribution with extra parameter .

(d) —J72(8")U(6") —— N(0.T).

n—oo
(e) P[nil\&]u(ﬂ*)/aﬁi/\ < w} — s 1forall 4,j,4 and for all @ in line segment joining
n— oo
6 and 0[0], where w is a constant, and J;;(0) is the (i,[)-th element of J(0).

4. The smoothing parameter may be dependent on the sample size. Let A" be the value of
the smoothing parameter under a sample of size n. Then, H)\(n) | — X< oo
n—oo

Theorem 2. Under (1)-(4) the mazimun penalized likelihood estimator of @ is consistent and

~3(6")] *[-3(6") +M](6-6") s N0,

n—oo

Under (1)-(4) and for large sample sizes, 0 is an unbiased estimator of 8 whose variance-
covariance matrix may be written as
-1

Var[6] = |-3(6") + M]il{—J(G[O])M—J(G[O]) +M]|

An intuitive estimator of the asymptotic variance-covariance matrix of 6 reduces to Var [9]
evaluated at the @ estimate.

4.5 Choosing the smoothing parameter

Choosing the smoothing parameter by using a criterion that ensures a compromise between
“low” model complexity and “high” goodness-of-fit was considered by Hastie and Tibshirani
(1990), Rigby and Stasinopoulos (2005), Wood (2006) and Wu and Yu (2014). Then, in this
work, the value of the smoothing parameter A is chosen by minimizing the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC) through an outer iteration. The
AIC and BIC criteria are given by

AIC(B]A) = —2L(B|A) + 2[df (7| A) + df(¢|A)]
and

BIC(B|A\) = —2L(0|\) + log(n)[df (A|A) + df (p|A)],
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where 9|}\, 7| and (}S|}\ are the estimates of @, m and ¢ given a particular value of the smoothing
parameter A, respectively.

4.6 Simulation Results

This section presents a simulation study to assess the statistical properties of the maximum
penalized likelihood estimates under censored log-symmetric regression models. For this purpose,
a data set of size n = 280 is simulated, in which the response variable is generated from a log-
symmetric distribution, where its median (n) and its skewness (or relative dispersion) (¢) can
be written as

log(n) = Bix1 + fexz2 +f(a)  and
log(¢) = n1z1 + fa),

where x1 ~ Bernoulli(0.5), 2 ~ log-normal(1,1), f(a) = 5a + sin(27a), f(a) = 1.2[1.166 —
sin(wa)], and a is a sequence of seventy values in the interval [0.05,0.95], which is replicated
several times until the sample size is reached. The values assigned to the parameters are 51 = 2,
B2 = 0.5 and 71 = —0.2. To describe the random component, several log-symmetric distri-
butions (e.g., log-normal, log-Student-¢, log-slash, log-hyperbolic, log-power-exponential, log-
contaminated-normal, Birnbaum-Saunders and Birnbaum-Saunders-¢) and several values of their
extra parameters are considered. Furthermore, a set of independent and identically distributed
censoring times is generated from the exponential distribution with mean 550. So that, to build
the response variable and the censoring status, the simulated censoring times and the lifetimes
are compared. The resulting sample is used to fit a censored log-symmetric model, where the
nonparametric functions f(-) and f(-) are assumed to be unknown but approximated by cubic
P-splines with eight internal knots (given by ¢(a,0/7),q(a,1/7),q(a,2/7),...,q(a,7/7)), and a
difference penalty term of order 2. The smoothing parameters are chosen by minimizing the AIC
criterion. This process is replicated R = 5000 times, keeping the values of z1, 2 and a fixed. For
the R estimates of (1, B2 and 7, the following summary measures are calculated: i) empirical

= R ..,
expected value, i.e., ) = R™1>° 0" ); i1) coverage rate of the normality-based 95% confidence inter-
i=1

A~ R ~ (3 (7
val, i.e., CR(0) = 100x R~1Y" I[|9(') -0 | /[Véf(@)]%, [0, 1.96]} ; and 7ii) p-value of the one-sample
i=1

Kolmogorov-Smirnov test (see Conover, 1971) to judge the normality of the sample é(l), . ,9<R)

Additionally, as a summary measure of the R estimates of the nonparametric functions f(-) and
f¢(-), the coverage rate of the simultaneous normality-based 95% confidence intervals is used, i.e.,

A R n ~ Z A Z ~ —

CR() = 100 x B3 ] Iﬂf( {ar) — ()] /[Vé%(f(ak))]%,@], where © = [0,® (1 — 0.05/27)],
i=1k=1

n = 70 is the number of different values of a in the sample. In each replication, the percentage

of censored observations is also calculated . Then, the mean and the standard deviation of the
percentage of censored observations is computed. The results are presented in Table 4.2.

The simulation results indicate a good behaviour of the estimates of 51, 82 and 7; because
their means are close to the parameter values and their distributions seem to be very close
to the normal one. Furthermore, the coverage rates of the confidence intervals for 1, B and
71 are close to 95%. The simultaneous confidence intervals for f(-) and f(-) present a good
performance, specially in the case of f(-). Moreover, the percentage of censored observations is
within the interval (25%, 30%).

4.7 Diagnostic methods

In this section, some diagnostic methods such as deviance-type residuals for the median
and the skewness (or relative dispersion) submodels, overall goodness-of-fit criterion, and local
influence measures under right-censored log-symmetric regression models, are addressed.
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Table 4.2: Results of the simulation study

o 0 CR(0) p-value of K-S test |  CR(f) | -
Error distribution %Cens.
Br | B2 71 B B2 71 Br | P 71 f, fs

log-normal 2.00 | 0.51 | -0.21 | 93.30 | 94.07 | 92.23 | 0.78 | 0.58 | 0.85 | 93.00 | 88.17 | 25.24
log-Student-t(4) 1.99 [ 0.51 | -0.21 | 93.20 | 93.90 [ 93.23 | 0.86 | 0.12 | 0.97 | 92.23 | 87.57 | 26.52
log-Student-t(6) 2.00 | 0.51 | -0.21 | 93.27 [ 93.93 | 92.97 | 0.89 | 0.18 | 0.88 | 92.03 | 87.90 | 26.23
log-Student-t(8) 2.00 | 0.51 | -0.21 | 92.20 | 94.33 | 92.30 | 0.94 | 0.17 | 0.97 | 92.87 | 88.43 | 25.97
log-Student-t(10) | 2.00 | 0.51 | -0.21 | 92.27 | 94.10 | 91.43 | 0.75 | 0.17 | 0.97 | 92.90 | 87.77 | 25.86
log-power-exp.(0.2) | 2.00 | 0.51 | -0.21 | 93.87 | 94.60 | 92.23 | 0.76 | 0.39 | 0.86 | 92.87 | 88.27 | 26.41
log-power-exp.(0.3) | 2.00 | 0.51 | -0.21 | 92.97 | 94.70 | 92.97 | 0.85 | 0.19 | 0.89 | 91.43 | 87.47 | 27.17
log-power-exp.(0.4) | 2.00 | 0.51 | -0.20 | 92.73 | 94.70 | 91.87 | 0.39 | 0.26 | 0.98 | 91.47 | 87.17 | 27.82
log-power-exp.(0.5) | 1.99 | 0.50 | -0.21 | 93.30 | 95.50 | 92.83 | 0.76 | 0.28 | 0.91 | 91.10 | 87.53 | 29.16
log-hyperbolic(1.0) | 1.99 | 0.50 | -0.21 | 92.37 | 95.10 | 92.60 | 0.91 | 0.19 | 0.94 | 88.73 | 87.23 | 29.18
log-hyperbolic(0.9) | 1.99 | 0.51 | -0.20 | 93.97 | 94.60 | 92.63 | 0.88 | 0.18 | 0.98 | 87.77 | 86.53 | 29.84
log-hyperbolic(0.8) | 2.00 | 0.51 | -0.21 | 93.20 | 95.30 | 92.47 | 1.00 | 0.10 | 0.52 | 86.97 | 86.53 | 30.59
log-hyperbolic(0.7) | 1.99 | 0.51 | -0.21 | 92.30 | 95.17 | 93.07 | 0.97 | 0.18 | 0.98 | 87.70 | 87.43 | 31.43
log-slash(1.5) 1.99 [ 0.50 | -0.21 | 92.87 | 95.23 [ 92.73 | 0.74 | 0.04 | 0.65 | 87.57 | 87.77 | 28.33
log-slash(1.4) 2.00 | 0.50 | -0.21 | 92.30 | 95.40 | 93.00 | 0.62 | 0.03 | 0.30 | 87.70 | 86.73 | 28.53
log-slash(1.3) 1.99 [ 0.51 | -0.22 | 92.27 | 95.20 [ 92.27 | 0.98 | 0.18 | 0.75 | 86.70 | 87.27 | 28.66
log-slash(1.2) 1.99 [ 0.50 | -0.21 | 91.90 | 94.83 | 92.87 | 0.86 | 0.02 | 0.66 | 87.77 | 87.80 | 28.78
log-cont-nor(0.3,0.3) | 2.00 | 0.50 | -0.21 | 93.57 | 94.70 | 91.47 | 0.98 | 0.26 | 0.77 | 91.70 | 87.37 | 26.86
log-cont-nor(0.5,0.3) | 1.99 | 0.51 | -0.21 | 93.43 | 94.50 | 91.63 | 0.82 | 0.27 | 1.00 | 89.60 | 87.27 | 27.98
log-cont-nor(0.7,0.3) | 1.99 | 0.51 | -0.21 | 93.13 | 94.20 | 91.80 | 0.93 [ 0.39 | 0.79 | 88.97 | 87.07 | 29.10
log-cont-nor(0.9,0.3) | 2.00 | 0.51 | -0.20 | 93.37 | 94.47 | 92.33 | 0.82 | 0.83 | 0.78 | 88.87 | 86.77 | 30.25
B—S(O 1) 2.00 | 0.50 | -0.21 | 93.73 | 94.60 | 93.23 | 0.99 | 1.00 | 0.85 | 92.10 | 88.53 | 20.92
-S(0.3) 2.00 | 0.50 | -0.21 | 93.57 | 93.97 | 93.80 | 0.79 | 0.98 | 0.81 |92.73 | 88.23 | 21.05

