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Abstract

Thomas, L. D. Analysis of state transition in complex systems: statistical procedures in

biological networks. 2017. 97 pages. PhD Dissertation - Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2017.

Complex Systems, a �eld that studies interactions of large number of components, have been

intensely researched over the past recent years due to its ability to represent complex structures

that haven't been completely understood. Components can be represented by nodes in a network in

which edges illustrate pairwise interactions between nodes. A system faces a state transition when

its outcome is altered due to changes in some of its nodes nature and pairwise interactions. New

tools to identify the causes of such transitions are in great need. Since biological systems are good

examples of complex systems, they are used here to address this question.

Network analysis is a powerful and general approach to investigate systems characterized mainly

by pairwise interactions. Correlation coe�cients are a statistical measure commonly used to quantify

pairwise interactions. Even though this measure is very popular in the research community to de�ne

the edges of a network, it has already been proven that partial correlation is a more suitable measure

for this purpose in cases where the nodes represent Gaussian random variables. However, its usual

calculation, called inverse method, only works on data with large sample size. Since biological data

is known for its "Big Data" properties, new partial correlation methods have been already developed

and need assessment. Local partial correlation, a new method developed by the author, is herein

described and applied to the reconstruction of a complex biological system (cervical cancer). Local

partial correlation, graphical lasso and network reconstruction with ridge penalty are examples of

such models and are compared for the �rst time. We have observed in this study that local partial

correlation returns similar networks as the method with ridge penalty and both produce good ROC

curves.

A tool widely used for analysis of "Big Data" in biology is called co-expression networks. Here,

we developed a step-by-step guide on how to reconstruct and analyze co-expression networks us-

ing either correlation or local partial correlation approach . Several methods have been proposed

to answer biological questions interrogating state transition in these type of networks. Di�erential

co-expression analysis is a recent approach that measures how gene interactions change when a bio-

logical system transitions from one state to another. While di�erentially expressed genes have been

extensively investigated, the role of di�erentially co-expressed genes in gene regulation is not well

studied even though the importance of identifying deregulated pathways has already been noted.

Here, investigation of di�erentially co-expressed genes is performed in networks considering only

di�erentially expressed genes as nodes for a relatively simple mono-causal process (B lymphocyte

de�ciency) and a complex multi-causal system (cervical cancer).
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We show that in B cell de�ciency the di�erentially co-expressed genes are highly enriched with

immunoglobulin genes (causal genes), whereas, in cervical cancer, di�erentially co-expressed genes

are located close to causal genes and act as "bottlenecks" rather than causal drivers with most

�ows that come from the key driver genes to the peripheral genes passing through di�erentially co-

expressed genes. Using in vitro knockdown experiments for two out of 14 di�erentially co-expressed

genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles

in cancer cell growth. Numerical analysis was performed for di�erent graphical structures with dif-

ferent number of nodes and con�rmed that, regardless of which nodes su�ered knockout, pairs of

nodes with high di�erence of correlation tend to be located close to the perturbation site. Therefore,

identifying di�erentially co-expressed genes in co-expression networks is an important procedure in

detecting regulatory genes involved in alterations of phenotype.

Key words: di�erential correlation, partial correlation, state transition, gene co-expression net-

works, complex networks



Resumo

Thomas, L. D. Análise de transição entre estados em sistemas complexos: procedimen-

tos estatísticos em redes biológicas.. 2017. 97 f. Tese (Doutorado) - Instituto de Matemática e

Estatística, Universidade de São Paulo, São Paulo, 2017.

Sistemas Complexos, uma área da Ciência que estuda interações de elevado número de compo-

nentes, tem sido intensivamente alvo de estudo nos últimos anos devido à sua capacidade de rep-

resentar estruturas complexas que ainda não foram completamente compreendidas. Componentes

podem ser representados por nós em uma rede na qual elos ilustram as interações entre pares de

nós . Um sistema está perante a uma transição de estado quando o seu produto é alterado devido

a alterações na natureza de alguns dos seus nós ou na interação entre pares de nós. Existe uma

grande necessidade de novas ferramentas para identi�car as causas destas transições de estado. Uma

vez que sistemas biológicos são exemplos de sistemas complexos, são aqui usados para abordar esta

questão.

Análise de rede consiste na abordagem geral e poderosa para investigar sistemas que são car-

acterizados maioritariamente por interação entre pares de nós. Coe�cientes de correlação são uma

medida estatística frequentemente usada para quanti�car interações entre pares de nós. Apesar

dessa medida estatística ser muito popular entre a comunidade ciênti�ca para de�nir os elos de

uma rede, já foi provado que a correlação parcial é uma medida mais apropriada para casos em que

os nós representam variáveis aleatórias Gaussianas. No entanto, o seu cálculo usual, denominado

método inverso, funciona apenas em grandes quantidades de dados. Uma vez que dados biológicos

são conhecidos pelas suas propriedades "Big Data", novos métodos de correlação parcial já foram

desenvolvidos e precisam ser avaliados. A correlação parcial local, novo método desenvolvido pela

autora, é aqui descrita e aplicada à reconstrução de um sistema biológico complexo: câncer de colo

do útero. Correlação parcial local, graphical lasso e reconstrução de rede com penalidade ridge são

exemplos de alguns desses métodos, os quais são comparados pela primeira vez. Foi então observado

neste estudo que os métodos de correlação parcial local e com penalidade ridge dão origem a redes

similares, e ainda produzem ambos boas curvas ROC.

Redes de co-expressão são uma ferramenta globalmente usada na análise de "Big Data" em

biologia. Neste trabalho é transmitida uma ideia geral de análise de redes incluindo um guia passo a

passo de como construir uma rede de co-expressão usando tanto correlação como correlação parcial

local. Vários métodos têm sido propostos para responder a questões relacionadas com transição

de estado neste tipo de redes. Análise de co-expressão diferencial é uma abordagem recente que

mede como interações entre genes mudam quando o sistema biológico transita de um estado para

outro. Enquanto que genes diferencialmente expressos tem sido bastante estudados, a importância

de genes diferencialmente co-expressos em regulação gênica não é clara, mesmo sabendo que a

v



vi

identi�cação de caminhos desregulados é de elevada importância. Neste trabalho, estudam-se genes

diferencialmente co-expressos em redes compostas apenas por genes diferencialmente expressos para

um processo monocausal simples (de�ciência de linfócito B) e um sistema multi-causal complexo

(câncer de colo do útero).

Resultados indicam que muitos dos genes diferencialmente expressos são genes imunoglobulina

(genes causais) nas redes de de�ciência de células B, enquanto que, nas redes de câncer de colo

do útero, os genes diferencialmente co-expressos estão localizados próximo aos genes causais, at-

uando como "bottlenecks" e não como drivers causais. Neste caso, um maior número de correntes

originadas no gene condutor seguindo para os genes periféricos passam pelos genes diferencialmente

co-expressos. Ao realizar ensaios experimentais knockdown in vitro em 14 genes diferencialmente co-

expressos outrora encontrados em cervical cancer(FGFR2 e CACYBP), foi veri�cado que os genes

diferencialmente co-expressos têm um papel fundamental na regulação do crescimento de células

cancerígenas. Foram ainda efetuadas análises numérica para tipos de estruturas grá�cas distintas

com diferente número de nós tendo sido con�rmado que os pares de nós com maior diferença de

correlação têm tendência para estar localizados perto da região da perturbação, independentemente

dos nós que sofreram knockout. Portanto, identi�car genes diferencialmente co expressos nas redes

de co-expressão é um importante procedimento na detecção de regulação de genes envolvidos nas

alterações de fenótipo.

Palavras-chave: correlação diferencial, correlação parcial, transição entre estados, redes de co-

expressão gênica, redes complexas
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are Ig genes (p value < 0.001). Meanwhile no enrichment was observed for correlation

loss as a result of B cell de�ciency: 3% (1 out of 36(= 31 + 5)) of DC genes are Ig

genes vs 2.7% (11 out of 415) of other DEGs are Ig genes. . . . . . . . . . . . . . . . 28

5.5 Co-expression networks for cervical cancer data. The nodes are composed by DEGs

and the edges represent signi�cant local partial correlation between nodes. A few

causal genes (key drivers) and DCP edges are located in the high connectivity region,

but scattered throughout the network. Only one key driver is amongst the genes in

DCPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Topological properties of Di�erentially Correlated Genes (DCGs). A) Barplot of the

shortest path to the causal genes and originated in either the genes in DCPs (in

orange) or the non DCP genes (in blue). The distribution in orange is concentrated

in lower values. B) Boxplot comparing the values of Bipartite Betweenness Centrality

of the genes in DCPs (in orange) and the non-DCP genes (in blue). The boxplot on

the left is concentrated in higher values. . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.7 Experimental evaluation of DCGs in cervical cancer. A) E�cacy of FGFR2 and

CACYBP siRNA knockdown. qRT-PCR with primers for GAPDH as the internal

control was used to determine expression and e�cacy of FGFR2 and CACYBP spe-

ci�c siRNA knockdown in endothelial cells (ME180). ME180 cells were harvested

72 h after transfection with vehicle (Lipofectamine) and either scrambled control or

targeting siRNA. B) Gene expression of FGFR2 and CACYBP (mean +/− standard

deviation) for tumor and normal samples from �ve datasets used in the analysis.

Since FGFR2 was found down-regulated in tumor tissue, its potential regulatory role

would be as a tumor suppressor. However, CACYBP is up-regulated, thus CACYBP

should function as an oncogene promoting cell proliferation. C) Evaluation of cell

proliferation inhibition using xCelligence System. Proliferation data (cell index) was

obtained at 72 h after transfection with Lipofectamine and either scrambled control

or targeting siRNA. Inhibition index was calculated (two step normalization of cell

index): inhibition index > 0 - cells transfected with targeting siRNA showed decrease

in proliferation; < 0 - showed increase in proliferation; = 0 - no di�erence from con-

trol was found. One sided T test for mean (< 0 for FGFR2 and > 0 for CACYBP)

was applied and returned statistically signi�cant p-values for both of them (0.0258

for FGFR2 and 0.01978 for CACYBP). . . . . . . . . . . . . . . . . . . . . . . . . . . 31



xviii LIST OF FIGURES

5.8 Example of a knockout in a scale-free graph structure. The purple node in the network

to the left is the knockout gene. The network to the right is the structure after

perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.9 Example of a knockout of an edge in a scale-free graph structure. The red edge in the

network to the left is the knockout edge. The network to the right is the structure

after perturbation with a new edge (green). . . . . . . . . . . . . . . . . . . . . . . . 36

5.10 Examples of a scale free graphical structure with 20 nodes. The purple nodes in (a),

(b) and (c) are being knocked out. (d), (e) and (f) represent the networks right above

them after knockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.11 Scatterplots of log ∆ρ versus shortest distance from KO: a) hub knockout in a scale

free structure, b) leaf near hub knockout in a scale free structure, c) leaf away from

hub knockout in a scale free structure, and d) hub knockout in a lattice structure

with leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.12 Boxplots of linear regression coe�cients of scatterplots of log ∆ρ versus shortest

distance from KO for all structures: Erdos Renyi (ER), edge percent (EP), Galton

Watson tree (tGW), regular tree with two o�spring (tree), scale free (sf), small world

(sw), lattice with leaves (latt). Note that the black boxplots are a result of correlations

of all pairs of variables in the model, not a stack of the colored boxplots . . . . . . . 39

5.13 Boxplots of linear regression coe�cients of scatterplots of log ∆ρ versus shortest

distance from KO for scale free structure with: (a) 20 nodes, (b) 50 nodes, and (c)

100 nodes. The black boxplots consider all pairs, the red boxplots only consider pairs

composed by 2 leaves, the green boxplots only consider pairs composed by only 1

leaf, and the blue boxplots only consider pairs with no leaves. . . . . . . . . . . . . . 39

5.14 Scatterplots of log ∆ρ versus shortest distance from: (a) new edge, (b) KO edge, (c)

Boxplots of linear regression coe�cients of log ∆ρ versus shortest distance from KO

for scale free structure with 100 nodes. The black boxplots consider all pairs, the red

boxplots only consider pairs composed by 2 leaves, the green boxplots only consider

pairs composed by only 1 leaf, and the blue boxplots only consider pairs with no leaves. 40

6.1 Example of ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Example of how sensitivity (left) and speci�city (right) vectors are stacked into ma-

trices. The columns are composed by entries of each vector corresponding to a speci�c

αi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 ROC curves from three di�erent partial correlation methods (G-rigde in black, GLasso

in red, LPC in in green) applied on data generated from Erdos-Renyi, Scale free and

Small world graph structures with: (a) 50 nodes and 20 samples; (b) 100 nodes and

50 samples; and (c) 200 nodes and 50 samples. The straight lines are average ROC

curves, while the dashed and dotted lines refer to average plus standard deviation

and average minus standard deviation respectively. . . . . . . . . . . . . . . . . . . . 47

6.4 Study of the percentage of true positives in the reconstruction of two di�erent sub-

networks (red and blue) for 42 di�erent GNW parameters. Note that the parameters

are indexed as natural numbers and are described in Table A.1. The circled regions

of all 4 plots correspond to the data generated with only SDE noise. . . . . . . . . . 48



LIST OF FIGURES xix

6.5 Bar plot showing the growth of percentage of true positives (TP) as the number

of samples n increases from 25 to 1000 for three networks with di�erent number of

vertices p: 50 (in blue), 100 (in red) and 1000 (in green). . . . . . . . . . . . . . . . . 48

6.6 ROC curves of di�erent partial correlation methods (GLasso in black, G-rigde in red,

LPC with correlation p-value threshold 1 in green and LPC with correlation p-value

threshold 0.1 in blue) in the reconstruction of networks using two di�erent number

of variables (50 and 100) and two di�erent number of samples (500 and 1000). Note

that in (a) and (c) all the curves overlap close to the identity curve while in (b) and

(d) the GLasso ROC curve is much lower than the other curves. Regardless of the

overlapping results, all the ROC curves show poor performance. . . . . . . . . . . . . 49

6.7 (a) Network built with LPC method; (b) Union of networks built with LPC method

and GGMridge: the blue nodes in the network appear after the union of GGMridge

network with (a); (c) Union of networks built with LPC method, GGMridge and

Graphical Lasso: the orange nodes in the network appear after the union of Graphical

Lasso network with (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.8 Venn Diagrams. (a) Number of connected nodes in networks reconstructed through

the three partial correlation methods herein analyzed: Graphical lasso (yellow circle),

LPC (green circle) and GGMridge (blue circle). We can see that the number of nodes

in the intersection of LPC and GGMridge (purple hex) is considerably bigger that

the other pairwise intersections (red diamond and blue square). (b) Number of edges

in common in all three networks. The circle colors are kept the same. The number

of similar edges in the intersection of LPC and GGMridge are also higher than the

other pairwise intersections. (c) Union of all networks organized in a Venn Diagram.