-S(0.5) 2.00 | 0.50 | -0.21 | 93.67 | 94.07 | 93.63 | 0.92 | 0.65 | 0.62 | 93.03 | 88.53 | 21.27

-S(0.5) 2.00 | 0.50 | -0.21 | 93.27 | 94.17 | 93.53 | 0.92 | 0.96 | 0.88 | 93.53 | 88.17 | 21.52

B-S- t(O 1,4) 2.00 | 0.50 | -0.21 | 93.77 | 93.83 | 93.50 | 0.91 | 0.51 | 0.97 | 92.97 | 92.37 | 20.98
B-S-¢(0.3,4) 2.00 | 0.50 | -0.21 | 93.37 | 94.00 | 94.00 | 0.98 | 0.61 | 0.49 | 93.33 | 90.97 | 21.22
B-S-£(0.5,4) 2.00 | 0.50 | -0.21 | 93.90 | 93.63 | 93.60 | 0.98 | 0.72 | 0.74 | 94.00 | 90.93 | 21.51
B-S-¢(0.7,4) 2.00 | 0.50 | -0.21 | 93.87 | 94.20 | 93.77 | 0.86 | 0.83 | 0.85 | 94.70 | 90.50 | 21.88

4.7.1 Individual goodness-of-fit

To evaluate the goodness-of-fit of the median and the skewness (or relative dispersion) sub-
models, the deviance is calculated. Thus, the deviance-type residuals for the median and the
skewness (or the relative dispersion) submodels are defined as the signed square root of the
contribution to the deviance of each individual.

Goodness-of-fit of the median submodel

The deviance of 7 given ¢, denoted by D(7)|¢), is given by

D(318) = 23"ctog](1 — Fe (e~ 7l 16414 )/ (1~ Bl - )10l )]

k=1

+ (1 —dx) [Lk(ﬂk, or) — Li(fur, ¢k)} 7
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)+

A~

where fiy, is the value of RU{oo} that maximizes the function dy log [1 - F5*<[yk — p]/[Pk]
(1 — 6Ly (1, di) with respect to p. Hence, D(#)|¢) becomes

D=

D(A|p) = _ di(ile),
k=1

where dj,(#)|¢) may be used to define a residual associated with 7, as follows

-

ty(2) = sign(Z) di (7))
If the function g(-) is monotically decreasing for u > 0, then,
de(A|$) = 2(1 — 6¢) log[g(0)/9(27)] — 263 log[1 — Fe(2)],

. o . 2ol
in which 2 = (yr — i)/ (k]2
Goodness-of-fit of the skewness (or the relative dispersion) submodel

The deviance of ¢ given 7, denoted by D((}b|f7), is given by
0(@m) =23 o1~ Fe(fn — el/15612) )/ (1~ (e — 16w
k=1

+ (1= d) [Lk(ﬂka or) — Li (e, Qbk)} ,

[SIE

where ¢y, is the value of RTU{oo} that maximizes the function 8y, log [1 - Fg([yk — [uk]/[9]
(1 — &)Lk (fig, ®) with respect to ¢. Then, D(¢|#) becomes

)+

D(plA) = _ di(elM),
k=1
where

di(dlM) = 2(1 — 6) log[g(0?)/9(s7)] — logl7/0%] — 26k log[1 — Fex(2k)] — 6k [1 + sign(2x)] log(2).

If the function Ly (fix, ¢) has just one critic point, then g is the solution of the equation v(0)o? = 1.
di(@|7) may be used to define a residual associated with ¢y, by te(2r) = sign(Zx)[dx( ¢ |f7)]%

4.7.2 Overall goodness-of-fit

The overall goodness-of-fit is measured through the following statistic, which has the advan-
tage of graphical representation as it is based on the quantile-quantile plot for right-censored
observations (see, e.g., Waller and Turnbull, 1992):

T =3 (1= 6) | 0 [Felar)] - 0 [Fez)] |/ S (1 - 6,
k=1

k=1

where Fg«(-) is the cumulative distribution function of £* estimated from (%1,01), ..., (2s,0,) by
using the nonparametric Kaplan-Meier estimator (Kaplan and Meier, 1958). If the estimates of
1, ¢ and ( coincide with the true parameter values, then (21,61), ..., (2,,d,) represents a right-
censored sample obtained from the distribution of £*, where the censoring times are independent
but non-identically distributed variables (see, e.g., Zhou, 1991). The smaller is the value of T,
the better is the goodness-of-fit of the model. Graphically, the criterion T indicates that the
smaller is the difference between the plot of ®~[Fg«(2,)] versus ® 1 [Fg«(2;)] (for all k such that
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dr = 0) and a straight line (with zero intercept and unit slope), the better is the goodness-of-fit
of the model. Furthermore, if  is unknown, its value may be selected by minimizing T.

4.7.3 Influence or sensitivity analysis
The normal curvature in the direction d, such that ||d|| = 1, is defined as (Cook, 1986)

Ca(8) = 2/d" N (6, w,)[I(8)] A6, w,) d|, (4.5)

where A(0,w) = 8?PL(0|w)/000w . C5(0) = C4(8)/21/tr(VTV) is the conformal normal cur-
vature proposed by Poon and Poon (1999), which is invariant under uniform change of scale,
where V = A(0,w,)[J(8)]'A(,w,). This curvature allows that 0 < C%(@) < 1 for any unitary
direction d. A maximum curvature, denoted by Cj _, is obtained in the direction d},,, where
Cj,... is the largest eigenvalue of V/\/tr(VTV), and dj,,, is its corresponding eigenvalue. The
local influence measure can be used to identify observations that may jointly influence the fitted
model, and it is calculated from the eigenvector that corresponds to the highest eigenvalue of
the matrix of conformal normal curvature. Similarly, the total local influence measure can be
used to identify observations that may individually exert influence on the fitted model, and it is
calculated from the main diagonal of the matrix of conformal normal curvature.
Next, the expressions of A(é, w,) under two usual perturbation schemes are provided.

Case-weight perturbation scheme

Under this perturbation scheme wo = (1,...,1)T and A(6,w,) is given by

where lj(z) and ]3(5) correspond to D,y = diag{z1,...,2,} and D) = diag{31,...,5,} evalu-
ated at the 0 estimate, respectively.

Response perturbation scheme

Under this perturbation scheme vy is replaced by ylgw) = yr+wy and wo = (0,...,0)". Then,

where ]5(5) correspond to D) evaluated at the 8 estimate.



CHAPTER 5

THE PACKAGE SSYM

There are few packages in the R statistical computing environment (R Core Team, 2014) that
facilitate the analysis of data for which the response variable is continuous, strictly positive, and
asymmetric with possible outlying observations, especially when several parameters of the dis-
tribution of the response variable are dependent on explanatory variables. One such package
is gamlss (Rigby and Stasinopoulos, 2007, 2014), which is an implementation of the general-
ized additive models for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos, 2005).
Similarly, heteroscedastic nonlinear regression models are implemented in the package nlsmsn
(Garay et al., 2013), which were introduced by Lachos et al. (2011) based on a scale mixture of
skew-normal distribution. Although gamlss and nlsmsn are practical and flexible packages, they
do not completely address the diagnostic methods (i.e., residuals and local influence measures)
for each involved submodel, which frequently hinders the validation of the estimated models.
In addition, nlsmsn has the limitation of assuming that the skewness of the response variable
distribution is constant across the observations. Moreover, some routines of the R packages sur-
vival (Therneau, 2014), rms (Harrell, 2015) and eha (Brostom, 2014) allow to fit parametric
accelerated failure time models. However, none of them are flexible enough to enable the speci-
fication of nonlinear effects whose functional form is assumed to be unknown. Furthermore, the
model checking provided by these routines is based just on residual analysis and the influence or
sensitivity analysis is not supported. Finally, none of these packages provides an implementation
in the context of semi-parametric regression for distributions such as Birnbaum-Saunders and
Birnbaum-Saunders-t, which have applications in several fields (see, e.g., Leiva et al., 2008, and
references therein) because they have been developed to describe lifetimes under the assumption
of cumulative damage.

This chapter describes the capabilities and features of the new package ssym (Vanegas and Paula
, 2014), which is an implementation of semiparametric log-symmetric models under the presence
of right-censored or uncensored observations. This package, available from the Comprehensive
R Archive Network (CRAN) at http:// CRAN. R-proj ect . or g/ package=ssym also pro-
vides some functions to perform the residual analysis and the sensitivity analysis, as well as
some graphic tools to draw the estimated nonparametric effects jointly with their simultane-
ous/pointwise confidence intervals.

5.1 Overview

The package ssym fits and obtains diagnostic statistics (deviance-type residuals for each
submodel, local influence measures and goodness-of-fit statistics) for semi-parametric symmetric
models, in which the distribution of the additive random error may be normal, Student-t, power
exponential, contaminated normal, slash, symmetric hyperbolic, sinh-normal, or sinh-¢, and in
which the location (u) and the dispersion (¢) parameters may be described using semi-parametric

29
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functions of explanatory variables in either of the following setups:

II
(1) o |
p
q/ j: h
lo =w, v+ S f (b,); q
g(¢k> Y rgl ¢,~( k:,r) 10g(¢k) — wl;rfy + ) fm(bk?,«),
r=
h * T T * T T
where x;, = (X ,ak1,...,05y) and Wy = (Wg ,bg1,...,bre)  are vectors of explanatory

variables for py and ¢y, respectively. In particular, the functions ssym nl () and ssym | ()
of the package ssym fit symmetric models under the setups described by I and II, respectively,
in expression (5.1), in which the nonparametric functions are approximated by natural cubic
splines or P-splines. Thus, according to Section 3.2, the functions ssym nl () and ssym | ()
can also be used to fit log-symmetric models under the setups described by I and II, respec-
tively, in expression (3.3) and where the distribution of the multiplicative random error may
be log-normal, log-Student-t, log-power-exponential, log-contaminated-normal, log-slash, log-
hyperbolic, (extended) Birnbaum-Saunders or (extended) Birnbaum-Saunders-t. Furthermore,
the routine ssym | 2() allows to fit a log-symmetric model under the presence of random
right-censored observations as described in the previous chapter.

5.2 The model-fitting functions
The arguments of the model-fitting functions ssym nl (), ssym | () and ssym | 2() are

ssymnl (formula, start, fanmly, xi, data, local.influence = FALSE,
subset, naxiter = 1000, epsilon = le-07),

ssym | (formula, famly, xi, data, local.influence = FALSE, subset,
maxiter = 1000, epsilon = le-07),

and

ssyml 2(fornmula, famly, xi, data, |ocal.influence = FALSE, subset,
mexi ter = 1000, epsilon = 1le-07),

respectively. The systematic component of the model must be specified in the argument f or mul a.
The function For mul a() of the package Formula, which was written by Zeileis and Croissant
(2010), has been invoked because it enables the simultaneous specification of the two submod-
els involved in the log-symmetric model. Thus, the argument f or mul a comprises three parts,
namely, the response variable in logarithmic scale, the regressors of log(n), and the regressors
of log(¢); the first two are separated by the symbol “~" and the second and third parts are
separated by the symbol “|". For instance, under the presence of an uncensored sample, a log-
symmetric model with the observed response variable ¢ and the systematic component given by
log(n) = B+ Bax1 +1, (22) +1 (3) and log(¢) = 71 +7221 +£, (22) +1, (23), should be specified
as follows:

ssym |l (log(t) ~ x1 + ncs(x2) + ncs(x3) | z1 + ncs(z2) + ncs(z3),...)
or

ssym |l (log(t) ~ x1 + psp(x2) + psp(x3) | z1 + psp(z2) + psp(z3),...)
when the nonparametric functions are approximated by natural cubic splines or P-splines, respec-
tively. Similarly, a log-symmetric model with the systematic component given by 7 = exp(f1 xf %)

and log(¢) = 71 + 1221 + £, (22) + £, (23), should be specified as follows:

ssymnl (log(t) ~ blxx1"b2 | z1 + ncs(z2) + ncs(z3),...)
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or

ssymnl (log(t) ~ blxx1”"b2 | z1 + psp(z2) + psp(z3),...)

when the nonparametric functions are approximated by natural cubic splines or a P-splines,
respectively. Moreover, under the presence of a right-censored sample, a log-symmetric model
with the observed lifetime (or censoring time) ¢, censoring status event , and the systematic
component given by log(n) = B1 + fo1 +§, (22) 1, (3) and log(@) = 7 +7221 +1L, (22) +£, (23),
should be specified as follows:

ssym | 2(Surv(log(t),event) ~ x1 + ncs(x2) + ncs(x3) | z1 + ncs(z2)
+ ncs(z3),...)

or

ssym | 2(Surv(log(t),event) ~ x1 + psp(x2) + psp(x3) | z1 + psp(z2)
+ psp(z3),...)

when the nonparametric functions are approximated by natural cubic splines or P-splines,
respectively. Note that the absence of the third part of the argument fornul a indicates
to ssym that the model must be fitted assuming ¢ constant across the observations. In the
functions ssymnl (), ssym | () and ssym | 2() the distribution of log(¢) and its extra
parameter value (() are specified in the arguments fam |y and Xi , respectively. In effect,
fam |y = "Nornmal"," Student", " Power exp"," Hyperbolic","Sl ash"," Cont nor -
mal ", " Si nh-normal " and " Si nh-t" correspond to normal, Student-t, power exponential,
symmetric hyperbolic, slash, contaminated normal, sinh-normal and sinh-t distributions, respec-
tively, where the parametric space of ¢ was described in Section 2.3 for all distributions supported
by ssym. The the functions ssym nl (), ssym | () and ssym | 2() also enable manage the
iterative process of parameter estimation via the options maxi t er and epsi | on, which control
the maximum number of iterations and the convergence criterion of the algorithm, respectively.
Additionally, if the option | ocal . influenceis TRUE, then the local influence measures are
calculated for B and 6 under case-weight and response perturbation schemes. In addition, the
option subset enables a specified subset of individuals to be employed in the fitting process.
By default, the smoothing parameter of a natural cubic spline or a P-spline is estimated from
the data by minimizing the AIC or BIC criteria.

5.3 Standard functions

A set of standard extractor functions for the fitted model objects is available for the ob-
jects of the class “ssym”, including methods for the generic functions pri nt (), summary(),
pl ot (),coef(),vcov(),logLik(),AIC(),BIC(),residual s() andfitted().Next,
a description of these standard functions is provided.

5.3.1 Summary

summar y() produces a complete summary of the model fit including parameter estimates,
associated standard errors, deviance values, p-values and degrees of freedom associated with
the nonparametric components, as well as the values of the log-likelihood function (i.e., L(é))7
AIC , BIC and the overall goodness-of-fit statistic Y. In addition, summary() displays the
quantiles of the standardized individual-specific weights (i.e., quantiles of p(2x) = v(2x)/dy(¢),
k=1,...,n) and the percentage of censored observations under the presence of uncensored and
censored observations, respectively.

5.3.2 Estimating equations

estfun. ssym() extracts the score function evaluated at observed data and estimated
parameters, which enables one to verify that the estimates provided by ssym nl () ,ssym | ()
or ssym | 2() satisfy the estimating equations.
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5.3.3 Goodness-of-fit statistics

The | ogLi k() , Al C() and Bl C() functions calculate the value of the log-likelihood func-
tion, as well as the AIC and BIC values, respectively, in the scale of the transformed vari-
able, Y. In addition, the commands attr (I ogLi k(),"log"),attr(AIC(),"log") and
attr(BIC(), "l og") display the value of the log-likelihood function, as well as the AIC and
BIC values, respectively, in the scale of the original variable, T.