The circle colors are once more kept the same. The nodes in each region represent

the numbers in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xx LIST OF FIGURES



List of Tables

5.1 DCPs - cancer (* key drivers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Primers and Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Index table to indicate all parameters used in the generation of gene expression

through GNW. The cells in green correspond to the circled groups in Figure 6.4 while

the indices in red are the parameters used to reconstruct the networks in Figure 6.6. 55

A.2 Di�erentially correlated pairs from BcKO study . . . . . . . . . . . . . . . . . . . . . 57

A.3 Causal genes: BcKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.4 Causal genes: Cervical Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.5 All �lters for all calculations on BcKO data . . . . . . . . . . . . . . . . . . . . . . . 60

A.6 All �lters for all calculations on cervical cancer data . . . . . . . . . . . . . . . . . . 61

A.7 Datasets included in the meta-analysis of gene expression microarray data for Bcell

Knockout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.8 Datasets included in the meta-analysis of gene expression microarray data for cervical

cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xxi



xxii LIST OF TABLES



Chapter 1

Introduction

Complex Systems is a �eld that studies systems with large number of interacting components,
[BY97, CS99]. Researchers have been seriously interested in its understanding throughout the recent
years due to its ability to represent complex structures which are still a challenge to fully comprehend
([HSA06, HJG17]). Examples of complex systems are the brain, a living cell, the stock market,
genetics, social organization. A common representation is network reconstruction where the nodes
are its components and the edges are interactions between components([Str01, BS09]). Sometimes
there can be a change in the nature of a few components leading to changes in the behavior of other
components which will change the entire system outcome. This situation can be viewed as a state
transition and can be exempli�ed by drops in the stock market, diseases, strikes, among others.

This project aims to develop new tools that analyze changes in complex networks when a state
transition occurs. We would like to be able to identify the components that trigger the transition
as well as to comprehend how the structure changes in di�erent complexities. For this reason we
chose to work with biological systems, more explicitly co-expression networks reconstructed from
microarray gene expression data, and with simulations for di�erent graph structures. In real data
approach, the nodes represent genes and the edges show if there is an association between each pair
of genes. In both data, when one or more nodes are disturbed, perturbations arise in other nodes
changing the network structure.

General changes in a biological system after a state transition have already been extensively in-
vestigated, [Li02, NHDQ11, SYAP11, PSS+13]. The most popular one is when several genes present
statistically signi�cant changes in their expression means. These genes are called Di�erentially Ex-
pressed Genes (DEGs), [DYCS02, RYB03, XFG+04]. A structural change that has been recently
getting attention is when the interactions within one or more pairs su�er severe alterations. Two
genes can either lose or gain interaction or can start interacting in a di�erent direction, for example,
a gene acts as an inhibitor in one state and then becomes an enhancer in another state or the other
way around. Di�erent approaches to calculate structural changes in biological systems have already
been suggested in previous publications, [LWCZ04, Wat06, SKV+11, DYK12, Fuk13].

Co-expression networks are herein reconstructed setting DEGs as nodes and the interactions
between two DEGs are established through signi�cant Pearson correlation coe�cient. Sometimes
correlation coe�cients are not ideal to de�ne the edges of a network since it allows the appearance
of indirect links. In studies with enough sample sizes, it is interesting to represent only direct
connections between nodes which can be done through partial correlation. However, gene expression
data is often composed by thousands of genes vs. tens of samples which makes partial correlation
inapplicable. In order to enable the use of partial correlation to high dimensional data the author
created a new method called local partial correlation (LPC) which basically applies the inverse
method - usual method for partial correlation - to the neighborhood of each pair of correlated
nodes, [Tho12]. The e�ciency of LPC in network reconstruction is compared for the �rst time to
two partial correlation methods with regularization: Graphical Lasso [FHT08] and GGM Ridge
[HS14]. Both of them can also be applied to high dimensional data. The comparison was made
using simulated and real data.

1



2 INTRODUCTION 1.2

We say that there is a change in interaction when a pair of genes goes through a statistically
signi�cant change in Pearson correlation after a state transition. We call the pairs that go through
these changes Di�erentially Correlated Pairs (DCPs). We denominate the genes forming the DCPs
as Di�erentially Co-expressed (DC) genes. We already know from literature that there are strong
indications of some kind of relationship between DEGs and DCPs, [dlF10]. However, no further
investigation about such relationship was found leaving the role of DC genes in gene regulation
unknown. This project also aims to reveal how DCPs in�uence DEGs networks out of two di�erent
conditions. The main goal of this part is to aid the development of tools that are able to detect a
few candidate causal genes that can later be experimentally tested.

Our biologist collaborators from Oregon State University (OSU) provided us with insights and
data from two of their previously published papers. The �rst one [SMH+11] studies the global
gene expression in the jejunum of de�cient B cells mice (Bcell knockout, a homogenous one causal
factor system) and the second one [MSY+13] seeks to understand the process of cervical cancer, a
heterogeneous multi-clausal system. The choice of these two biological models is due to the already
existing knowledge about the causes of the state transition. All datasets can be obtained from the
two following datasets resource: NCBI GEO and Array Express at the European Bioinfomatics
Institute.

Numerical analysis is also performed in di�erent graph structures in order to con�rm the results
from real data analysis. Simulations of state transition are based on Gaussian Graphical Models
and GeneNetWeaver, a network reconstruction software from DREAM Project.

1.1 General Objectives

General objectives and motivations of this dissertation are listed below:

• Compare the e�ciency of local partial correlation with other partial correlation methods.

• Describe local partial correlation properties.

• Understand how network changes after a state transition.

• Evaluate the importance of di�erential correlated pairs in a state transition.

• Develop mechanisms to detect causal-gene candidates to be experimentally tested.

• Con�rm the results from Biological Networks through numerical analysis and �nd out if they
can be generalized to any kind of network structure.

1.2 Dissertation Outline

Chapter 2 describes several basic concepts about graph theory and biological networks necessary
for the comprehension of the entire document.

Chapter 3 de�ned local partial correlation along with some of its properties and simulation
studies developed in [Tho12].

Chapter 4 describes the steps involved in biological network reconstruction : 1) data normal-
ization, 2) discovery of DEGs, 3) correlation analysis for network reconstruction, 4) discrimination
between direct and indirect links, 5) proportional unexpected correlations, 6) meta-analysis, 7)
identi�cation of di�erentially co-expressed gene pairs ([DYR+15]).

In Chapter 5 co-expression networks of B cell de�ciency (Control and BcKO) were reconstructed
using Pearson correlation coe�cient for mus musculus datasets. Co-expression networks of cervical
cancer data (normal and cancer) were reconstructed using local partial correlation method. Di�er-
entially correlated pairs were identi�ed along with the location of their genes in BcKO and in cancer
networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically eval-
uated for di�erentially co-expressed genes in corresponding networks. Experimental and numerical
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analysis are performed to support the results obtained from real data analysis. This chapter is a
product of [TVS+16].

Chapter 6 describes two partial correlation methods with regularization: graphical lasso [FHT08]
and network reconstruction with ridge penalty [HS14], then compares local partial correlation with
these two other partial correlation. This comparison was made using GGM and GNW simulations
and real data from cervical cancer studies.

Finally in Chapter 7 some general conclusions are presented along with suggestions for future
work.
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Chapter 2

Basic Concepts

In this chapter, we introduce some basic concepts one must know in order to be able to fully
comprehend the work developed in the scope of this research. Graph theory and graphical modeling
are herein described. Several properties of Biological networks are also explained.

2.1 Graph Theory

In mathematics, graph theory is the study of graphs, which are also known as networks and
represent mathematical pairwise relations between objects. A graph is an ordered pair G = (V, E)
constituted by a set of nodes V = {1, 2, ..., p} and a set E of edges, which are 2-element subsets
of V, E ⊆ V × V. It may be undirected, where (i, j) and (j, i) mean the same, or directed. In the
latter case (i, j) represents an edge coming from i and pointing to j and (j, i) means the other way
around. This research only considers undirected edges.

Each node can be a component of one or more edges. The amount of edges connected to a
certain node is called degree. Nodes with the degree 1 are known as peripheral or leaf nodes while
nodes with unusually high degree are known as hubs. The probability distribution of a measure of
edges connected to each node is the degree distribution. From now on, we will consider hubs the
nodes whose degree is higher than the 80th percentile of the degree distribution.

A path in a graph is a sequence of edges - either �nite or in�nite - necessary to connect two
nodes. Sometimes there is more than one path between two nodes, and the path formed by less
edges is called shortest path, which is an important measure to be considered in many studies.
Another relevant graph measure is betweenness centrality, which is the number of shortest paths
between any pairs of nodes passing through a certain node.

g(ν) =
∑
s 6=ν 6=t

σst(ν)

σst
, (2.1)

where σst is the total number of shortest paths from node s to node t, and σst(v) is the number of
those shortest paths that pass through vertex v (node for which the metric is calculated).

2.1.1 Graph Structure Models

There are several di�erent probabilistic models to structure random graphs, that is, for a �xed
set of nodes V with size p, the set of edges E is randomly generated. In most models, the existence
of each edge is decided upon a pre-established probability. These types of models are also known
as random graphs. Here we describe a few graph structures which are taken into consideration
when numerical analysis is concerned. There are already functions for most of them in the igraph R
package. R scripts for three graph structures can be found in Appendix B.1: edge percent, Galton
Watson trees and lattice with leaves.

5
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Erdõs-Rényi

The most common model is called Erdõs-Rényi [ER59] and comes with two versions: G(p, e),
which is uniformly drawn out of all possible structures with p nodes and e edges, and G(p, q), which
is generated by assigning probability q to each possible edge. It is worth noting that both versions
result in graphs with unconnected nodes, specially when e or q are small. In order to avoid such
outcome we set q ∼= 6

p leading to graphs with |E| ≈ 3p. It is known that if q > (1+ε) ln p
p , then a graph

G(p, q) will almost surely be connected. Since 6 > ln p for p < 400, we almost surely guarantee
a connected graph for our simulations of graphs with 50, 100 and 200 nodes. Besides that, a few
minor modi�cations were made to G(p, e) algorithm to assure at least one connection to all nodes.
From now on, we will call Erdõs-Rényi only structures generated by G(p, q = 6

p) with function
sample_gnp from igraph R package while our modi�ed version will be referred to as edge percent
(EP) and can be found in Appendix B.1.

Tree

Another popular graphical structure among mathematicians is the tree graph, which is de�ned
by the existence of only one path connecting any pair of nodes. There are several ways to generate
a tree. In this work we will consider two types of tree models: a) 2-regular tree starting with one
root node and each node with two o�spring nodes until the intended number of nodes is reached,
b) Galton-Watson tree also starting with one root node and o�spring distribution lognormal(0, 1),
that is, a Galton-Watson branching process. Since the chosen distribution is continuous, the number
of o�spring of each node i will be rounded up to the next integer, that is, ceiling(Zi), where
Zi ∼ lognormal(0, 1) and ceiling is a function of R. The choice of this distribution was due to
observing such o�spring distribution in most of the reconstructed co-expression networks from our
lab.

Scale free

It is already known that the degree distribution of large networks, such as several natural and
human-made systems, is frequently a scale-free power-law distribution, that is, P (k) ∼ k−γ , where
P (k) is the probability that a node has degree k (see [BA99, JTA+00]). Since our goal involves
the investigation of biological network with hundreds of nodes, it is of our interest to comprehend
this type of graph structure. A popular algorithm used to generate random Scale-free graphs is
the Barabasi-Albert [BA99] model, in which new vertices attach preferentially to high-degree nodes
enabling the presence of hubs. We simulated the Scale-free network using the preferential attachment
principle as a random process. For a network with p nodes, we start with two connected nodes in
a graph GSF = (V, E), starting with V = {1, 2} and (1, 2) ∈ E). The next node 3 is added, which
connects randomly to one of the nodes j ∈ V with probability distribution

pj = P
deg(j)∑
l∈V deg(l)

,

where deg(j) is the number of connections of node j. The process goes on, until |V| = p, generating
a graph with Scale-free properties.

Small world

In addition, [CHBA03] has shown analytically that Scale-free networks are ultra-small worlds
which drew our attention to such type of networks. Small-world networks are a type of mathe-
matical graph in which the shortest path between any two nodes is rather small and its growth
is proportional to log p, [WS98]. It is based on the idea of modeling social interactions and other
networks in real world applications. To generate small world graph structures, we use the function
sample_smallworld from igraph R package.
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Lattice

Another graph structure often studied in probability models is lattice graph. We will focus on
square grid graph, whose vertices represent points in plane grid formed by the Cartesian product
{1, 2, · · · , n} × {1, 2, · · · ,m}, where n,m ∈ N, and the edges exist only for pairs of nodes that are
located in the plane at distance one. Our interest in studying the e�ect of leaf nodes on DCP studies
(see Section 2.2.2) led us to add a few extra nodes to a parallel one-distance plane only connected
to one node in the lattice plane.

Figure 2.1: Example of leaves in a lattice graph. The light blue nodes are vertices in the square grid while
dark blue nodes are leaves added at a distance of 1.

2.1.2 Graphical Models

Gaussian Graphical Modeling

Gaussian graphical model (GGM) is characterized by a graphG = (V, E) where V = {1, 2, · · · , p}
is the set of nodes representing a p-dimensional multivariate normal distributed random vector
X = {X1, · · · , Xp} ∼ Np(µ,Σ) and E is de�ned by pairwise conditional dependence, that is,
(i, j) ∈ E if and only if Xi and Xj are conditional dependent given {Xk, k 6= i, j}. Consequently
(i, j) /∈ E ⇔ Xi and Xj are conditionally independent given {Xk, k 6= i, j}. For more details, see
[MKB79, Edw95, Lau96]. However, calculation of conditional independence can be very complex.
In [BSS04], it is shown that conditional independence can be replaced by partial correlation 0 when
the set of variables follows a multivariate normal distribution.