5.3.4 Diagnostic graphs

Under the presence of uncensored observations, the function pl ot () produces a graph of the
standardized individual-specific weights versus the ordinary residuals, and a graph of the overall
goodness-of-fit statistic T, i.e., a graph of @fl[Fg*(ék)] versus v, k = 1,...,n. This function
also displays graphs of the deviance-type residuals versus the fitted values for the median and the
skewness (or the relative dispersion) submodels. However, under the presence of right-censored
observations, the function pl ot () produces a graph of the hazard rate function of the error
distribution ¢ instead of a graph of the standardized individual-specific weights.

5.3.5 Parameter estimates

The function coef () extracts the parameter estimates for both submodels. Similarly, the
function vcov() extracts the approximate variance-covariance matrix associated to the param-
eter estimates.

5.3.6 Fitted values

fitted() extracts the values of fi, = log(fz) and ¢y, k=1,...,n.
5.3.7 Residuals

resi dual s() calculates the deviance-type residuals for both submodels. However, under
the presence of uncensored observations, the overall residuals (i.e., ®~! [F(2,)]) and the ordinary
residuals (i.e., Zx) are also calculated. '

5.3.8 Local influence measures

If the option | ocal . i nfl uenceis TRUEin the calltossym nl () ,ssym | () orssym | 2(),
then the function i nf | uence() can extract the local influence measures (local influence and

total local influence based on the conformal normal curvature) for B and 6 under the case-

weight and response perturbation schemes. Graphs of the local influence measures for 0 are
automatically displayed by the call of the function i nf | uence() .

5.4 Other useful functions
5.4.1 Basis and penalty matrices

The arguments of the routines ncs() and psp() are
ncs(x, | anbda, nknots, all.knots=FALSE)

and
psp(x, |anbda, b.order=3, nknots, diff=2),

respectively. These functions are used to construct the basis (IN) and the penalty (M) matrices to
approximate a smooth function of x by using a natural cubic spline or a P-spline. The smoothing
parameter may be provided by the user through the option | anbda. By default, the routines
ncs() and psp() usem = [n%] + 3 knots (or internal knots, in the case of P-splines), which are
given by ¢(a,1/(m+1),...,q(a,m/(m+1)), with ¢(a,w) being the quantile of order 0 < w < 1
of a. However, the number the knots can be introduced by the user using the argument nknot s.
In addition, under P-splines, the degree of the B-spline and the degree of the difference penalty
term can be specified by using the arguments b. or der and di f f | respectively.
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5.4.2 Graphs of the nonparametric effects

From an object of class “ssym”, the function
np. graph(obj ect, which, exp=FALSE, simul =TRUE, obs=FALSE, var,...)

can display a graph of the fitted nonparametric effects jointly with their simultaneous (or point-
wise provided that si mul =FALSE) normality-based 95% confidence intervals, which are either
natural cubic splines or P-splines. If 0bs=TRUE the displayed graph include the observed data
adjusted by the parametric effects in the corresponding submodel, if they exist. The interest
submodel is selected using the argument whi ch, where 1 indicates median submodel and 2 in-
dicates skewness (or the relative dispersion) submodel. The argument var allows to choosing
the nonparametric effect using the name of the associated explanatory variable.

5.4.3 Simulated envelopes

From an object of class “ssym”, the routine
envel ope(obj ect, reps=25, conf=0.95)

calculates and displays graphs of the deviance-type residuals with simulated envelope for the
median and the skewness (or the relative dispersion) submodels. The arguments reps and
conf represent the number of iterations and the confidence level for the simulated envelopes,
respectively. A progress bar is displayed while the envelopes are calculated.

5.4.4 Choosing the extra parameter

From an object of class “ssym”, the function

extra. paraneter (object, |ower, upper)

A~

calculates and displays graphs of the overall goodness-of-fit statistic T and —2L(0) versus the
extra parameter ¢ in the interval/region defined by the arguments | ower and upper . These
graphs may be used to choosing the extra parameter value. A progress bar is displayed while
the graphs are calculated.

5.4.5 Random generation

The function
rvgs(n, famly, xi)

enables the random generation of variates from the (standard) normal, Student-t, power ex-
ponential, slash, symmetric hyperbolic, contaminated normal, sinh-normal and sinh-t¢ distri-
butions. Then, the function exp(rvgs()) can be used for the random generation of log-
normal, log-Student-t, log-power-exponential, log-slash, log-hyperbolic, log-contaminated nor-
mal, Birnbaum-Saunders and Birnbaum-Saunders-¢ distributions. In the case of the power ex-
ponential distribution rvgs() calls the function r nor np() of the R package normalp. Syntax
of the arguments fam |y and xi coincides with that of the homonymous arguments in the
functions ssym nl () and ssym | ().

5.4.6 Datasets

The package ssym includes several data sets to illustrate the use of its main functions. For
example, it contains the following data sets: Snacks (Paula, 2013), Biaxial (Rieck and Nedelman,
1991), Claims (de Jong and Heller, 2008, pag 14), European Rabbits (Dudzinski and Mykytowycz
, 1961), Gross Domestic Product (Vanegas and Paula, 2014b), and Ovocytes (LeGal et al., 1984).
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CHAPTER 6

APPLICATIONS OF LOG-SYMMETRIC MODELS

In this chapter, the statistical and computational tools presented in the previous chapters
are illustrated by analyzing six real data sets using the R package ssym. Further examples can
be found at http://cran.r-project. org/ web/ packages/ ssym ssym pdf.

6.1 Boston housing

This dataset, recently analyzed by Ibacache-Pulgar et al. (2013) and Wu and Yu (2014) using
semi-parametric models, is available at the R package MASS and consists of 506 observations
of the dependent variable medv, median value of owner occupied homes in towns of Boston in
1970’s (in thousands of US dollars), and other 13 independent variables, which include cri m
per capita crime rate; r m average number of rooms per dwelling; di s: weighted distances to five
Boston employed centers; t ax: full-value property-tax rate per USD 10,000; | st at : percentage
of lower status of the population. It is proposed to analyze the dataset using a log-symmetric
model where the median (1) and the skewness of the response distribution are given by

log(nk) = B1 + Pecrimy, + fsrmy, + Bataxy + fql(lstatk) + ﬁu(disk),
log(¢r) = 1 + f,(1staty), k=1,...,506,

where f (-), f (-) and f(-) are nonparametric functions approximated by using P-splines. Table
6.1 presents the values of T, AIC and BIC for the fitted models under various distributions of
the model error. In all cases, the extra parameter ( was selected by using the criterion of the
overall goodness-of-fit Y. It can be seen that the error distributions with heavy tails outperform
the goodness-of-fit provided by the log-normal distribution. The log-slash model was selected
to describe the data because it yields the lowest values of T, AIC and BIC. The behaviour of
the overall goodness-of-fit statistic T with respect to the extra parameter ¢ under the log-slash
model is illustrated by the Figure 6.1(a).

Table 6.1: Goodness-of-fit statistics for the fitted models to the Boston Housing data.

Error distribution T AIC BIC

log-normal 0.0642 | -328.03 | -206.04
log-Student-t(5.4) 0.0310 | -379.96 | -283.45
log-power-exponential(0.56) 0.0397 | -362.14 | -270.99
log-hyperbolic(1.2) 0.0350 | -369.18 | -275.50
log-slash(1.56) 0.0269 | -386.22 | -288.54
log-contaminated-normal(0.1,0.15) | 0.0309 | -383.87 | -287.38

In ssym, the selected model can be fitted via

65
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> dat a(" Boston", package="MASS")

> fit <- ssyml(log(medv) ~ crim+ rm+ tax + psp(lstat) + psp(dis) | psp(lstat),
+ dat a=Boston, fam|y="Slash", xi=1.56, |ocal.influence=TRUE)

> summary(fit)

Famly: Slash ( 1.56 )

Sanpl e size: 506
Quantile of the Wights

0% 25% 50% 75% 100%
0.06 1.20 1.30 1.33 1.34
kxkkkkkkxkxkxkxkxkxkxkxkxxx Vedi an/ Locati on subnmDdel **xsxsxkxkxkrkkkhkkkkkk ko * %
xxxx*xxx*x Parametric conmponent

Estimate Std. Err z-value Pr(>|z|)

(Intercept) 1.72590440 0.0829 20.8204 < 2.2e-16 *#+

crim -0.01076789 0.0014 -7.7320 1.059e-14 **x
rm 0.24020970 0.0120 20.0857 < 2.2e-16 **x
t ax -0. 00026966 0.0001 -4.5669 4.951e-06 **x*

*xxx%%x% Nonparanmetric conponent

Snoot h. param Basi s. di nen d.f. Statis. p-value
psp(l stat) 62. 08 11.000 6.554 323.9 <2e-16 ***
psp(dis) 10. 13 11.000 8.865 271.5 <2e-16 **x*
*xxx Deviance: 652
kkkkkkkkkkkkkkkxkkrkxkkxxx Skewness/ Di spersi on subnmDdel xxxxxkxxkkrxkrk kR x kKKK ®
*xxx%*xxx Parametric conmponent

Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) -4.2342 0.0967 -43.7757 < 2.2e-16 xx**
*xxx%%x% Nonparanmetric conponent

Snoot h. param Basi s. di nen d.f. Statis. p-value
psp(l stat) 33.25 11. 000 2.692 112.8 <2e-16 **x
x*x** Deviance: 645.68

R I S R R R R O S R R R R R I

Overall goodness-of-fit statistic: 0.026859
-2+l og-1ikelihood: -432.445

AIC. -386.224

BIC. -288.545

Figure 6.1(a) can be reproduced by using the command ext r a. paraneter (fit, 1.0, 2. 3).
Figures 6.1(b)-(d) present the estimates of the nonparametric functions with the 95% simultane-
ous confidence intervals. These graphs can be reproduced by using the instructions np. gr aph(fit, whi ch=1, ¢
np. graph(fit, which=1, exp=TRUE, "di s") and np. graph(fit, which=2, exp=TRUE, "I stat"),
respectively. The p-values associated with the nonparametric effects indicate that the distribu-
tion of the response variable depend on the variables | st at and di s. Figures 6.2(a)-(b) present
the deviance-type residuals with simulated envelope. These graphs do not reveal any discrepant
individual and they indicate that the fitted log-slash model describes the data adequately. The
graphs of the local influence measures (Figures 6.2(c)-(d)) allows to identify the groups of in-
dividuals {369,370,371,372,373}, {370}, {371}, {372}, {233}, {268} and {419} as potentially
influential on @. The elimination of these individuals does not introduce inferential changes.

6.2 Textures of five different types of snacks

A data set from an experiment developed in the School of Public Health - University of Sdo
Paulo, in which four different forms of light snacks (denoted by B, C, D, and E) were compared
with a traditional snack (denoted by A) for 20 weeks. For the light snacks, the hydrogenated
vegetable fat (hvf) was replaced by canola oil using different proportions: B (0% hvf, 22% canola
oil), C (17% hvf, 5% canola oil), D (11% hvf, 11% canola oil) and E (5% hvf, 17% canola oil);
A (22% hvf, 0% canola oil) contained no canola oil. The experiment was conducted such that
a random sample of 15 units of each snack type was analyzed in a laboratory in each even
week to measure various variables. A total of 75 units was analyzed in each even week; with
750 units being analyzed during the experiment (Paula, 2013). Only the variable t ext ur e was
considered and compared over time for the five snack types. This data set (Snacks) is available
in the package ssym, and the objects t ext ur e, t ype and week represent homonyms variables.
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Figure 6.1:

expl[f (di s)| (c) and explf,(l stat )] (d) of the log-slash model fitted to the Boston Housing data.
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Figure 6.2: Graphs of the deviance-type residuals with simulated envelope for 7 (a) and ¢ (b), local
influence for 0 under the case-weight perturbation scheme (c¢), and total local influence for @ under the
case-weight perturbation scheme (d) of the log-slash model fitted to the Boston Housing data.
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The preliminary analysis indicates that the conditional distribution of texture is right-skewed,
its location is a nonlinear function of time (whose functional form is unknown) and the intensity
of its skewness is dependent on the snack type. To describe the data, a model is proposed that
assumes that the textures of the snack units are realizations of independent random variables
with a log-symmetric distribution, in which its median (1) and its skewness (¢) are given by

log(nk) = b1 + Bowpp + ... + BsTrs + fn(weekk.),
log(¢r) = 1 + YTz + - - + V5Tk5, k=1,...,750,

where f(-) is a nonparametric function approximated by a natural cubic spline, and =y, is a
binary variable coded as x,, = 1 if the k-th snack unit belongs to the (recoded) snack type r (the
levels 1-5 correspond to A-E snack types) and 0 otherwise. The basis matrix (Nn) and the penalty
matrix (M) may be obtained using attr(ncs(week),"N') and attr (ncs(week), "K"),
respectively. Table 6.2 presents the values of T, AIC and BIC for the fitted models under various
distributions of the model error. In all cases, the extra parameter ¢ was selected by using the
criterion of the overall goodness-of-fit T. It can be seen that the error distributions with heavy
tails outperform the goodness-of-fit provided by the log-normal distribution. The log-Student-¢
model was selected to describe the data because it yields the lowest values of AIC and BIC. The
behaviour of the overall goodness-of-fit statistic T with respect to the extra parameter ¢ under
the log-Student-¢t model is illustrated by the Figure 6.3(a).

Table 6.2: Goodness-of-fit statistics for the fitted models to Snacks data.

Error distribution T AlIC BIC

log-normal 0.0377 | -171.19 | -85.27
log-Student-(15) 0.0295 | -176.42 | -90.32
log-power-exponential(0.13) 0.0328 | -175.25 | -89.28
log-hyperbolic(7.3) 0.0301 | -176.19 | -90.13
log-slash(3) 0.0281 | -176.06 | -89.90
log-contaminated-normal(0.12,0.34) | 0.0277 | -176.40 | -90.21

In ssym, the selected model can be fitted via

> dat a(" Snacks", package="ssynt)
> fit <- ssyml (log(texture) ~ type + ncs(week) | type, data=Snacks,
+ fam | y=" Student’, xi =15, |ocal.influence=TRUE)
> summary(fit)

Fam ly: Student ( 15 )
Sanpl e size: 750
Quantile of the Wights

0% 25% 50% 75% 100%
0.551.10 1.16 1.19 1.2
kkkkkkkkkxkkkxkkxxkxxkkxxx NVedi an/ Locati on subnbDdel *xxxxxkkxkkxkkkkkkkkkkkk k%
*xxx%x*xxx Parametric conmponent

Estimate Std.Err z-value Pr(>|z|)

(I'ntercept) 4.16019 0.0232 179.7028 < 2.2e-16 **x

type2 -0. 17691 0.0283 -6.2459 4.214e-10 **x
type3 - 0. 08803 0.0320 -2.7493 0.005973 **

type4d - 0. 24908 0.0262 -9.5020 < 2.2e-16 **x
type5 -0. 26823 0.0269 -9.9665 < 2.2e-16 **x

*hkkkkkkk Nonparar‘retri Cc conponent
Smoot h. param Basis.dinen d.f. Statis. p-value
ncs(week) 58.52 9. 000 8.635 351.3 <2e-16 *x*
»xxx Deviance: 827.12
kohkkkkhkkhkkkkkxhhhhkkkkkkkk Skevvness/]jspersi 0N SUbnDdE] ***xxkkxkkkkkkkkkkkk k%
xxxx*xxx*x Parametric conmponent
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Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) -2.638636 0.1265 -20.8603 < 2.2e-16 *x=*
type2 -0.699481 0.1789 -3.9102 9.221e-05 **=*
type3 -0.091042 0.1789 -0.5089 0. 6108
typed -1.265302 0.1789 -7.0733 1.513e-12 #**x
typeb -1.045618 0.1789 -5.8452 5.060e-09 **=*
*x*x% Deviance: 996.7

R R I S R R R O Rk I O S R I

Overal |l goodness-of-fit statistic: 0.029517
-2+l og-1ikelihood: -213.687
AlC. -176.417

BIC. -90.321

Figure 6.3(a) can be reproduced by using the command extr a. paranmeter (fit, 5, 50).The
AIC and BIC values (for the response in the original scale) are 5837.20 and 5946.40, respecti-
vely, which are lower than the AIC and BIC values obtained by Paula (2013), who described
the data using a gamma model with varying dispersion. These values are produced by the com-
mands attr (Al C(fit),"log") and attr(BIC(fit),"log"), respectively. The p-value
associated with the nonparametric component indicates that the time significantly affects the
median of the texture distribution. The graph of the fitted nonparametric function (Figure
6.3(b)), which is produced by the command np. graph(fit, whi ch=1, exp=TRUE) , suggests
that the median of the texture distribution achieves its highest level at approximately week 14.
The summary of the fit also indicates that the snack type with the highest texture value is always
the traditional snack (snack type A), which always exhibits the texture distribution with a more
pronounced level of skewness. Note that the standardized individual-specific weights are within
the interval [0.55,1.2] and the weight of a snack unit increases as its texture value approaches
the median of its conditional distribution (Figure 6.3(c)). The plot of the overall goodness-of-fit
statistic (Figure 6.3(d)) suggests that the fitted log-Student-¢ model satisfactorily describes the
data. The plots of the deviance-type residuals versus the fitted values (omitted here) do not
reveal any trend, pattern or evidence of a misspecified systematic component. The graphs of the
deviance-type residuals with simulated envelope (Figure 6.4(a)-(b)) do not reveal any discrepant
individual and they indicate that the log-Student-t model fits the data suitably. These graphs
may be reproduced using the command envel ope(fit).