It is common knowledge that each non-zero entry (ωij 6= 0) of the inverse correlation matrix
Ω = Σ−1 (also called precision matrix) indicates the existence of conditional dependence between
the corresponding pair, that is, E = {(i, j) ∈ V×V : ωij 6= 0}. More details can be found in Chapter
3.

Partial Correlation

In a model with p > 2 interacting variables, correlation between 2 variables is actually a result
of the interaction between those 2 variables combined with interactions of those 2 variables with
other variables and so on. For example, lets suppose it is already known that X is correlated to Y
and to Z. Therefore, when the value of X goes up or down, then the values of Y and Z will also go
up or down depending on the direction (sign) of the correlation. It is easy to realize that when X
varies, a correlation between Y and Z will probably be observed. In this case, if we keep X constant,
how do we know if Y and Z are really correlated? In the case of network reconstruction a link is
called indirect when a correlation between a pair of vertices is only the result of correlations from
other pairs of vertices. In a graphical model, the best situation is to look at a network consisting
of only direct links. This allows researchers to actually observe how nodes really interact with one
another.



8 BASIC CONCEPTS 2.1

Partial Correlation is a common way to measure conditional independence of each pair of vari-
ables in a model. The main idea is to remove the e�ect of the remaining variables from the considered
pair. The original de�nition is based on linear regression as follows:

De�nition 2.1.1 (Partial Correlation). Let X = {X1, · · · , Xp} be a random vector and suppose
we want to �nd if Xi is really correlated to Xj . Denote by Y all variables in X but Xi and Xj , that
is, Y = X\{Xi, Xj}.

The e�ect of Y on Xi and on Xj is removed by assessing the correlations between the residues
of the projections of Xi and Xj on the linear space generated by Y, that is, subtracting part of the
linear relation due to Y. Mathematically:

Xi = αi +Yβi + εi

Xj = αj +Yβj + εj ,

where Y is a horizontal vector of size p− 2 and βi = (βi1, · · · , βi(p−2))
T are the coe�cients of the

linear regression. Through the regression method of least squares, we compute X̂i and X̂j , which
are the estimators of Xi and Xj respectively. The residues are given by:

Resi = Xi − X̂i

Resj = Xj − X̂j .

Note that, Resi and Resj are orthogonal to Y and therefore the correlation ρ(Resi, Resj)
represent the correlation between the components of Xi and Xj that don't show linear dependency
with Y . Therefore, the partial correlation is given by

ρij.Y = ρ(Resi, Resj) = ρ(Xi − X̂i, Xj − X̂j),

where ρ(Resi, Resj) is the correlation between variables Resi and Resj .

Here, X̂i = E(Xi)+ΣXiY Σ−1
Y Y (Y−E(Y)) is the projection of Xi, that is, the conditional expec-

tation of Xi given Y, where ΣXiY is the covariance matrix of Xi with Y and ΣY Y is the covariance
matrix of Y. The conception of X̂j is analogous to X̂i

The interpretation of ρij.Y is the following: ρij.Y = 0⇒ Xi and Xj are not correlated when the
e�ect of Y on Xi and Xj is removed. On GGM, the latter implication runs both ways, that is, the
statements are necessary and su�cient to one another.

Another approach that uses matrices to calculate all partial correlations between all pairs of
random variables Xi and Xj , given all remaining variables, is called Inverse Method.

De�nition 2.1.2 (Inverse Method). Let R be the correlation matrix, where ρij = ρ(Xi, Xj) are
the elements of R. If R is invertible, de�ne Q = R−1. The partial correlation is then de�ned by:

P = −scale(R−1), (2.2)

where scale(Q) = D
− 1

2
Q QD

− 1
2

Q in which DQ is a diagonal matrix with dii = qii. Each entry of P will
be given by

ρij.Y = − qij√
qiiqjj

, (2.3)

where qij are the elements of Q.

Note that, if the number of observations n is lower than the number of random variables, then R
will be singular and we cannot calculate P . Options to solve this problem can be found in Chapter
3.

The demonstration of the equivalence of the inverse method with the linear regression de�nition
can be found in [Tho12].
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2.1.3 GeneNetWeaver

Gene Net Weaver (GNW) is a a popular software among biologists which generates data based
on real biological systems that have been extensively investigated. It is used in the DREAM Project
which aims to challenge researchers to infer simulated and in-vivo gene regulation networks. The
DREAM Challenges are crowdsourcing challenges examining questions in biology and medicine.
They are a non-pro�t, collaborative community e�ort and are created and managed by experts in
systems biology, statistics, and challenge design so that the results will be solvable and reproducible
in a meaningful way.

GNW generates network structures as subnetworks (modules) from known network systems:
E.coli [GCJJPG+08] and Yeast S.cerevicie [BBI+06]. For a chosen structure the expression data is
generated using ordinary di�erential equations (ODEs) adding a molecular noise into the dynamics
or adding experimental noise observed in microarrays [MSMF09, MPS+10]. Stochastic kinetics
(SDEs) prevents a gene that su�ered knockdown to suddenly reach a very high transcription rate
caused by noise. Therefore this approach allows to perform perturbations on one or more genes.

Both transcription and translation are modeled using a standard thermodynamic approach
[AJS82] allowing both independent regulatory interactions ("additive") and synergistic ('multi-
plier'). For each gene i in a network, the rate of change of the concentration of mRNA, fRNAi , and
the rate of change of protein concentration, fProti , are described by

FRNAi =
dxi
dt

= mi · fi(y)− λRNAi · xi (2.4)

FProti =
dyi
dt

= ri · xi − λProti · yi (2.5)

The integration of the equations de�ned by (2.4) and (2.5) results in mRNA levels and noise-free
protein concentration, respectively xi(t) and yi(t) to the gene i.

2.2 Changes in Biological Networks

Biological regulatory mechanisms are a good example of complex systems as already de�ned.
Hence, investigation of state transition is herein performed using gene expression data acquired
through mircroarray measurements. This data is organized in matrices where each column contains
the expression intensities of di�erent genes in a cell under certain experimental conditions. Data for
di�erent conditions are kept in di�erent matrices which contain tremendous amounts of information
about the complex interactions between genes, and ultimately characterize a cell's behavior.

Biological Networks are seldom built using correlation coe�cients to de�ne the set of edges (pais
of interacting genes). When a state transition occurs the gene expression network goes through sev-
eral types of alterations that a�ects the whole system. Two types of changes in Biological Networks
have already been already researched: Di�erentially expressed genes and Di�erentially correlated
pairs.

2.2.1 Di�erentially expressed genes (DEGs)

Genes that have their gene expression mean changed when transitioning between two di�erent
states are called di�erentially expressed genes and can be viewed as transition indicators. The DEGs
are usually found through the t-Student test (with random variance model). Figure 2.2(a) shows
an example of DEGs, with a gene expression mean increase from state 1 to state 2.

2.2.2 Di�erentially correlated pairs (DCPs)

As already described above, DCPs are pairs of genes that su�ered correlation change between
two states, Figure 2.2(b). They can either gain or lose correlation and also change correlation di-
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rection (sign). Therefore the identi�cation of DCPs can be done in two parts:

1. A pair of genes can only be a DCP if it is correlated in at least one state, so, for each pair of
genes A and B, the following �lters will be used:

ρ
(1)
ij 6= 0 e ρ(2)

ij = 0 correlation loss

ρ
(1)
ij = 0 e ρ(2)

ij 6= 0 correlation gain

ρ
(1)
ij > 0 e ρ(2)

ij < 0 change of sign

ρ
(1)
ij < 0 e ρ(2)

ij > 0 change of sign

where ρkij is the correlation of the pair (i, j) in the state k

2. Then, for each pair of genes i and j that passed the �lter in 1., we will statistically test the
di�erence of Pearson correlation between states 1 and 2 using the following null hypothesis:

H0 : ρ
(1)
ij − ρ

(2)
ij = 0

The Fisher z-transformation will be used to test the pairwise di�erences of correlations between
two states. More details about this calculation can be found in [SKV+11].

(a) Example of a DEG. (b) Example of a DCP.

Figure 2.2: (a) Graph showing the change of gene expression mean of gene i when the system goes from
state 1 to 2. ∆µi is the di�erence of means of gene i between these two states. (b) Graph representing a
possible change in the correlation of gene expression of any two genes i and j from state 1 to 2.



Chapter 3

Local Partial Correlation - LPC

Conditional independence is essential to build networks where edges represent direct regulatory
relations [MKB79, Edw95], as already mentioned in Section 2.1.2. However, its calculation can be
very complex. In [BSS04] it is shown that conditional independence can be replaced by partial
correlation 0 when the set of variables follows a multivariate normal distribution. You can �nd the
de�nition of partial correlation and a few analyses thereof, in Section 2.1.2. Just as a reminder, the
main idea of partial correlation is to remove the e�ect of the remaining variables on the model on
each pair of variables through MLE. Nonetheless, it is common knowledge that the existence of the
MLE is not guaranteed in general for high-dimensional data [Buh93].

Local partial correlation is an adaptation of the usual partial correlation method that serves as
an alternative to enable the calculation of partial correlation when dealing with more variables than
samples. The new method, developed by the author [Tho12] applies the inverse method (described
in section 2.1.2) considering only the neighborhood of each pair of variables separately.

3.1 De�nitions

3.1.1 Partial Correlation

Let X = (X1, X2, · · · , Xp)
T be a vector of random variables following a multivariate normal

distribution with mean µ and covariance matrix Σp, that is,X ∼ Np(µ,Σ). In GGM, each node (or
vertex) i ∈ V = {1, 2, · · · , p} represents a random variable Xi ∈ X. Let Ω = Σ−1 be the precision
matrix and Y = X\{Xi, Xj} be the remaining variables in the model apart from Xi and Xj . The
partial correlation coe�cient for (Xi, Xj) given Y is as follows:

ρij·Y = − wij√
wiiwjj

,

where wij , i, j = 1, · · · , p are the elements of Ω. Note that

ρij·Y = 0⇔ wij = 0.

Therefore, the elements of the precision matrix also indicate the existence of an edge between two
vertices.

3.1.2 Adjacency Matrix

The network structure can be represented by the adjacency matrix A = (aij), where

aij =

{
1, if ρij·Y 6= 0
0, if ρij·Y = 0

11
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and aij = 1 determines the existence of an edge between i and j.
In this project, we are interested in network reconstruction methods that are able to predict the

structure closest to the original one as possible based on observations, rather then re-estimating the
partial correlation coe�cients. Therefore our goal is to estimate the adjacency matrix A.

3.1.3 Neighborhood

Neighborhood of vertex i is composed by the vertices connected to i, that is, ne(i) = {j ∈ V :
(i, j) ∈ E} = {j ∈ V : aij = 1} and the neighborhood of the pair of vertices (i, j) as ne(ij) =
ne(i)∪ne(j). Neighborhood selection is a problem that has been explored. For example, in [MB06]
the authors select the neighborhood by solving a regression problem with Lasso penalty.

3.1.4 Local Partial Correlation

The starting point of this method is neighborhood selection, which is done through Pearson
correlation coe�cient. For each pair of variables (Xi, Xj) the following new hypothesis is tested:
H0 : rij = 0. The edges of a reconstructed network are pre-determined according to a �xed level of
signi�cance α1. Consider rij the sample correlation. The estimated adjacency matrix is then given

by Âα1 = (â
(α1)
ij ) where

â
(α1)
ij =

{
1, if p-value of rij < α1

0, if p-value of rij > α1

The estimated neighborhood of Xi given α1 is then given by n̂eα1(i) = {j ∈ V : â
(α1)
ij = 1}. The

estimated neighborhood of (i, j) is then de�ned by n̂eα1(i, j) = n̂eα1(i) ∪ n̂eα1(j).
For each pair of variables (Xi, Xj), the partial correlation coe�cient is calculated through the

inverse of the local covariance matrix Si,j , which is a sub-matrix (partition) of the sample covariance
matrix S with rows and columns representing only the nodes in n̂eα1(i, j).

We can see in Figure 3.1 an example of a correlation network with nine nodes, built based on
α1. In this case we want to calculate the local partial correlation between X2 and X5. Note that
N̂α1(X2) = {X3, X5, X8, X9} and N̂α1(X5) = {X2, X6, X9}. Therefore, N̂α1(X2, X5) = {X2, X3, X5,
X6, X8, X9}. Furthermore, X1, X4 and X7 are left out of the local covariance matrix S2,5 and the
inverse method considers all correlations regarding the variables in N̂α1(X2, X5). In [Tho12], it was
numerically shown that ∃ n0 : ∀n > n0, |ne(i, j)| < n

2 . In cases where there are still more neighbors
than samples we select the n

2 neighbors with lower p-values, which in most cases, mean higher LPC
coe�cients.

The next step is to build the adjacency matrix Âα2 = (â
(α2)
ij ) considering the level of signi�cance

α2 for local partial correlation, that is,

â
(α2)
ij =

{
1, if p-value of ρ̂ij·Y < α2

0, if p-value of ρ̂ij·Y > α2 or â(α1)
ij = 0

The hypothesis test for LPC is done using Fisher's z-transform of the partial correlation:

z(ρ̂ij·Y) =
1

2
ln

(
1 + ρ̂ij·Y
1− ρ̂ij·Y

)
.

The null hypothesis is H0 : ρij·Y = 0, to be tested against the alternative hypothesis HA : ρij·Y 6= 0.
We reject H0 with signi�cance level α2 if:√

n− |n̂eα1(i, j)| − 3 · |z(ρ̂ij·Y)| > Φ−1(1− α2/2),

where Φ(·) is the cumulative distribution function of a Gaussian distribution with zero mean and
unit standard deviation, and n is the sample size. The distribution of the sample partial correlation
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was described by Fisher, see [Fis24].

c1,1	 c1,2	 c1,3	 c1,4	 c1,5	 c1,6	 c1,7	 c1,8	 c1,9	

c2,1	 c2,2	 c2,3	 c2,4	 c2,5	 c2,6	 c2,7	 c2,8	 c2,9	

c3,1	 c3,2	 c3,3	 c3,4	 c3,5	 c3,6	 c3,7	 c3,8	 c3,9	

c4,1	 c4,2	 c4,3	 c4,4	 c4,5	 c4,6	 c4,7	 c4,8	 c4,9	

c5,1	 c5,2	 c5,3	 c5,4	 c5,5	 c5,6	 c5,7	 c5,8	 c5,9	

c6,1	 c6,2	 c6,3	 c6,4	 c6,5	 c6,6	 c6,7	 c6,8	 c6,9	

c7,1	 c7,2	 c7,3	 c7,4	 c7,5	 c7,6	 c7,7	 c7,8	 c7,9	

c8,1	 c8,2	 c8,3	 c8,4	 c8,5	 c8,6	 c8,7	 c8,8	 c8,9	

c9,1	 c9,2	 c9,3	 c9,4	 c9,5	 c9,6	 c9,7	 c9,8	 c9,9	
c2,2	 c2,3	 c2,5	 c2,6	 c2,8	 c2,9	

c3,2	 c3,3	 c3,5	 c3,6	 c3,8	 c3,9	

c5,2	 c5,3	 c5,5	 c5,6	 c5,8	 c5,9	

c6,2	 c6,3	 c6,5	 c6,6	 c6,8	 c6,9	

c8,2	 c8,3	 c8,5	 c8,6	 c8,8	 c8,9	

c9,2	 c9,3	 c9,5	 c9,6	 c9,8	 c9,9	

X9	
X8	

X6	X2	
X5	

X3	

X1	

X4	
X7	

Figure 3.1: Local partial correlation scheme: we calculate the LPC for pair X2 , X5, (red nodes/edge). The
neighborhood of this pair is the set of nodes X3, X6, X8, X9 (black nodes/edges). X1, X4, X7 (blue nodes)
are signi�cantly correlated with the black nodes (blue edges), but not with the red nodes. Thus the inverse
method is applied exclusively to the correlation sub-matrix formed only by the genes X2, X5, X3, X6, X8,
X9. In correlation matrices the gray entries are statistically non-signi�cant empirical correlations.

3.2 Simulation Studies

In my masters dissertation, [Tho12], we simulated networks with 100 variables through 2 dif-
ferent network generation methods. The �rst one is a tree with o�spring distribution following a
Lognormal(1, 1). That allows the degree distribution to have heavy tail, which means that only a
few nodes will have high degree. The second one is a mixed network, that is, the o�spring distribu-
tion follows a Lognormal(1, 1) and the parents distribution follows a Geometric(0.6). The o�spring
distribution adopted in this work leads the degree distribution to produce heavy tail and the nodes
to have more than one parent but not too many parents.

Two approaches were adopted: classical and Bayesian (local) partial correlation. Classical partial
correlation is exactly what we have already de�ned previously. In contrast, Bayesian approach uses
partial covariance (see [Edw95]) to estimate partial correlation. In my masters dissertation we
considered that the data followed a multivariate normal distribution, where, a priori, its covariance
followed an inverse Wishart distribution while its mean given the covariance followed a normal
distribution. Note that this is a conjugate priori, therefore, a posteriori, the distributions are the
same but the parameters are updated based on the data (see [DS02]). Another important observation
is that, instead of p-values, we used the evidence value, also referred to by e-value, from FBST (Full
Bayesian Statistics Test - see [PS99]) in order to statistically test the (local) partial correlations.

When investigating through classical approach we simulated 500 networks and assessed ROC
curves for 50, 250, 500 and 1000 samples. Due to high computational costs, for Bayesian approach
in mixed networks we simulated 50 networks and performed ROC curve analysis considering 50, 250
and 500 samples. Just as a remark, local partial correlation is only necessary when there are more
variables than samples - in this case, it was applied only to simulations with 50 samples. In order
to compare the ROC curves, for each group of networks - de�ned by sample size and generation
method - we calculated the mean of sensibility and of speci�city. You can see on Figures 3.2 and
3.3 that for most of the time, either for trees or mixed networks, the mean ROC curves overlap
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showing similar results regarding classical and Bayesian statistics and the number of samples. The
only exception is when there are less samples (50) than variables (100). Figure 3.2(a) shows that
the Bayesian approach is able to predict the original networks slightly better than the Classical
approach.

Due to high computational costs and not observing a big di�erence in the mixed network ROC
curves when n << p, we have decided to work with local partial correlation in the Classical approach
throughout this project.

(a) (b)

Figure 3.2: Comparison between ROC curves means with classical and Bayesian statistics for trees built
from (a) 50 samples and (b) 250, 500 and 1000 samples

Figure 3.3: Comparison between ROC curves means with classical and Bayesian statistics for mixed net-
works built from 50, 250 and 500 samples



Chapter 4

Biological Co-expression Networks

4.1 Introduction

In saying that we understand a biological process, we usually mean that we are able to predict
future events and manipulate the process into a desired direction. Thus, biological inquiry could be
viewed as an attempt to understand how a biological system transits from one state to another. Such
transitions underlie a wide range of biological phenomena from cell di�erentiation to recovery from
disease. In attempting to understand these transitions, a simple and frequently used approach is to
compare two states of a system (eg, before and after stimulus, with and without mutation, or healthy
and diseased). Although more sophisticated approaches with timeseries data, dose-e�ect data, or
three or more sample groups can be also used, here we discuss analysis of data from a two-class
study design. Furthermore, most of the methods that we describe can, with slight modi�cations, be
used for other study designs. Today, omics technologies enable unbiased investigation of biological
systems through massively parallel sequence acquisition or molecular measurements, bringing the
life sciences into the era of Big Data. A central challenge posed by such omics datasets is how to
navigate through the haystack of measurements (eg, di�erential expression between two states) to
identify the needles comprised of the critical causal factors.

Network analysis is a powerful and general approach to this problem, in which the biological sys-
tem is modeled as a network whose nodes represent dynamical units (eg, genes, proteins, metabolites,
etc) and edges stand for links between them. Network analysis consists of two fundamental stages:
network reconstruction and network interrogation. For omics molecular measurements such as gene
expression, a particular type of network analysis called co-variation network analysis has become a
dominant approach. In such networks, a node represents the expression of the gene being measured,
and an edge indicates that the expressions of two genes are correlated. Multiple groups including
ours have been successfully using such methods to gain a systems-level understanding of biological
processes and to reveal mechanisms of di�erent diseases [AGC+09, SYC+11, YSH+13]. Several re-
cent discoveries ranging from genes that drive progression of di�erent cancers [MSY+13, CAT+14]
to microbes and microbial genes that cause a human illness [MDD+15] became possible because
of the predictive power of network analysis. In particular, such insights would be very di�cult to
achieve if analysis is limited to �nding di�erentially expressed genes and follow-up data mining of
those genes. Due to the rapid pace of evolution of techniques and omics technologies, the practical
application of network analysis has usually required a dedicated computational biologist or statisti-
cian. This requirement has limited the extent to which the larger biological sciences community has
bene�ted from network analysis. Here we provide an overview of co-variation network reconstruc-
tion and interrogation, including a step-by-step guide on how to perform and use network analysis
to investigate a biological question (Fig. 4.1). In this guide, we include the software packages that
we employ (and speci�c pointers to the methods or software used by other groups) for each of the
steps of a model network analysis work �ow.

In general, the types of omics measurements that are amenable to network analysis include
microarrays, next-generation sequencing (for genotyping, transcriptome pro�ling, or microbiome

15
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Figure 4.1: Work �ow of network analysis. (A) Network analysis starts from data obtained from high-
throughput experiments such as microarray experiments detecting expression of genes in samples. (B) Dif-
ferentially expressed genes are found between two states of a system (eg, normal vs disease). (C) Correlations
of DEGs based on their expression values are calculated to detect regulatory relationship among them. (D)
Signi�cant correlations suggest connections between di�erentially expressed genes (DEGs) and are used to
generate a network of DEGs. (E) Network interrogation is performed to detect modules, key regulators, and
functional pathways that are important for state transitions. (F) Based on the �ndings from network inter-
rogation, new hypotheses are generated, which can be tested in newly designed experiments. Data from new
experiments could also be subject to further analysis.

analysis), and mass spectrometry-based proteomics and metabolomics data. In this guide, we use
gene expression data to illustrate the process of network reconstruction and interrogation.

4.2 Network reconstruction

The �rst stage of network analysis is network reconstruction, which is the data-driven discovery
or inference of the entities/nodes (transcripts, proteins, genes, metabolites, or microbes) and rela-
tionships or edges between these entities that together constitute the biological network. Here, we
describe the steps involved in network reconstruction starting from entity abundance or frequency
data.

4.2.1 Normalization (data preprocessing)

Customarily, abundance data are normalized in order to correct for sample-to-sample variation
in the overall distribution of abundance values (or more generally, to normalize speci�c quantities
that depend on the distribution). Measurements of gene expression levels (as well as other types of
omics data) can be a�ected by a variety of non-biological factors including unequal amount of start-
ing RNA, di�erent extents of labeling, or di�erent e�ciencies of detection between samples. Before
normalization, data are often log2-transformed in order to stabilize variances when measurements
span orders of magnitude. Frequently used normalization schemes include median normalization,
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quantile normalization, LOWESS normalization [BHJ+04] for RNA microarray data, reads per
kilobase per million mapped reads (RPKM), [MWM+08] and trimmed mean of M-values [RO10]
for RNA-seq data. In practice, we use normalization procedures available in the software package
BRB Array Tools [SLL+07] for normalization of microarray data (Table 1). In addition, most nor-
malization procedures are available as software packages in the Bioconductor toolkit [GCB+04].
Systematic evaluations of transcriptome normalization methods have been reported for both mi-
croarrays [LWLC07] and RNA-seq [DRA+13]; however, evaluations using large numbers of sam-
ple groups are needed in order to determine which normalization method is most appropriate for
covariance network inference. Selection of an appropriate normalization method is clearly impor-
tant, given that selection of a suboptimal normalization scheme can lead to overestimation of
gene-gene correlation coe�cients [LWLC07]. Beyond transcriptome pro�ling, di�erent omics data
types may bene�t from di�erent types of normalization. For example, new methods have been pro-
posed for normalization of metabolomics [JBN+14] and microbiome [MH14] data. Although there
is no consensus about the best methods for many types of data, in the experience of the authors,
[MSY+13, BAS+04, PDMS07, SMH+11, SYGP+05, SKV+11] simple methods such as quantile,
LOWESS, or even median normalization perform reasonably well for class comparison and correla-
tion if there are no major biases in the data such as batch e�ects.

4.2.2 Discovery of di�erentially expressed genes (selecting nodes)

A crucial step in network reconstruction is the identi�cation of the relevant subset of variables/-
genes that will constitute the nodes in the network; for a transcriptome pro�ling study, these would
be genes for which there is signi�cant di�erential expression between the sample groups. A variety
of statistical tests are commonly used for the identi�cation of di�erentially expressed genes (DEGs),
including Welch's t-test, moderated t-test, and permutation tests. For parametric tests, accurate
estimation of intra-sample-group variance is a critical issue; two improved variance estimation tech-
niques are the locally pooled error [JTB+03] and empirical Bayes methods [SMS05]. To �nd DEGs,
we usually use the t-test with the ordered set of p-values converted to cumulative false discovery
rate (FDR) estimates, for which a typical cuto� would be 10%. Both statistical functions are im-
plemented in BRB Array Tools [ZS08]. During the last two decades, multiple statistical approaches
have been proposed for di�erential expression testing [Pan02]. Overall, they provide similar results
with small di�erences [Pan02]. Thus, careful study design (rather than trash in, trash out) and the
use of meta-analysis techniques to integrate multiple datasets are likely to be more important for
reliable DEG discovery than a choice of one or another statistical test. Because omics data analysis
typically involves tens of thousands of statistical tests, the correction for multiple hypotheses is
essential [DSB03].

4.2.3 Correlation analysis for network reconstruction (�nding links between
nodes)

The central biological principles underlying correlation network analysis are 1) that DEGs re�ect
functional changes, and 2) that DEGs do not work individually but interact (eg, at the protein or
pathway level) to functionally alter the biological system. In gene expression networks, nodes rep-
resent genes and edges represent signi�cant pairwise associations between gene expression pro�les.
The central mathematical/statistical principle that allows us to use correlation networks for analy-
sis of biological systems is that the correlation between two variables, if statistically signi�cant, is
always a result of causation. Speci�cally, correlation results from regulatory relations between the
two variables, or from a common causal regulator to the two variables, or both, as in the case of a
feed-forward loop [Pea01]. To reconstruct the network, the Pearson or Spearman correlation coe�-
cient can be used to obtain an association (similarity) measure for each possible pair of DEGs, with
a cuto� for statistical signi�cance (for example an FDR cuto� of 10% for the p(p−1)

2 possible pair-
wise associations tested) and for a minimum correlation level. Together with the nodes, the edges
whose similarity measures exceed this cuto� constitute a network. In practice, normalized expres-
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Figure 4.2: Removal of indirect links. As a demonstration, gene X can regulate the expression of both
gene Y and Z. But there is no direct regulatory relationship between gene Y and Z. From the calculation
of correlation of expression levels of three genes, correlations between gene X and Y , Z are observed as
expected. However, genes Y and Z are also signi�cantly correlated since they are both directly regulated by
gene X. This correlation from common cause is called indirect link and can be removed by techniques, such
as partial correlation, generating a network re�ecting regulatory relationships.

sion data for DEGs are retrieved and pairwise correlations along with the corresponding p-values
are calculated for each class (biological state) separately using the R statistical analysis software,
with the function cor.test; FDR is calculated using the function p.adjust( <pvalue vector>, method

= "fdr" ). Several other software programs that can be used for calculating gene-gene associations
(correlations, mutual information and others) are listed in Table 1. Note that correlations should
be calculated within a group of samples that belong to one class/biological state (pooling samples
from di�erent states/classes to compute the correlation coe�cient leads to signi�cant bias).

4.2.4 Discriminating between direct and indirect links

Co-variation gene networks in general consist of connections that result from a combination
of direct and indirect e�ects between genes. For example, if a gene Y strongly depends on gene
X and gene Z also depends on X, it is likely that a high association (eg, correlation) will exist
between Y and Z even if there is no direct dependence between them (Fig. 4.2). Moreover, even if
a true dependence exists between a pair of genes/nodes, its strength estimation can be biased by
additional indirect relationships [Pea01]. For this reason, correlation networks in general have many
edges that re�ect indirect relationships between pairs of genes, where no direct relationship exists.
Finding direct relationships between genes is important when one attempts to identify causal gene
regulators of a given biological process.