The instructions i I m <- i nfluence(fit) extract the measures of local influence and
construct their graphs versus the index of the observations (Figures 6.4(c)-(d)). For instance, un-
der the case-weight perturbation scheme, the sets of snack units {601,661,675,676,691,720,749,750},
{91}, {691} and {750} were identified as potentially influential on . The option subset of
ssym | () may be used to re-fit the log-Student-t model by eliminating the potentially influen-
tial snack units from the analysis and subsequently performing a comparison with the original
fit. In this case, the elimination of the sets of potentially influential snack units does not in-
troduce inferential changes. Under the response perturbation scheme, all snack units identified
as potentially influential on 0 belong to the snack type E, as illustrated by the graph (omitted
here) produced by the following commands:

> axis(1,at=1:5,!abel s=c("A","B","C',"D"',"E"))

6.3 Ultrasonic Calibration

This data set, which was previously analyzed by Lin et al. (2009), Lachos et al. (2011) and
Labra et al. (2012) using parametric models with additive and asymmetric errors, consists of
214 observations generated in an ultrasonic calibration study, in which the interest variable is
the ultrasonic response, and the explanatory variable is the distance to the metal. This data
set (Chwi rut 1) is available in the R package NISTnls. The initial analysis indicates that the
ultrasonic response decreases as the distance from the metal increases, and the skewness of
the response distribution is dependent on the distance to the metal. Therefore, the ultrasonic
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Figure 6.3: Graphs of T versus  (a), exp[f (Week)] and its simultaneous 95% confidence intervals (b),
standardized individual-specific weights (c), and overall goodness-of-fit statistic (d) of the log-Student-t

model fitted to Snacks data.
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response distribution may be described using a model with multiplicative and asymmetric errors,
in which its median (1) and its skewness (¢) are described by

_exp(—Pizy)
Me = —F 5
Bo + B3xk
log(éx) = 71 + 22k, k=1,...,214,

where xj, represents the distance to the metal of the individual k. Table 6.3 presents the values
of T, AIC and BIC for the fitted models under various distributions of the model error. In all
cases, the extra parameter ¢ was selected by using the criterion of the overall goodness-of-fit
T. It can be seen that the error distributions with heavy tails outperform the goodness-of-fit
provided by the log-normal distribution. The log-contaminated-normal model was selected to
describe the data because it yields the lowest values of AIC and BIC.

Table 6.3: Goodness-of-fit statistics for the fitted models to Ultrasonic Calibration data.

Error distribution T AlIC BIC

log-normal 0.1090 | -270.94 | -254.11
log-Student-t(3) 0.0612 | -277.94 | -261.11
log-power-exponential(0.7) 0.0505 | -285.35 | -268.52
log-hyperbolic(0.1) 0.0483 | -284.46 | -267.64
log-slash(1.1) 0.0688 | -273.86 | -257.03
log-contaminated-normal(0.68,0.1) | 0.0499 | -288.19 | -271.36

The fitted log-contaminated-normal model is obtained using ssym nl () in the following man-
ner:

> data(" Chwi rut1", package="N STnls")

> fit <- ssymnl(log(y) ~ -blxx-log(b2 + b3xx) | x, start=c(bl=0.15, b2=0. 005, b3=0.012),
+ data=Chwi rut1l, fam|y="Contnormal’, xi=c(0.68,0.1), local.influence=TRUE)
summary(fit)

Famly: Contnormal ( 0.68 , 0.1 )
Sanpl e size: 214
Quantile of the Wights
0% 25% 50% 75% 100%
0.47 0.61 2.13 2.83 3
khkkkkkkkkxkkkxkkkxxkxxkkxxx NVedi an/ Locati on subnbDdel *xxxxxkkxkkxkkkkkkkkkkkk k%
xx*xxx*xxx Parametric conponent
Estimate Std.Err z-value Pr(>|z|)
bl 0.1565732 0.0120 13.0543 < 2.2e-16 **x
b2 0.0055168 0.0003 17.5695 < 2.2e-16 *=**
b3 0.0120526 0.0006 21.0148 < 2.2e-16 *=**
*»x+x+ Deviance: 351.17
kkkkkkkkkkkkkkkxkkrkxkkxxx Skewness/ Di spersi on subnmpdel xxxxxkrxkkrxkrk kR xR kKK x
xx*xxx*xxx Parametric conponent
Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) -7.55053 0.2149 -35.1400 < 2.2e-16 **x
X 0.56099 0.0710 7.9060 2.659e- 15 *++
**xx* Deviance: 191.77
R R R R X E"
Overall goodness-of-fit statistic: 0.049915
-2+l og-1ikelihood: -298.192
AIC. -288.192
BIC -271.362

Figure 6.5(a) can be reproduced by using the command ext r a. paranmeter (fit, c(0.4,0.08),c(0.9,
The graph of the fitted median submodel is presented in Figure 6.5(b). The AIC and BIC va-
lues (for the response in the original scale) are 1033.05 and 1049.88, respectively, which are
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Figure 6.5: Graphs of Y versus ((1,(2) (a), fitted median submodel (b), standardized individual-specific
weights (c), and overall goodness-of-fit statistic (d) of the log-contaminated-normal model fitted to Ultra-
sonic Calibration data.

lower than the AIC and BIC values obtained by Lin et al. (2009), Lachos et al. (2011) and
Labra et al. (2012). These values are obtained by the commands attr (Al C(fit), "l og")
andattr(BIC(fit),"log"),respectively. The approximate standard errors associated with
Bl, 5 and Bg are also lower than the ones obtained by these authors. The summary of the fitted
model indicates that the skewness of the distribution of the ultrasonic calibration increases as
the distance to the metal also increases. Note that the standardized individual-specific weights
are within the interval [0.47, 3] and the individuals with the higher ordinary residuals (i.e., indivi-
duals 146 and 147) have the lower weights (Figure 6.5(c)). The plot of the overall goodness-of-fit
statistic (Figure 6.5(d)) suggests that the fitted log-contaminated-normal model suitably de-
scribes the data.

The graphs of the deviance-type residuals with simulated envelope (Figures 6.6(a)-(b)) do
not reveal any discrepant observation and they indicate that the log-contaminated-normal fits
the data adequately. The groups of individuals {142,146,147}, {142}, {146} and {147} are iden-
tified as potentially influential on 0 (under the case-weight perturbation scheme, as shown in
Figures6.6(c)-(d)) according to the graphs displayed by i | m <- i nfl uence(fit). The fol-
lowing commands assess the impact on the fitted median submodel by eliminating the potentially
influential individuals from the analysis:

> fit2 <- ssymnl (log(y) ~ -blxx - log(b2+b3*x) | x,
+ start=c(b1=0. 15, b2=0. 005, b3=0. 012),

+ data=Chwi rut 1, fam|y=" Contnormal’

+ xi =c(0.68,0.1), subset=-c(142, 146, 147))

>
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Figure 6.6: Graphs of the deviance-type residuals with simulated envelope for 7 (a) and ) (b), local
influence for 0 under the case-weight perturbation scheme (c), and total local influence for @ under the
case-weight perturbation scheme (d) of the log-contaminated-normal model fitted to Ultrasonic Calibration
data.
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> 100« (coef (fit2)$nmu-coef (fit)$mu)/abs(coef (fit)$nu)
[1] -1.898305 -1.608060 1.419694

The percentage changes in the parameter estimates are less than 2%. Further, the elimina-
tion of these individuals does not introduce inferential changes. Regarding the local influence
measures under the response perturbation scheme (omitted here), the estimate of € seems par-
ticularly sensitive to small perturbations on the response variable for individuals with the lowest
value on the explanatory variable (i.e., = 0.5), as illustrated by the graph (omitted here)
produced by the following commands:

> pl ot (Chwi rut 1$x, il ntt het a$r esponse[, 1], yl ab="L.Influence")