Mathematically, direct e�ects can be de�ned as the association between two genes, holding
the remaining genes constant [Pea10]. An e�ect that is not direct is called an indirect e�ect. The
identi�cation of direct links is an important goal of network reverse engineering.

To infer direct links between DEGs, we have been using the partial correlation coe�cient
[DLFBHM04, MCK+12]. To calculate partial correlations, we use a method called the inverse

method [Whi09]. Its implementation is straightforward in R using the function cor2pcor from the
package corpcor. The detailed algorithm is described in Apendix B.2.1. After calculation of partial
correlation, the network can be built using links with absolute value of the partial correlation larger
than a user-de�ned threshold or p-value of partial correlation higher than a speci�c α.

Several other methods have been proposed to discriminate between direct and indirect links in
co-variation networks [MNB+06, FHT08, JMC13, BB13, FMMK13, HS14]. For example, a variant
of the partial correlation, which we call the local partial correlation, can be used in order to overcome
the limitations of other methods.[TFY12]

4.2.5 Proportion of unexpected correlations (improvement of reconstruction
and error evaluation)

A fundamental problem of the standard correlation network approach is that practical limita-
tions in the numbers of sample measurements can lead to an unacceptably high error rate. Recently,
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Figure 4.3: Illustration of expected and unexpected correlations. (A) When expression of two genes (gene
x and gene y) are regulated toward the same direction when comparing two states, eg, both up-regulated in
disease (upper two panels), we should expect their expression levels to be positively correlated within each state
if there exists regulatory relationship between gene x and gene y. When two genes are oppositely regulated
when transiting from normal to disease (in the lower two panels, gene x is up-regulated while gene z is
down regulated), we should expect negative correlation between those two genes in each state. (B) Di�erent
combinations of between states and sign of correlations used to de�ne expected or unexpected correlation.

our group has proposed a method called proportion of unexpected correlations (PUC), which allows
identifying and removing approximately half of false positive edges from a co-variation network
with no reduction in statistical power, see [YPK+16]. The method takes into account a relation
between the direction of regulation of two DEGs and the sign of correlation between the two genes.
Thus, two up and two down-regulated genes must correlate positively; and a pair of oppositely
regulated genes (one up-regulated and one down-regulated) should have negative correlation, that
is, ∆X∆Y ρ(X,Y ) ≥ 0, where ∆X and ∆Y are the variation of gene expression mean of genes X
and Y between two states. Any deviation from this rule represents unexpected/erroneous edges
and is removed from the network (Fig. 4.3). The proportion of these unexpected edges provides an
error estimate for the whole network. For network reconstruction, each edge in a network can be
evaluated and removed if it is unexpected.

4.2.6 Meta-analysis (improvement of reconstruction and error evaluation)

In omics-based network reconstruction, because of the large number of genes or variables mea-
sured (up to tens of thousands) and the limited number of samples (typically tens or hundreds), it
is critical to assess the reproducibility of results. Although widely used methods (eg, FDR [RYB03])
enable accounting for multiple hypothesis tests, the discrepancy between the number of samples
and variables inherent to omics datasets limits the sensitivity and speci�city for detecting edges
through network reconstruction.

In order to overcome this problem and to augment the statistical signi�cance for the nodes and
links in a network, meta-analysis can be employed. This statistical approach combines results from
di�erent studies in order to achieve reproducibility.

The studies can be obtained from standardized omics data repositories. Good examples of
such repositories are the Gene Expression Omnibus (GEO) [EDL02] and Array Express [BPS+03]
(for transcriptomics and epigenomics datasets); PRIDE [MHJ+05] (for proteomics datasets), the
Human Metabolome Database [WTK+07] (for metabolomics datasets), and lipid MAPS [FSM+09]
(for lipidomics datasets). Additionally, molecular interaction data from the BioGRID [SBR+06] or
BioCyc databases [CFF+08] can be used as a prior for edge reconstruction.

In meta-analysis of multiple datasets - whether from publicly available datasets or experiments
produced in the same lab - the strategy is usually the same. The datasets to be co-analyzed in a
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meta-analysis should be selected on the basis of their congruence with the central biological question
of interest, and they should pass some prede�ned sample size and quality requirements (eg, number
of measured/ detected genes). After choosing the datasets, as a �rst step for meta-analysis we apply
two �lters:

1. The same sign of statistic (mean, covariance, or correlation) throughout all datasets (ie, if
gene A is up-regulated in case over control in dataset 1, it should have the same direction of
regulation in all other datasets to pass the �lter);

2. P-value thresholds across all datasets. These �lters provide consistency and control for het-
erogeneity across datasets for a given gene (or gene pair in case of correlation). The next step
is an actual statistical evaluation. In this step, meta-analysis combines common statistical
measures, such as p-values, and calculate a weighted average for such measures. As a weighted

average, we frequently use the Fisher's p-value calculation. Let p1, · · · , pk be the p-values of
one measure into k datasets (studies). For example, pi can be the t-Student test p value for
gene A to be di�erentially expressed in study i for all i = 1, · · · , k. Then the Fisher's p-value
pFisher summarizes all these p-values p1, · · · , pk into one average p-value by the formula

pFisher = P

(
χ2

2k ≥ −2
k∑
i=1

ln(pi)

)

where χ2
2k is a random variable with chi-square distribution with 2k degrees of freedom. After

calculating Fisher's p-values for all genes, the standard FDR procedure can be used to adjust
for multiple hypothesis testing. Several other approaches have been proposed for meta-analysis
of gene expression data (Table 1) [RYS+04, HRR+05]. In Appendix B.2.2 we describe in more
detail the algorithm that we have employed for integrating di�erential expression, correlations,
and di�erential associations/correlations[MSY+13].

4.2.7 Di�erentially co-expressed gene pairs (evaluating network changes)

The networks discussed above model static correlations between genes that change their ex-
pression when the biological system transits from one state to another. However, the sets of edges
within a gene co-variation network can themselves vary from state to state, for example, when two
genes are highly correlated in a subset of conditions but not across all conditions [SS+05a]. Such a
gene pair is called a di�erentially co-expressed gene pair (Fig. 4.4). It has been shown that di�er-
entially co-expressed gene pairs frequently play critical roles in pathogenesis. Several studies have
explored gene co-expression changes in cancer, revealing known cancer genes that were top-ranked
among co-expression changes but not necessary (separately) among di�erentially expressed genes
[SKV+11, KS04].

In order to search for di�erentially co-expressed gene pairs, our group adapted a simple ap-
proach called di�erentially correlated pairs (DCPs) [SKV+11]. The DCPs algorithm is described in
Appendix B.3. In addition to DCPs, multiple methods/ software have been developed to �nd the
changing edges in gene expression networks (Table 1) [SKV+11, Wat06].

4.3 Conclusion

In this chapter, we have described how network analysis can help us to answer di�erent questions
commonly asked in biological research. We have also provided a detailed methodology for this
analysis, including approaches employed by our group as well as frequently used by the network-
biology community.
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Figure 4.4: (A) Gene 2 and gene 7 correlate with each other in both normal and disease conditions, but
the signs of the correlation coe�cient are opposite. (B) In normal condition, there is no correlation between
gene 4 and gene 5, but they gain positive correlation when the biological system transitioned to disease.
(C) Example of visualization of a network transitioning between normal and disease conditions. Red lines
represent positive correlation, blue line represent negative correlation, and dotted gray lines represent non-
existing correlations in one condition that strongly appear in the other condition (on this case, becomes
positively correlated).
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Chapter 5

Di�erential Correlation Analysis

5.1 Introduction

Recent technological advances have moved the focus of biologists from how to measure bio-
logical parameters to how to analyze and interpret tens of thousands of measurements, frequently
called omics data. The �rst solutions for such a problem were limited to hierarchical clustering
[KR09, PTVF07, HTF09] and simple comparisons between classes of data through the identi�-
cation of di�erentially expressed genes (DEGs) [DYCS02, RYB03]. Nowadays, reconstruction and
interrogation of biological networks have become a widely used approach to get insights from dif-
ferent types of omics data [DYR+15, MDD+15].

After establishing co-expression networks for di�erent states of one biological system, di�er-
ential co-expression analysis investigates their structural changes when a system goes through a
state transition. This analysis, �rst proposed more than a decade ago [KS04, XFG+04], identi�es
the pairs of genes that have their interaction changed during such transition. Several later publica-
tions have suggested di�erent algorithms and statistics to determine di�erential gene co-expression
[SYAP11, NHDQ11, ASS13, dlF10, LWCZ04, Li02, DGP05, Wat06, MLW+08, HQG+09, CKK09,
SKV+11, DYK12, Fuk13, LPS+12, CYYK05, PSS+13, CKP12]. Fewer studies, however, attempted
to evaluate the biological signi�cance of these changes [MLW+08, SKV+11]. Also, to the best of our
knowledge, there have been no studies that would investigate how this approach performs depending
on the type and complexity of the biological system analyzed.

Commonly, a state transition of a biological system is related to perturbation of a set of genes,
which propagates through network interactions and a�ects other genes. Thus, there is a possibility
that di�erentially co-expressed (DC) genes (directly or indirectly) contribute to the propagation
of perturbations. In order to investigate the role of DC genes in a state transition of a biological
system, we considered two biological processes [SMH+11, MSY+13] previously analyzed by our
group. The �rst one (B cell de�ciency in mice) is a homogenous, one-causal-factor process, while
the second one (cervical cancer) represents a heterogeneous multi-causal system.

In this work, a co-expression network is an undirected graph, where the set of nodes consists of
a set of DEGs, and a pair of nodes is connected if there is a signi�cant correlation between them.
Di�erential co-expression analysis is done by identifying the pairs of genes that su�er signi�cant
changes in correlation between two states. Throughout this paper such pairs are called di�erentially
correlated pairs (DCPs) and the genes forming these pairs are considered DC genes.

5.2 Material and methods

5.2.1 Preparation of microarray data

• BcKO. All microarray data were analyzed using BRB Array-Tools developed by the Bio-
metric Research Branch of the National Cancer Institute under the direction of R. Simon
(http://linus.nci. nih.gov/BRB-ArrayTools.html). Array data were �ltered to limit analysis

23
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to probes with greater than 50% of samples showing spot intensities of > 10 and spot sizes
> 10 pixels, and a median normalization was applied.

• Cervical cancer. Same as in cervical cancer[MSY+13]. The data were analyzed using BRB
Array-Tools using the original normalization used in three studies [BBM+08, PNL+07, ZKN+07]
and median normalization over entire the array for the fourth study [SNN+08]. For all studies,
we only considered genes found in at least 70% of arrays.

5.2.2 Finding Di�erentially Correlated Pairs

For both biological systems studied in this paper we identi�ed the Di�erentially Co-expressed
Pairs using the same procedure. We start considering all genes in the dataset and �lter out the
genes presenting more than 30% missing data. Next, we calculate the Pearson correlation for each
possible pair of genes in 2 di�erent states separately and then the di�erence of correlation between
those states and �ltered out pairs that are not present in at least a �xed number of datasets (BcKO:
2 (all studies), cervical cancer: 3 out of 5). In all datasets the di�erence between correlations in
two states must have the same direction (sign). To assure similarities between datasets we select
the pairs that have the same direction (sign) of correlation at a signi�cance level of 20% in at least
one state. This way we ascertain that the pair is correlated in at least one state and has the same
behavior in the state which the correlation occurs. We then proceed to the computation of the
p-value for the di�erence of correlation [SKV+11] and only keep the pairs with p-value lower than
20% in all studies. Now meta-analysis is done through Fisher's method and then FDR. Next we
eliminate the pairs that show FDR higher than a threshold (Tables A.5 and A.6). The �nal step is
to identify the pairs that passed the FDR �lter and were considered signi�cantly correlated in the
�nal reconstructed network (correlation network for BcKO and local partial correlation network for
cervical cancer). Di�erentially Co-expressed Genes for BcKO and cervical cancer can be found in
Table A.2 in Appendix and Table 5.1 respectively.

5.2.3 Filtering and meta-analysis of microarray data

In every analysis (DEGs, DCPs and networks), �lter of direction (same sign of correspondent
parameter - di�erence of mean, di�erence of correlation, correlation and partial correlation) was
required in a �xed number of datasets (2 out of 2 in BcKO and 3 out of 5 in cervical cancer). Then
meta-analysis was done through Fisher combined probability test [Fis25]. Next, the pairs with false
discovery rate (FDR) [BH95] lower than a threshold are chosen. At last, only the pairs that pass
PUC [YPK+16] are considered correlated and therefore represent edges in the network.

5.2.4 Analysis of microarray data

• BcKO. DEGs between groups of samples were identi�ed by random variance paired t-test p-
value lower than 5% with adjustment for multiple hypotheses by setting the FDR below 10% in
BRB Array-Tools. Co-expression networks (BcKO and Control) were inferred through Pearson
correlation with p-value < 20% and FDR adjustment below 2.5%. DCPs were calculated for
pairs that were initially correlated (p-value < 20%) in at least one state. Then di�erences
of Pearson correlation were tested following [SKV+11] with a p-value below 10% and FDR
< 2%. At last only the DCPs that showed up in one of the networks were selected.

• Cervical cancer. DEGs were retrieved from a cervical cancer paper[MSY+13]. Correlation
networks and DCPs followed the same procedure and in BcKO but with di�erent p-values
(correlation p-value< 10% with FDR< 10−8 and di�erence of correlation p-value< 10% with
FDR < 0.25%). Partial correlation was computed using local partial correlation method30.
The initial signi�cance was p-value lower than 40% and then FDR < 5%. For more details
about the thresholds used, see Tables A.5 and A.6.
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Figure 5.1: In this example we show how to calculate the distance (length of shortest path) between the gene
G2 and group of genes D1, D2, D3, D4 (nodes in red).

5.2.5 Local partial correlation network

Two aspects of cervical cancer data led us to use local partial correlation for this system. First
of all, we have more samples throughout �ve datasets (see Tables A.7 and A.8 in Appendix) which
allows us to have more con�dence in our results and second we already know that tumors in general
present heterogeneous causal factors. The partial correlation approach gives us the alternative to
only consider edges that represent direct regulatory relations.

In this paper we used the new approach developed in [TFY12] called local partial correlation.
This approach was elaborated specially for cases when there are more variables than samples, which
happens regularly in genetics and is a serious problem in classical statistics. First we calculate
the correlation network. Then for each signi�cantly correlated pair the inverse method is applied
exclusively to the correlation sub-matrix formed only by the closest neighbors of the pair along with
the genes forming the pair. If the number of closest neighbors is still higher than the number of
samples n, then we decreasingly rank the correlations of the neighbors to either genes in the pair
and select the �rst n

2 neighbors. For each sub-matrix, we only keep the partial correlation value
regarding the pair that formed that sub-matrix and then calculate its p-value also based on the
sub- matrix. R script for calculation is available in Section 3 along with more detailed information.

Partial correlations were estimated only for the signi�cant (Pearson) correlations in co-expression
network. Thus the same de�nition of DCPs (by Pearson correlation) can still represent structural
changes as long as it remains present in one of the two networks.

Figure 5.5 illustrates the local partial correlation network for cervical cancer using only tumor
data. It has 578 connected nodes and 824 edges.

5.2.6 Minimum shortest path

The shortest path is a distance between 2 nodes in a network. It consists of the minimum number
of edges connecting 2 nodes. We de�ne want to de�ne a distance between one node and some subset
of nodes in a network, see Figure 5.1. For each gene we calculate the shortest path to all key drivers
and get the minimum value. Then we compare the minimum shortest path to key drivers coming
from DCP genes and the remaining genes.
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5.2.7 Bi-partite betweenness centrality

Once a relationship between genes has been established, the next question is which nodes or
genes are responsible for the interaction. Although multiple genes could act as mediators of in-
teraction between two pathways, their relative importance can be di�erent. Few approaches have
been developed to �nd which nodes are critical for crosstalk between di�erent groups of genes in a
network.

We have developed an approach that identi�es nodes in a network responsible for interactions
between modules that potentially correspond to genes regulating crosstalk between pathways repre-
sented by these modules. The approach is based on the idea that the genes that are in the shortest
paths between modules should be more important in controlling perturbation from one pathway
to another, mediating inter-module signaling or regulation. Several centrality measures have been
proposed to evaluate the importance of nodes in a network, see [Fre78]. [DSJ+10] shows that be-
tweenness centrality measures the importance of a node in acting as a bridge between any nodes
within a network. We modi�ed standard betweenness centrality ([New04]) to adapt to the case
of interaction between two de�ned subnetworks and to speci�cally address the question of which
nodes have a higher probability to be bottlenecks in the transfer of signal from nodes belonging to
subnetwork A to the nodes in subnetwork B, and vice versa. For this metric, the shortest paths are
calculated only between nodes of two subnetworks and not between any nodes within a network.
This bi-partite betweenness centrality can be calculated just as in equation ?? but with a slight
modi�cation:

g(ν) =
∑
s 6=ν 6=t

σst(ν)

σst
,

where s ∈ V(A), t ∈ V(B), σst is the total number of shortest paths from node s to node t, and
σst(v) is the number of those shortest paths that pass through vertex v (node for which the metric is
calculated). Thus, this measurement represents the importance of a node in mediating information
�ow between two connected modules in a network. A gene with high betweenness centrality has a
great in�uence on the transfer of signal through the network. Figure 5.2 illustrates the calculation
of bi-partite betweenness centrality for nodes D and C located between subnetworks A and B. Note
that all paths connecting A to B must path through D and not necessarily through C, therefore
the bi-partite betweenness centrality of D is higher than C. In this study, we are interested in the
signal passing from key drivers throughout the network, therefore the two subnetworks are formed
by either key drivers or peripheral genes.

5.3 Results

5.3.1 B cell de�ciency

We started by analyzing the B cell knockout (BcKO) data [SMH+11], which represents a rel-
atively simple experimental model with only one causal factor (B lymphocytes) and homogenous
subject groups since this experiment was performed in highly inbred strains of mice.

In order to select the nodes to reconstruct the co-expression networks (BcKO and Control)
we compared gene expression in jejunum between BcKO and control mice and found 509 DEGs
([TVS+16]). Next, the edges for each network were determined using signi�cantly correlated pairs
of DEGs (Figure 5.3). To identify DCPs we used the method introduced in [MH14] which compares
correlations in the BcKO group and in the Control group. Eighty DCPs were found (Table A.2
in Appendix), of which 56 represent correlation gains (edges which were not present in Control
network but showed up in BcKO) and 24 represent losses.

Now we investigate whether network structural changes, herein represented by DCPs, are related
to actual causes of global change in gene expression. In the previous study [SMH+11], it was shown
that intestinal gene expression alterations in BcKO mice are mostly dependent on the ability of B
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Figure 5.2: Here we explain how to calculate bi-partite betweenness centrality (bc) between groups A and
B. Note that node D has bigger bi-partite bc because all shortest paths connecting nodes in group A to nodes
in group B pass through the node D.

BcKO	correla7on	network	

	
DCP	edge	
Regular	edge	
Immunoglobulin	gene	
Regular	gene	
Down	regulated	
Up	regulated	

Figure 5.3: Co-expression networks for BcKO data. The nodes are composed by DEGs and the edges
represent signi�cant correlations between nodes. The causal genes (immunoglobulin genes) and the DCP
edges are concentrated in the high connectivity region with several causal genes forming DCPs.
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NIPAL2	 TRPM3	 Gained	edge	 >	0	 DN	 DN	

They	stem	
ARHGEF12	 ZSCAN18	 Gained	edge	 >	0	 DN	 DN	

	

DCPs	analysis	in	BcKO	DEGs	network.	

	

Figure	S2.	A)	78	Differentially	Correlated	Pairs	(DCPs)	were	found,	of	which	54	represent	correlation	gains	(edges	which	were	
not	present	 in	Control	network	but	showed	up	in	BcKO)	and	24	represent	correlation	losses.	The	table	stratifies	the	set	of	
pairs	representing	correlation	gains	and	losses	according	to	the	amount	of	Ig	genes	(0,	1	or	2)	present	in	a	pair.	Note	that	39	
out	of	54	of	correlation	gain	DCPs	are	formed	by	at	least	one	Ig	gene	while	only	2	out	of	22	correlation	losses	have	at	least	
one	Ig	gene.	B)	The	78	DCPs	are	formed	by	a	total	of	94	Differentially	Co-expressed	genes	(DC	genes).	58	DC	genes	participate	
only	 in	 correlation	gain	DCPs,	31	only	 in	 correlation	 loss	DCPs	and	5	of	 them	participate	 in	both	correlation	gain	and	 loss	
DCPs.	The	results	show	enrichment	for	Ig	genes	among	DC	genes	in	correlation	gain:	24%	(15	out	of	63	(=58+5))	of	DC	genes	
are	Ig	genes	vs	2.7%	(11	out	of	415)	of	other	DEGs	are	Ig	genes	(p	value	<	0.001).	Meanwhile	no	enrichment	was	observed	for	
correlation	loss	as	a	result	of	B	cell	deficiency:	3%	(1	out	of	36	(=31+5))	of	DC	genes	are	Ig	genes	vs	2.7%	(11	out	of	415)	of	
other	DEGs	are	Ig	genes.	

	

Deciphering	the	role	of	DCPs	in	cervical	cancer	DEGs	network.	

After	locating	the	DCPs	in	the	cervical	cancer	network,	we	realized	that	only	one	key	driver	was	part	of	a	
DCP.	This	perception	along	with	the	knowledge	from	literature	that	most	of	the	genes	in	DCPs	may	play	
some	regulatory	roles	in	other	types	of	cancer	[30-47]	led	us	to	come	up	with	a	new	hypothesis:	DCPs	
play	critical	role	in	the	flow	coming	from	the	key	drivers	and	spreading	throughout	the	network	Figure	
S3.	 In	 order	 to	 verify	 this	 theory	 we	 investigated	 two	 angles:	Minimum	 Shortest	 Path	 and	 Bi-partite	
Betweenness	Centrality.	

Figure 5.4: A) 78 Di�erentially Correlated Pairs (DCPs) were found, of which 54 represent correlation
gains (edges which were not present in Control network but showed up in BcKO) and 24 represent correlation
losses. The table strati�es the set of pairs representing correlation gains and losses according to the amount
of Ig genes (0, 1 or 2) present in a pair. Note that 39 out of 54 of correlation gain DCPs are formed by
at least one Ig gene while only 2 out of 22 correlation losses have at least one Ig gene. B) The 78 DCPs
are formed by a total of 94 Di�erentially Co-expressed genes (DC genes). 58 DC genes participate only in
correlation gain DCPs, 31 only in correlation loss DCPs and 5 of them participate in both correlation gain
and loss DCPs. The results show enrichment for Ig genes among DC genes in correlation gain: 24% (15 out
of 63(= 58 + 5)) of DC genes are Ig genes vs 2.7% (11 out of 415) of other DEGs are Ig genes (p value
< 0.001). Meanwhile no enrichment was observed for correlation loss as a result of B cell de�ciency: 3% (1
out of 36(= 31 + 5)) of DC genes are Ig genes vs 2.7% (11 out of 415) of other DEGs are Ig genes.

lymphocytes to produce antibodies. Therefore, we analyzed the presence of immunoglobulin coding
genes (Ig genes, see Table A.3 in Appendix) among di�erentially expressed genes (26 Ig genes among
509 DEGs) in DCPs. We observed that 72% (39 out of 54) of correlation gain DCPs are formed
by at least one Ig gene, (Figure 5.4A). Moreover, we found strong enrichment for Ig genes among
DC genes in correlation gain (24% (15 out of 63) of DC genes are Ig genes vs 2.7% (11 out of 415)
of other DEGs are Ig genes), while no enrichment was observed for correlation lost as a result of
B cell de�ciency (Figure 5.4B). Thus, these results support the idea that di�erentially expressed
genes that acquire correlations during transition from one biological state to another have a high
chance to play causal roles in such transition.

5.3.2 Cervical cancer

Analysis of gene expression data.

In order to study di�erentially co-expressed genes in a more complex biological model we turned
to cancer. It is well known that cancers of the same clinically/ morphological type can be very
di�erent on molecular levels. One of the most studied causes for such diversity is the di�erent
sets of chromosomal aberrations and mutations harbored by tumors otherwise de�ned as the same
cancer. In previous study [MSY+13], we have found 36 cervical cancer driver genes located in
multiple chromosomal aberrations (A.4 in Appendix). Thus we decided to use cervical cancer data
from [MSY+13] for investigation of the role of DCPs in complex biological processes due to its
heterogeneity and previously acquired knowledge of essential causal genes.

We used the DEGs between tumor and normal tissue as the nodes of the co-expression networks.
Since the number of samples (�ve datasets, 148 tumor samples and 67 normal samples) was larger
than in BcKO study (two datasets, 22 paired samples), we used the partial correlation coe�cient as
a measure of co-expression (Figure 5.5). The potential advantage of using partial correlation is that
it aims to infer edges that are a result of direct regulatory relations [MDD+15]. Partial correlations
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Cervical	cancer	local	par7al	correla7on	network	

	
DCP	edge	
Regular	edge	
Key	driver	
Regular	gene	
Down	regulated	
Up	regulated	

Figure 5.5: Co-expression networks for cervical cancer data. The nodes are composed by DEGs and the
edges represent signi�cant local partial correlation between nodes. A few causal genes (key drivers) and DCP
edges are located in the high connectivity region, but scattered throughout the network. Only one key driver
is amongst the genes in DCPs.

were calculated through the Local Partial Correlation (LCP) method [TFY12] (Section 3).
In this study seven DCPs composed of 14 DC genes were found. Interestingly, all DCPs were

di�erential correlations gained in tumors (Table 5.1). Only one of the 36 key drivers (CEP70) was
identi�ed among the 14 DC genes. Accordingly, no enrichment of key driver genes among DC genes
was detected in this analysis.

Table 5.1: DCPs - cancer (* key drivers)

Gene 1 Gene 2 Change direction
Sign of
LPC in
tumor

Regul. 1 Regul. 2

ANP32E CACYBP Gained edge > 0 UP UP
CENPN DHFR Gained edge > 0 UP UP
C10orf68 FGFR2 Gained edge > 0 DN DN
AK2 HNRNPR Gained edge > 0 UP UP

CEP70* SEPHS1 Gained edge > 0 UP UP
NIPAL2 TRPM3 Gained edge > 0 DN DN

ARHGEF12 ZSCAN18 Gained edge > 0 DN DN

Even though we observed that DCPs are not necessarily formed by key drivers, it is known
from literature that most of the DC genes found play regulatory roles in other types of cancer
[GLT+13, CCK15, HCH+14, LPO+07, WLC+10, BEL+05, LJB+08, NYW+10, HLN+10, HKJ+07,
Kat08, JSP01, VAE+15, BW91, KCHS15, NSH+07, SNL+07, MRG+11]. Thus we hypothesized
that DCPs are located downstream of key drivers and can be responsible for changes of regulatory
chain events coming from the key drivers and spreading throughout the network. In order to verify
this hypothesis, we investigated how close DC genes are to key drivers and whether their "signal
�ow" [FSM+09] in the tumor co-expression network is stronger than that of the other genes. In
order to verify this hypothesis we investigated two network measures: Minimum Shortest Path and
Bi-partite Betweenness Centrality.
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Cervical	cancer	results	
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Figure 5.6: Topological properties of Di�erentially Correlated Genes (DCGs). A) Barplot of the shortest
path to the causal genes and originated in either the genes in DCPs (in orange) or the non DCP genes
(in blue). The distribution in orange is concentrated in lower values. B) Boxplot comparing the values of
Bipartite Betweenness Centrality of the genes in DCPs (in orange) and the non-DCP genes (in blue). The
boxplot on the left is concentrated in higher values.

First we compared the shortest paths from key driver genes to DC genes and to all other DEGs
in the network. We found that DC genes are located statistically closer than the rest of genes in the
network to key drivers (Figure 5.6A, Wilcoxon test < 0.014 and Permutation test < 0.021). Then we
used Bi-partite Betweenness Centrality as a measure of the signal �ow from key drivers to peripheral
genes (genes with only one edge) [DYR+15]. We evaluated this measure for DC genes and remaining
DEGs and observed that DC genes had much higher values than other genes in the network. Figure
5.6B illustrates a comparison of boxplots of bi-partite betweenness centrality between these two
groups concerning DCPs and the rest (non DCPs, non-key drivers, non-peripheral). We can observe
that the bi-partite betweenness centralities of DCPs are concentrated in higher values than the rest.
Mann-Whitney test gave us a p-value of 7.868×10−5, which gives us evidence that the distribution
of Bi-Partite Betweenness Centrality in DCP genes is higher. For more details see Figure S2 in
appendix. Thus, altogether these results suggest that DC genes might be "bottlenecks", that is,
required to transmit a signal from key drivers to other genes in the network, therefore, supplement
the hypothesis of a regulatory role of DC genes (Figure S1 in appendix).