6.4 Goat Ovocytes

This data set, which was discussed by LeGal et al. (1984) and Huet et al. (1996), addresses an
experiment comparing the responses of immature and mature goat ovocytes exposed to propane-
diol, a permeable compound. The fraction of cell volume during osmotic equilibration is recorded
at each time for both type of ovocytes: immature and mature. This data set (Ovocyt es) is avail-
able in the package ssym, and the objects fracti on, type and ti nme represent homonyms
variables. The descriptive analysis indicates that the distribution of the response variable (i.e.,
fraction of cell volume) is asymmetric, especially for small values of the explanatory variable
ti me. To describe the data, a log-symmetric model is proposed that assumes that the median
and the skewness of the response variable distribution are given by

log(nk) = B1 + P2 typey, + £ (timey),
log(¢x) = 71 + 72 typey, + f(timey), k=1,...,161,

where the nonparametric functions f(-) and f,(-) are approximated by using P-splines. The anal-
ysis under the log-normal distribution suggests that this data set should be described using an
error distribution that exhibits lighter tails. Thus, a model with log-power-exponential errors is
fitted, in which its extra parameter ( = —0.55 was selected by using the overall goodness-of-fit
statistic Y. In ssym, the log-power-exponential model can be fitted via

> data(" Ovocytes", package="ssynt')

> fit <- ssyml (log(fraction) ~ type + psp(tinme) | type + psp(tine),

+ dat a=Ovocytes, fam |y="Powerexp’, xi=-0.55, |ocal.influence=TRUE)
sumary(fit)

Famly: Powerexp ( -0.55)

Sanpl e size: 161
Quantile of the Wights

0% 25% 50% 75% 100%
0.00 0.03 0.20 0.54 1.6
khkxkkkkkkkxkkkxkkxxkkxxkkxxx NVedi an/ Locati on subnbDdel *xxxxx sk xkkxkkkkkkkkkkkk k%
*xxx%*xxx Parametric conmponent

Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) -0.35112 0. 0116 -30.2597 < 2.2e-16 *x*
typeMature 0. 10167 0. 0116 8.7297 < 2.2e-16 *x=
xx*xxxxxx Nonparanetric conponent
Snmoot h. param Basi s.dinen d.f. Statis. p-value

psp(tine) 77.62 9.00 6.07 1549 <2e-16 *x=*
xxx* Deviance: 72.45

kkkkkkkkkkkkkkkkxkkxxxkxxx Skewness/ Di Spersi 0N SUbnDdE] ***xxkkxkkkkkkkkkkkk k%
xxxxxxxx Parametric conponent
Estimate Std.Err z-value Pr(>]z|)
(Intercept) -3.3820 0. 1220 -27.7323 < 2.2e-16 **x
t ypeMat ure -1.6898 0. 1511 -11.1825 < 2.2e-16 **x*
Kok okok ok ok ok ok Nonpararretri c component
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Snmoot h. param Basis.dinen d.f. Statis. p-value
psp(tine) 0. 4149 9. 000 5.828 125.1 <2e-16 **x*
*x*x* Deviance: 186. 32

EE IR R S I I S I I I kR S I I S I I S I I I R Ok I I I I O S I I R I S I O I S I I

Overall goodness-of-fit statistic: 0.100859
-2+l og-1ikelihood: -360.516

AIC. -328.72
BIC -279.732

The p-values and the graphs (Figures 6.7(a)-(b)) associated with the nonparametric compo-
nents indicate that the median and the skewness of the distribution of the fraction of cell volume
are dependent on the time. Note that f;]() and f¢(-) are not monotone functions of time. These
graphs, which include the simultaneous 95% confidence intervals, can be reproduced by the com-
mands np. graph(fit, whi ch=1,exp=TRUE) and np. graph(fit,whi ch=2 exp=TRUE) , re-
spectively. The summary of the fitted model also reveals that the distribution of the fraction
of cell volume is dependent on the type of ovocyte. The AIC and BIC values (for the response
in the original scale) are -429.265 and -394.239, respectively. These values are obtained by the
commands attr(AIC(fit),"log") andattr(BIC(fit),"log"), respectively.

Figure 6.7(c) reveals that the highest standardized individual-specific weights correspond to
the ovocytes with the highest differences between the observed and the fitted values. The graphs
of the deviance-type residuals with simulated envelope (Figure 6.8(a)-(b)) indicates that the log-
power-exponential model satisfactorily describes the data set. These graphs can be reproduced
using the command envel ope(fit). Figures 6.8(c)-(d) present the local influence measures
for @ under the case-weight perturbation scheme. The groups of individuals {113,120 {6}, {120},
{147} and {155} are identified as potentially influential.

6.5 Personal Injury Insurance

A sample of the data set reported by de Jong and Heller (2008), which contains informa-
tion about settled personal injury insurance claims from an Australian insurance company, was
considered. The 540 claims in the sample had legal representation and were obtained for acci-
dents that occurred from January 1998 to June 1999. This data set (Cl ai ) is available in the
package ssym and contains the variables t ot al , accnont h and op_t i nme, which correspond
to the amount of money paid by an insurance policy (in thousands of Australian dollars), the
month of occurrence of the accident (coded 103 (January 1998) to 120 (June 1999)) and the
operational time (expressed as a percentage), respectively. Similar to Paula et al. (2012), the
data are described using a model that assumes the Birnbaum-Saunders-¢ distribution for the re-
sponse variable t ot al ; however, unlike Paula et al. (2012), varying skewness is assumed. Then,
the median (1) and skewness (¢) of the response variable distribution are described by

IOg(Uk) = Bl + BQ op_timek) 10g(¢k‘) =7+ op_timek) k= ]-a s 5540

By using the goodness-of-fit measure T, the extra parameter vector of the Birnbaum-Saunders-¢
distribution was selected to be ¢ = (0.1,4)". The summary of the proposed model is obtained
using the following instructions:

> data("d ai ms", package="ssynt)

> fit <- ssyml(log(total) ~ op_tine | op_tinme, data=d ains,
+ fam ly="Sinh-t', xi=c(0.1,4), local.influence=TRUE)
summary(fit)

Fanily: Sinh-t ( 0.1, 4)
Sanpl e size: 540
Quantil e of the Wights
0% 25% 50% 75% 100%
0.07 1.20 1.54 1.70 1.75
*xxxxxxxxxx Nedi an/ Locati on subnodel x*x*xx*%x*x**%
x*x*x Parametric conponent



78 CHAPTER 6. APPLICATIONS OF LOG-SYMMETRIC MODELS 6.5

expll,(ti me)]

-
3
a4
3
- o _]
@
[=N
5w |
(=]
=
g
T T T T
0 5 10 15
tinme
(c)
. 120
.6
98
ST 3 .
= 7 % .
e 5 .
@
= . !
[y )
n LY
IS '." o
\ 4
\' ..°
\ /
s - N’

I I I I I I
-15 05 0.0 0.5 1.0

1
log[(fract i on/#) V%)

Overall residual

Quantiles N(0,1)

Figure 6.7: Graphs of exp[fn(t i me)] (a) expliy(ti me)] (b) and their simultaneous 95% confidence inter-
vals, standardized individual-specific weights (c), and overall goodness-of-fit statistic (d) of the log-power-

exponential model fitted to Goat Ovocytes data.



6.5

6.5. PERSONAL INJURY INSURANCE

79

Deviance-type residual for ¢

Quantiles M(0,1)

-
=
P
=
L
=
= -
=]
‘7
()
=]
@ <
&
2
=
S 7
]
5
5
5
~
a o
-
T T T T I
-2 -1 0 1 2
Quantiles (0, 1)
(a)
®
S 120
=)
<@ 3 7]
=
<
()
S
s =
= S
=
=]
= 113
=
o
o ]
= IS
= —
3

120

0.4

Total Local Influence for 6
0.3

0.2

0.1

0.0

Index

Index

Figure 6.8: Graphs of deviance-type residuals with simulated envelope for ) (a) andz,zAS (b), local influence
for 0 under the case-weight perturbation scheme (c), and total local influence for 0@ under the case-weight
perturbation scheme (d) of the log-power-exponential model fitted to Goat Ovocytes data.