Knockdown experiments

In addition, data from other cancers provide indirect support for the idea of regulatory role of
DC genes in cervical cancer [GLT+13, CCK15, HCH+14, LPO+07, WLC+10, BEL+05, LJB+08,
NYW+10, HLN+10, HKJ+07, Kat08, JSP01, VAE+15, BW91, KCHS15, NSH+07, SNL+07, MRG+11].
However, since a role of these DC genes in carcinogenesis was not as straightforward as for im-
munoglobulin genes in B cell de�ciency, we decided to perform experimental tests. Among the DC
genes found for cervical cancer, there were seven up-regulated and seven down-regulated in cancer.

Therefore, for validation experiments we chose one down-regulated (FGFR2) and one up-
regulated (CACYBP) gene that have not been previously studied in cervical cancer for regulatory
properties, but have a potential connection with cell death or proliferation based on their Gene On-
tology annotations. In order to test if FGFR2 and CACYBP play critical regulatory roles in cancer
pathogenesis, we evaluated the e�ect on in vitro knockdown of these genes on cell proliferation in
a cervical carcinoma cell line.

First, we tested two cervical cancer cell lines (Hela and ME180) and found that only ME180
had detectable expression levels of both genes. In order to perform these tests, we evaluated siR-
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Figure 5.7: Experimental evaluation of DCGs in cervical cancer. A) E�cacy of FGFR2 and CACYBP
siRNA knockdown. qRT-PCR with primers for GAPDH as the internal control was used to determine ex-
pression and e�cacy of FGFR2 and CACYBP speci�c siRNA knockdown in endothelial cells (ME180).
ME180 cells were harvested 72 h after transfection with vehicle (Lipofectamine) and either scrambled control
or targeting siRNA. B) Gene expression of FGFR2 and CACYBP (mean +/− standard deviation) for tumor
and normal samples from �ve datasets used in the analysis. Since FGFR2 was found down-regulated in tumor
tissue, its potential regulatory role would be as a tumor suppressor. However, CACYBP is up-regulated, thus
CACYBP should function as an oncogene promoting cell proliferation. C) Evaluation of cell proliferation
inhibition using xCelligence System. Proliferation data (cell index) was obtained at 72 h after transfection
with Lipofectamine and either scrambled control or targeting siRNA. Inhibition index was calculated (two
step normalization of cell index): inhibition index > 0 - cells transfected with targeting siRNA showed de-
crease in proliferation; < 0 - showed increase in proliferation; = 0 - no di�erence from control was found.
One sided T test for mean (< 0 for FGFR2 and > 0 for CACYBP) was applied and returned statistically
signi�cant p-values for both of them (0.0258 for FGFR2 and 0.01978 for CACYBP).

NAs and observed that they were able to knock down expression of both genes by at least 70%
(Figure 5.7A). CACYBP is up-regulated in tumor tissue, as compared to normal tissue (Figure
5.7B). Consequently, if CACYBP has regulatory potential, as predicted by our analysis, it should
function as an oncogene promoting cell proliferation. Therefore, the knockdown of this gene should
result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical
carcinomas (Figure 5.7B) its potential regulatory role would be as a tumor suppressor. Therefore,
the knockdown of this gene is expected to increase cell growth. The subsequent analysis of cell
proliferation con�rmed our predictions for both genes: knockdown of CACYBP led to a decrease of
cell growth, while knockdown of FGFR2 induced higher cell proliferation (Figure 5.7C). Thus, these
results provide additional support to our in silico prediction that DC genes may play a regulatory
role in cell proliferation related to tumor growth.
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5.4 Experimental design

5.4.1 FGFR2 and CACYBP knockdown experiment

ME180 cells were transfected with FGFR2-, CACYBP-speci�c siRNA or control siRNA using
Lipofectamine RNAiMAX Transfection Reagent. Cell growth rate during 72h after siRNA trans-
fection was measured using xCelligence system as described below.

Evaluation of siRNA e�cacy in knocking down the gene targets.

ME180 cell line was obtained from Dr. Pulivarthi H. Rao. It was cultured in RPMI medium
with 10% FBS and 1added. The cells were seeded at density 4000 cells per well in 96 F-bottom
plates (seeding procedure was done according to ATCC protocol for ME180 cell line) and with cell
culture media 200 ul per well. 24 hours after seeding, cells were transfected with one of the three
siRNA (Table 5.2).

Before transfection, 100 uL of media was taken from each well. Transfection procedure was done
according to Lipofectamine RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 Rev.
1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per well were delivered in 20uL. 80 uL of
fresh cell culture media was added to each well.

Cells were collected 72 h after transfection using Lysis bu�er from RNeasy Mini Kit (QIAGEN).
RNA extraction was done using RNeasy Mini Kit (QIAGEN) according to the manufacturer's
protocol (no Dnase treatment step was done). Concentrations of RNA measured with Qubit RNA
BR Assay Kit. cDNA was done using Bio-Rad iScript cDNA Kit according to the manufacturer's
protocol.

Quantitative Real-Time PCR was done for the samples using QuantiFast SYBR Green PCR
Kit and GAPDH as a control gene. Primers for the targets you can see in the Table 5.3.

qRT PCR set up: sample was heated to 95Â◦C, followed by 40 cycles of 95Â◦C for 10 sec and
60Â◦C for 30 sec.

Table 5.2: Suppliers

Target Supplier Supplier ID

FGFR2 ThermoFisher s5173
CACYBP ThermoFisher s25819
Non-targeting siRNA Dharmacon D-001810-01-05

Table 5.3: Primers and Targets

Target Forward/ Reverse Primer sequence (5' → 3')

FGFR2 Forward AACAGTTTCGGCTGAGTCCAG
FGFR2 Reverse GCCCAGTGTCAGCTTATCTCTT
CACYBP Forward CTCTGTGGAAGGCAGTTCAAA
CACYBP Reverse TCAGGTAATCCCACCTTGTGTT
GAPDH Forward GGAGCGAGATCCCTCCAAAAT
GAPDH Reverse GGCTGTTGTCATACTTCTCATGG

Evaluation of cell growth after knock down of gene targets.

CACYBP is up-regulated in tumor tissue, as compared to normal tissue (Figure 5.7B). Con-
sequently, if CACYBP has regulatory potential, as predicted by our analysis, it should function
as an oncogene promoting cell proliferation. Therefore, the knockdown of this gene should result
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in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carci-
nomas (Figure 5.7B) its potential regulatory role would be as a tumor suppressor. Therefore, the
knockdown of this gene is expected to increase cell growth.

Cell growth was evaluated using xCelligence system (The RTCA DP Instrument) using manufac-
turer's protocol. ME180 was cultured in RPMI media with 10% FBS and 1% PenicillinStreptomycin
added. The cells were seeded at density 4000 cells per well (E-Plate 16) in 200 uL of cell culture
media.

Twenty four hours after seeding, the experiment was paused for transfecton. Before transfection,
100 uL of media was taken from each well. Transfection procedure was done according to Lipofec-
tamine RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 Rev. 1.0). 3pM of siRNA
per well and Lipofectamine 0.6 uL per well were delivered in 20uL; 80 uL of fresh cell culture media
was added to each well. Plate was placed back in the slot and cell growth was evaluated for another
72 h.

Cell index normalization.

To evaluate cell growth rate cell index was transformed into Inhibition index in two steps:

1. Cell indexes for all wells were exported to the excel �le. For each treatment (including non-
targeting siRNA transfected wells) we extracted cell index average for all wells at 20 h after
seeding (Cell Index Before Treatment) and at 96 h after seeding (Cell Index After Treatment).
To normalize cell index to initial cell number di�erences for each of the treatments we used
the following formula:

After/BeforeTreatmentNormalizedCellIndex(A/BIndex) =
CellindexAfterTreatment

CellindexBeforeTreatment

2. In next step we normalized each treatment with targeting siRNA to treatment with non-
targeting siRNA. For this purpose in each experiment A/B Index from treatment (siRNA
targeting either FGFR2 or CACYBP) was normalized to A/B Index from control treatment
using the following formula:

InhibitionIndex =
ControlA/BIndex− TreatmentA/BIndex

ControlA/BIndex

Final evaluation of growth was done according to the value of Inhibition Index: > 0 - there
is a decrease in growth; 0 - no di�erence between treated with targeting and treated with
non-targeting siRNA; < 0 - there is a growth after treating with targeting siRNA.

5.4.2 Data availability

BcKO: Gene expression �les containing array data from [SMH+11] are available under the
GSE23934 superseries in the Gene Expression Omnibus (GEO) data repository. We worked with
two groups of samples: B10.A litter-mates and BALB/C (Table A.7 in Appendix). Cervical cancer:
We have used the same datasets as in previous study[MSY+13] available at GEO: GSE741050,
GSE679151, GSE780352, GSE975053, GSE26342[MSY+13] (Table A.8 in Appendix).

5.5 Discussion regarding real data analysis

In the current study, the di�erential co-expression analysis [SKV+11] was applied to two rela-
tively well-investigated biological systems[SMH+11, MSY+13] in order to evaluate the potential im-
portance of genes found using di�erential correlation analyses. Overall, the obtained results support
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the idea that DC genes play a regulatory role. While in B cell de�ciency DCPs were found highly en-
riched with immunoglobulin genes (i.e. causal genes for alterations in the gut) we did not observe en-
richment for key driver genes in cervical cancers. Rather, DCPs of cervical cancer seem to be located
downstream of causal genes. Indeed, those DCPs have been found closer to key regulators than other
genes in the network, actually representing "bottlenecks" for communication between driver genes
previously published in [MSY+13] and the rest of the network (Figure 5.6). Furthermore, some dif-
ferentially co-expressed genes in cervical cancer have been previously implicated in processes such as
metastasis, oncogenic autophagy and apoptosis. For example, CACYBP has been shown to promote
colorectal cancer metastasis [GLT+13], TRPM3 was observed to play a role in oncogenic autophagy
in clear cell renal cell carcinoma [CCK15, HCH+14], and AK2 was reported to activate apoptotic
pathway [LPO+07]. Several genes are investigated for prognostic value for cancers such as myeloma
[WLC+10], lymphoma [BEL+05], breast [LJB+08, NYW+10, HLN+10, HKJ+07, Kat08] and gas-
trointestinal cancers [JSP01, VAE+15]. At least two genes were previously proposed as targets for
anti-cancer agents: DHFR [BW91] and FGFR2 [KCHS15]. Moreover, CACYBP and ZSCAN18 were
also reported as putative tumor suppressor genes in renal cell carcinoma [NSH+07, SNL+07]. In
addition, we have tested two DC genes and con�rmed their regulatory role (FGFR2 as a tumor sup-
pressor and CACYBP as a potential oncogene in cervical cancer) by manipulating their expression
in vitro. Altogether, published observations and our experimental validation for these two genes
support the idea that DC genes revealed in the current study play a regulatory role and can be
candidate targets for cervical cancer treatment.

Interestingly, while in the model of B cell de�ciency, the DC genes are highly enriched with
causal regulatory genes, there was only one key driver in cervical cancer (CEP70), despite the DC
genes in this system still seeming to play a regulatory role overall. Such a di�erence is potentially
related to the fact that the mouse system studied in [SMH+11] is highly homogeneous (inbred
mice) with only one cause of alterations (i.e. absence of B lymphocytes). Cervical cancer, however,
is a heterogeneous system with di�erent chromosomal aberrations and consequently turned-on ex-
pression of di�erent driver genes in di�erent patients. Therefore, we can speculate that di�erential
correlations point to regulatory genes that are shared by majority of samples. This hypothesis war-
rants further investigation, especially considering that DCPs could represent common therapeutic
targets for tumors that originated as a result of di�erent genomic or epi-genomic events.

In conclusion, this study provided additional evidence for the previously suggested idea ([KS04,
XFG+04, SYAP11, NHDQ11, ASS13, dlF10, LWCZ04, Li02, DGP05, Wat06, MLW+08, HQG+09,
CKK09, SKV+11, DYK12, Fuk13, LPS+12, CYYK05, PSS+13, CKP12]) that genes presenting
alterations in correlation patterns between di�erent phenotypes (i.e. states of biological system) play
a critical regulatory role in transitions from one state to another. Furthermore, although our results
do not allow for full generalization, they indicate that gain and not loss of correlations connects
critical genes involved in transitions to new phenotypes. However, further studies are required to
understand how changes in correlation patterns can point to genes with critical capacity to guide a
biological system into certain state/ phenotype.

5.6 GGM Numerical Analysis

As already introduced in Section 2.1.2, in cases where variables follow a normal distribution,
conditional independence can be replaced by partial correlation. Thereafter, as can be seen in
Section 3.1.1, the precision matrix Ω = Σ−1 can be also interpreted as a representation of edges in
a network.

5.6.1 Covariance Matrix Simulation

For a determined graph structure G we want to develop a GGM model. Di�erent GGM simula-
tors were analyzed such as the simulator in GGMridge [HS14] and Igraph [CN06] R package among
others. We chose to work with the simulator in [CLZ+16].The �rst step is to build the precision
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Figure 5.8: Example of a knockout in a scale-free graph structure. The purple node in the network to the
left is the knockout gene. The network to the right is the structure after perturbation.

matrix in the following way: for every non-zero entry of the adjacency matrix we draw a value from
an Uniform[0.25, 0.75] distribution with 70% chance of being a positive value. Then, to guarantee
the positive de�nite property, Ω > 0, the diagonal entries are equal to the minimum eigenvalue of
Ω times 0.05, that is,

diag(Ω) = Ω + 0.05min(eigen(Ω)). (5.1)

After calculating the precision matrix with non-zero entries only for the pair of variables corre-
sponding to an edge and for the diagonal entries, the next step is to calculate the covariance matrix.
However, note that equation 5.1 produces the same value for all diagonal entries, which will force
all variables to have the same variance. In order to allow the variables to have di�erent variances,
let D be a diagonal matrix with entries drawn from an Uniform[1, 5]. The simulated covariance
matrix is as follows:

Σsim = DΩ−1D. (5.2)

5.6.2 Perturbations

Once a graphical structure is generated we have the original/wildtype network. But that is not
enough. Network perturbations are necessary for a state transition to occur. The analysis of e�ects
of an "arti�cial" perturbation can provide more evidence to support the conclusion that DCPs tend
to be close to the perturbed nodes as observed in Section 5.3. It will also determine if this is a
result of a speci�c state transition or a network property. We have studied several possibilities of
disturbing a networkand have decided to start with the most simple way: knockout of a gene or an
edge. This way we have more control of what is happening in the network and we know exactly
where the change �ow is coming from.