80 CHAPTER 6. APPLICATIONS OF LOG-SYMMETRIC MODELS 6.6

Estimate Std.Err z-value Pr(>|z|)

Estimate Std.Err z-value Pr(>|z|)
(Intercept) 1.74986 0.03981 43.955 < 2e-16 **x
op_tine 0.01614 0.00336 4.804 1.56e-06 **=*
*xxx Deviance: 756.91
xxxxxxxxx Skewness/ Di spersion subnmodel *x*xxx*xx
*xxx Paranmetric conponent

Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) 4.14050 0.13752 30.108 < 2e-16 **x*
op_tine 0. 04064 0.00946 4.296 1.74e-05 **x*
*xxx Deviance: 763.19

EE R IR Sk O I I S I S S S I S I I S S S R I I S I I S I S I S I O O

Overall goodness-of-fit statistic: 0.03417
-2x| og-1ikeli hood: 1075.805
Al C. 1083. 805
BIC. 1100.971

The median and the skewness of the distribution of t ot al increase as the op_ti me also
increases. For each increase of ten percentage points in the operational time, the median and
skewness of t ot al increase at approximately 100 x [exp (B2 x 10)—1] = 17.5% and 100 x [exp (42 X
10) — 1] = 50%, respectively. The AIC and BIC values are 1083.81 and 1100.97, respectively,
which are lower than the AIC and BIC values obtained by Paula et al. (2012), who described the
data using the homogeneous Birnbaum-Saunders-t model (i.e., a model in which ¢, = ¢ = 4 for
all k). These values are obtained by the commands Al C(fit) and Bl C(fit),respectively. The
plot of T (Figure 6.9(b)) suggests that the proposed Birnbaum-Saunders-t model satisfactorily
fits the data.

Figures 6.9(c)-(d) show the residual plots versus the fitted values for both submodels. The
plot of the deviance-type residuals for the median submodel reveals the claims 10 and 28 as
marginally discrepant. These claims also present the lowest weights according to Figure 6.9(a).
The plot of the deviance-type residuals for the skewness submodel reveals the claims 28, 75,
416, 476 and 533 as marginally discrepant. These plots do not present any pattern or tendency.
Graphs of deviance-type residuals with simulated envelope for median and skewness submodels
(Figure 6.10(a)-(b)) confirm that the Birnbaum-Saunders-t model satisfactorily describes the
data. These graphs may be obtained via envel ope(fit, 50).In the local influence measures
under the case-weight perturbation scheme (Figures 6.10(c)-(d)), the sets of claims {2,3,10,28},
{2}, {3}, {10}, {28} and {537} were identified as potentially influential on @. The following
commands can be used to assess the impact on the fitted median submodel by eliminating the
potentially influential individuals from the analysis:

fit2 << ssyml(log(total) ~ op_tinme | op_tinme, data=C ains,
fam ly="Sinh-t’', xi=c(0.1,4), subset=-c(2, 3,10, 28))

>
+
>
> 100« (coef (fit2)$nmu-coef (fit)$mu)/abs(coef (fit)$nu)
[1] 0.08012387 -0.48482172

Note that the percentage changes in the parameter estimates are less than 1%. In addition,
the elimation of these individuals does not introduce inferential changes.

6.6 Biaxial Fatigue

This data set, available in the object Bi axi al of the package ssym, describes the life of a
metal piece subjected to cyclic stretching and compressing, where Li f e, the number of cycles
to failure of the metal specimen, is the response variable, T', and Wbr k, the work per cycle,
is the explanatory variable, x. This data set was analyzed by Rieck and Nedelman (1991) and
Lemonte and Patriota (2011) using the linear and nonlinear Birnbaum-Saunders models, respec-
tively, in which the skewness parameter was fixed to be ¢ = 4. Similar to Lemonte and Patriota
(2011), the data are described here using a nonlinear model with Birnbaum-Saunders errors and
where ¢ is assumed to be constant; however, unlike Rieck and Nedelman (1991) and Lemonte and Patriota
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Figure 6.10: Graphs of the deviance-type residuals with simulated envelope for 7j (a) and gf) (b), local
influence for 0 under the case- weight perturbation scheme (c), and total local influence for 0 under the
case-weight perturbation scheme (d) of the Birnbaum-Saunders-t model fitted to Claims data.
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(2011), the value of the skewness parameter ¢ is estimated from the data. The median of the T}
distribution is described using the following function:

e = exp(B12}?), k=1,... 46.

The extra parameter ¢ = 1.54 of the Birnbaum-Saunders distribution was selected by minimizing
the overall goodness-of-fit statistic Y, as illustrated by the Figure 6.11(a). In ssym, the proposed
model is fitted using the following instructions:

> data("Biaxial", package="ssynl)

> fit <- ssymnl(log(Life) ~ blxWrk”b2, start=c(bl=16, b2=-0.25),
+ dat a=Bi axi al, fam |y="Si nh-normal’, xi=1.54)
summary(fit)

Fam ly: Sinh-normal ( 1.54)

Sanpl e size: 46
Quantile of the Wights

0% 25% 50% 75% 100%
0.23 0.29 0.41 0.53 1.28
*xxxxxxx*x* [Nedi an/ Locati on subnodel **x*x*x*x*x
*xxx Parametric component

Estimate Std.Err z-value Pr(>|z|)
bl 15.82840 0.80425 19. 68 <2e-16 *x*x*
b2 -0.26162 0.01475 -17.74 <2e-16 *x*x*
x*x*x* Deviance: 29.48
xxxxxxxxx Skewness/ Di spersi on subnmodel *x*xxxxxx
*xxx Parametric conmponent
Estimate Std.Err z-value Pr(>|z]|)
(I'ntercept) -1.0511 0.1533 -6.858 7e-12 x*x*
*xxx Deviance: 48. 86
Overall goodness-of-fit statistic: 0.150182
-2x| og-1ikelihood: 41.624
AlC. 47.624
BIC 53.11

Figure 6.11(a) is reproduced by using the command ext r a. par amet er (fit,1.3,1.8).

It can be seen that the approximate standard errors associated with 61 and 62 are lower than
those obtained by Lemonte and Patriota (2011). In addition, the AIC and BIC values are 47.62
(ALC(fit)) and 53.11 (Bl C(fit)), respectively, which are lower than those obtained by
Rieck and Nedelman (1991) and Lemonte and Patriota (2011). Figure 6.11(b) presents the graph
of the fitted median submodel. The instruction envel ope(fit, 50) produces the graphs of the
deviance-type residuals with simulated envelope (6.11(c)-(d)), which reveal that the Birnbaum-
Saunders model fits the data suitably.
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6.7 Primary Biliary Cirrhosis

These data are available in the object pbc of the R package survival. The data are from
the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974
and 1984, and they consist of 412 observations of the dependent variable t i me, number of days
between registration and the earlier of death, transplantation, or study analysis in July, 1986;
status, 0 = alive at last contact, 1 = liver transplant, 2 = death; and other independent
variables, which include edema: presence of edema; St age: histologic stage of disease; and
bi I'i : serum bilirunbin (mg/dl). It is proposed to analyze the dataset using a censored log-
symmetric model where the median (1) and the skewness of the response distribution are given
by

log(nk) = B1 + Poedemay, + B3stage;, + f(biliy),
log(ox) = 71, k=1,...,412,

where f(-) is a nonparametric function approximated by using a natural cubic spline. To describe
the dataset, a Birnbaum-Saunders-¢t model is proposed, where the extra parameter vector was
selected to be ¢ = (0.65,3)T . The summary of the proposed model is obtained using the following
instructions:

dat a( " pbc", package="survival")
pbc2 <- data.frane(pbc[!is.na(pbc$edens) & !is.na(pbc$stage) & !is.na(pbc$bili),])

>
>
>
> fit <- ssyml2(Surv(log(tine),ifelse(status>=1,0,1) ) ~ factor(edema) +
+ stage + ncs(bili), data = pbc2, fam|ly="Sinh-t",

+ xi =c(0.65,3), local.influence=TRUE)

>sunmary(fit)

Family: Sinh-t ( 0.65, 3)
Sanpl e size: 412
Censored % 55.83
kxkkkkkxkkxkxkxkxkxkxkxkxxx Vodi an/ Locati on subnmDdel **xsxkxkxkxkxkkhkkkkkk ko * %
xxxx*xxx*x Parametric conmponent
Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) 9. 05527 0.2582 35.0674 < 2.2e-16 **=*
factor(edema)0.5 -0.53409 0.1546 -3.4544 0.0005515 *=*=*
factor(edemn)1 -1.43010 0.2461 -5.8109 6.213e-09 *=*=x
st age -0.33485 0.0743 -4.5057 6.616e-06 **x*
* ok okok ok ok ok ok Nonparametri c component
Smoot h. param Basis.dinen d.f. Statis. p-value
ncs(bili) 2.527 9. 000 4.671 113. 4 <2e-16 *x=
*x*x* Deviance: 436.03
hohkkkkhkkkkkkkxhhkkkkkkkkkk Skevvness/]jspersi 0N SUbnDdE] ***xxkkxkkkkkkkkkkkk k%
xxxxxxxx Parametric conponent
Estimate Std.Err z-value Pr(>|z|)
(I'ntercept) 1.4799 0.1293 11.4477 < 2.2e-16 **x
*xxx Deviance: 373.51
Overal |l goodness-of-fit statistic: 0.036313
-2+ og-1ikelihood: 660.58
AlC. 679.922
BIC. 718.809
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