Knockout of a node

The �rst type of perturbation applied is the knockout of a node, which, in the GGM approach,
basically means that a node will not be a random variable anymore. Instead, it becomes a constant
value and the covariance matrix changes accordingly.

Let X = {X1, · · · , Xp} be a random variable vector representing nodes 1, · · · , p respectively and
following a Normal distribution X ∼ N(µ,Σ). Suppose the variable Xk assumes a constant value
c. Then, we have X conditional on Xk = c, that is, X|Xk = c (a graphical example is shown in
Figure 5.8). It is already known that X|Xk ∼ N(µ∗,Σ∗). To get to the new values of the conditional
expectation and conditional covariance matrix, let

Y = X\Xk = {X1, · · · , Xk−1, Xk+1, · · · , Xp}

and lets partition µ and Σ in the following way:

µ =

[
µY
µk

]



36 DIFFERENTIAL CORRELATION ANALYSIS 5.6

and

Σ =

[
ΣY Y σTk
σk σkk

]
where µk is the expectation of Xk, µY is the expectation vector of all variables in X except for

Xk, σkk is the variance of Xk, σk is the covariance vector between Xk and Y, σk
T is σk transposed

and ΣY Y is the covariance matrix of Y.
The conditional expectation µ∗ and the conditional covariance Σ∗ are then given by

µ∗ = µY + σTk σkk(c− µk)

and
Σ∗ = ΣY Y − σTk σkkσk

respectively.
From the conditional covariance matrix, we get the conditional correlation matrix ρ∗ through

Pearson correlation coe�cients and the di�erence of correlation matrix ∆ρ as follows:

∆ρ = |ρY − ρ∗|.

5.6.3 Edge Removal

The knockout of a node in GGM causes the disappearance of all edges connected to such node.
Since the occurrence of correlation in only one state is enough to call the edge a DCP, these edges
vanished by a knockout are automatically considered DCP and are the closest to a perturbed
node as edges can be. To make it a little less straight forward, we proceed to a di�erent network
perturbation: edge removal.

After simulating the covariance matrix, an edge connecting two highly connected genes (for
example i and j) is removed - KO edge. Afterwords, a new edge is added by connecting the node
in the KO edge with higher degree to a leaf (node with degree 1). Figure 5.9 illustrates a scale free
graph with 20 nodes where the edge (1, 3) is removed and the edge (1, 9) is included. Mathematically
this is done by setting to 0 the entry σij in the simulated covariance matrix Σ correspondent to
the KO edge while the covariance entry representing the included edge assumes a value from an
Uniform[0.25, 0.75] distribution with 70% chance of being a positive value. The equations 5.1 and
5.2 are applied again for the sake of coherence.

Figure 5.9: Example of a knockout of an edge in a scale-free graph structure. The red edge in the network
to the left is the knockout edge. The network to the right is the structure after perturbation with a new edge
(green).

5.6.4 Analysis

Di�erent graphical structures were generated for 20, 50, and 100 nodes. The selected structure
models to be analyzed in this study are the following: random graph (Erdos-Renyi and edge percent
- both with 3 edges per node in average), tree (regular with two leaves and Galton Watson with
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(a) Example of hub (b) Example of leaf near hub (c) Example of leaf away from hub

(d) Network (a) after knockout (e) Network (b) after knockout (f) Network (c) after knockout

Figure 5.10: Examples of a scale free graphical structure with 20 nodes. The purple nodes in (a), (b) and
(c) are being knocked out. (d), (e) and (f) represent the networks right above them after knockout

number of o�spring following a log-normal distribution with µ = 0, σ2 = 1, which correspond to
meanlog = 0 and sdlog = 1 in R), scale free as in Section 2.1.1, small world with neighborhood
equals 2 and p = 0.05, and brush-like lattice with length = ceiling(

√
p), width = �oor( p

length),
generating a lattice with approximate p nodes and values = p

4 .
As a starting point, after covariance matrices are simulated, three types of nodes were knocked

out separately for each structure: hubs (genes whose degree is above the 80% percentile), leaves
near hubs (shortest distance = 1) and leaves as far away from hubs as possible. Note that leaves are
genes connected to only one other node (degree = 1). Illustrations of the di�erent type of knockouts
in a scale-free graphical structure with 20 nodes can be found in Figure 5.10 along with their new
structures after knockout.

For each scenario (structure, number of nodes and KO node), we checked the existence of any
signs of relationship between di�erence of correlation and several edge measures in a graph: shortest
path between the knockout node and one of the nodes corresponding to a component of a pair of
variables, sum of shortest paths between the KO node and both edge components (shortest distance
from KO), number of leaves and hubs in each edge, among others.

Shortest distance from KO and number of leaves were the only measures that have shown
any in�uence in the identi�cation of high di�erence of correlation values. Scatterplots of log ∆ρ
versus shortest distance from KO were investigated and in all scenarios described previously we
could observe that there is a negative linear relationship between log ∆ρ and shortest distance
from KO node, which means that there is an exponential increase of ∆ρ as edges get closer to the
perturbation. These scatterplots were also performed separately according to the amount of leaves
in a pair - either no leaves, 1 leaf or 2 leaves. Unexpectedly, for some graph structures, such as
scale free and lattice with leaves, the amount of leaves in a pair can also indicate higher di�erence
of correlation among pairs with the same shortest distance from KO, which can be seen in Figure
5.11 for networks with 100 nodes. Scatterplots for the three knockouts described above (hub, leaf



38 DIFFERENTIAL CORRELATION ANALYSIS 5.6

near hub and leaf away from hub) are illustrated in Figures 5.11(a), 5.11(b) and 5.11(c) while only
hub knockout in lattice structure is represented in Figure 5.11(d). We can see that linear regression
curves of log ∆ρ versus shortest distance from KO gets steeper as the amount of leaves in a pair
increases, which means that when the pair is really close to the perturbation - distance of 2, 3, 4 -
the chances of higher ∆ρ increase as the number of leaves in that pair also increases.

(a) (b)

(c) (d)

Figure 5.11: Scatterplots of log ∆ρ versus shortest distance from KO: a) hub knockout in a scale free
structure, b) leaf near hub knockout in a scale free structure, c) leaf away from hub knockout in a scale free
structure, and d) hub knockout in a lattice structure with leaves

In addition, for each graph structure, knockouts of all p nodes were performed separately one at a
time. Linear regression coe�cients of all p knockouts were used to generate boxplots for all structures
which are illustrated in Figure 5.12. As you can see, all boxplots are entirely located below 0, that
is, all knockouts in every graph structure produced negative coe�cient values regardless of graph
structure and which node su�ered knockout. Moreover, Galton-Watson and regular trees present
small variance in the coe�cient values, as opposed to the other structures with bigger variance.
More interestingly, it is clear that scale free structures present higher absolute coe�cient values,
showing that in scale free structures the shortest distance has more in�uence over the di�erence
of correlation: the closest the highest. These results support the conclusion observed in Section
5.3 that DCPs are located near the perturbed nodes specially in Genetics since the co-expression
networks seldom presents scale free structures.

Further assessment of scale free structures was performed in order to address the in�uence of
the amount of leaves - two leaves, one leaf or no leaves - on the greatness of di�erence of correlation.
For each node knockout, linear regression coe�cients were calculated using only the correlation
coe�cients corresponding to pairs of nodes formed by 2 leaves, 1 leaf and no leaves separately.
Figure 5.13 shows the boxplots of linear regression coe�cients of scatterplots of log ∆ρ versus
shortest distance from KO for scale free structure for all pairs of nodes (black), pairs composed by
2 leaves (red), 1 leaf (green) and no leaves (blue), considering 20, 50, and 100 nodes. Regardless
of the number of nodes on scale free structures, the median value of all coe�cients decreases as
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Figure 5.12: Boxplots of linear regression coe�cients of scatterplots of log ∆ρ versus shortest distance from
KO for all structures: Erdos Renyi (ER), edge percent (EP), Galton Watson tree (tGW), regular tree with
two o�spring (tree), scale free (sf), small world (sw), lattice with leaves (latt). Note that the black boxplots
are a result of correlations of all pairs of variables in the model, not a stack of the colored boxplots

(a) 20 nodes (b) 50 nodes

(c) 100 nodes

Figure 5.13: Boxplots of linear regression coe�cients of scatterplots of log ∆ρ versus shortest distance from
KO for scale free structure with: (a) 20 nodes, (b) 50 nodes, and (c) 100 nodes. The black boxplots consider
all pairs, the red boxplots only consider pairs composed by 2 leaves, the green boxplots only consider pairs
composed by only 1 leaf, and the blue boxplots only consider pairs with no leaves.

the number of leaves in a pair increases, which supports the result that linear regression curves of
log ∆ρ versus shortest distance from KO gets steeper as the amount of leaves in a pair increases.
Therefore, when the pair is really close to the perturbation, the number of leaves in the pair impacts
∆ρ: pairs of nodes composed by two leaves tend to have higher ∆ρ than pairs with one leaf which
in turn tend to have higher ∆ρ than pairs with no leaves.

Edge removal or edge knockout was also performed for a scale-free structure with 100 nodes.
The edge removed was the one connecting the node with the maximum degree in the network



40 DIFFERENTIAL CORRELATION ANALYSIS 5.6

(a) (b)

(c)

Figure 5.14: Scatterplots of log ∆ρ versus shortest distance from: (a) new edge, (b) KO edge, (c) Boxplots
of linear regression coe�cients of log ∆ρ versus shortest distance from KO for scale free structure with 100
nodes. The black boxplots consider all pairs, the red boxplots only consider pairs composed by 2 leaves, the
green boxplots only consider pairs composed by only 1 leaf, and the blue boxplots only consider pairs with no
leaves.

Nmax with its direct neighbor with higher degree. Then an edge connecting Nmax is added. Figures
5.14(a) and 5.14(b) show a scatterplot of log ∆ρ along with the shortest distance to the new edge
and the KO edge respectively. Note that the three curves cross in the region of low distance just like
when perturbing a node. To expand the study, the same KO edge is kept but we vary the new edge
separately. Each time connecting Nmax to a di�erent node, that is, (Nmax, j) /∈ E and calculating the
linear regression coe�cient for log ∆ρ versus shortest distance. Figure 5.14(c) shows the boxplots
for such coe�cients when considering all pairs of variables (black), only pairs representing two leaf
nodes (red), one (green) and none (blue). This possible to see and ascension of boxplots as the
number of leaves in a pair decreases. Since the boxplots are composed by only negative values, we
can conclude that the linear regression curves tend to be steeper as the number of leaves in a pair
increases. Therefore, giving support to the results for node knockout in scale-free networks.

This study shows that the distance from the network perturbation has direct e�ect on the
changes after a network transition. The closest the pair of nodes are to the perturbation site, the
bigger di�erence of correlation. Besides distance, another feature that seems to a�ect the changes
is the amount of leaves in the pair uncertain network structures. If we compare pairs with same
distance from knockout, the pairs with more leaves seem to present higher di�erence of correlation.
The reason why this happens could be the fact that there is only one last edge to get to the leaves.
Therefore, if changes come through that edge, there are no other edges to " �ght" them. More
research is necessary to con�rm this observation such as more general simulations and mathematical
demonstrations.



Chapter 6

Comparison of Partial Correlation

Methods

Pearson and Spearman correlation are often used in Biology to identify associations between
selected genes and determine the edges of relevant networks [SS+05a]. However, undesirable spu-
rious associations may be detected as a result of signal �ow passing through several true network
interactions. In order to overcome this problem, several methods of network reconstruction have
been recently developed. Most of these methods are based on Gaussian Graphical Models (GGM),
where variables are assumed to follow a Gaussian distribution allowing the use of partial correlation
to determine direct associations. Some of these methods are also a solution for high dimensional
data, which is still an issue in Classical Statistics characterized by sample sizes much smaller than
the number of variables.

In this project, one of the goals is to assess the e�ciency of local partial correlation, which
estimates partial correlation considering only the neighborhood of each correlated pair of variables.
We would like to ascertain that the new method developed by the Author ([Tho12]) is as e�cient
as other methods recently developed. In this chapter, we compare LPC - explained in Section 3 - to
partial correlation methods based on methodologies of regularization: graphical lasso [FHT08] and
GGM Ridge - network reconstruction using ridge penalty [HS14]. Both methods assume that the
nodes represent variables following a Normal distribution and already have R packages available:
glasso and GGMridge.

Graphical Lasso, de�ned in [FHT08] and the most popular among the three methods mentioned
above, is an adaptation of the optimization developed by [BEGd08], which in turn improved the
method based on neighborhood selection with the lasso described in [MB06]. Graphical Ridge, even
though has not been used much, consists of an interesting alternative to Graphical Lasso using
Ridge penalty instead. Besides providing partial correlation coe�cients, the procedure developed
by [HS14] and based on [SS05b] also returns p-values for each partial correlation estimates from
empirical distributions. Both methods are adaptations of covariance estimation through MLE.

The assessment of the methods described above is performed using simulations and real-life data.
GGM data was generated for scale-free, tree and small world graph structures while GeneNetWeaver,
a software based on di�erential and stochastic models, provided data from gold standards E-coli
subnetworks. ROC curves are employed to compare the performance of each method in the simulated
data where there are original networks to liken. The methods are then applied to data from cervical
cancer studies in Chapter 5 and are evaluated through edges and nodes similarities.

6.1 Partial correlation methods with regularization

Assume X ∈ Rp a random vector following a multivariate normal distribution with expected
vector µ ∈ Rp and covariance matrix Σ ∈ Rp×p, X ∼ Np(µ,Σ). The probability density function
on each component Xi of X is
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f(x) = (2π)−
p
2 det(Σ)−

1
2 exp(−1

2
(x− µ)TΣ−1(x− µ)), (6.1)

where Σ > 0 is a positive-de�nite (nonsingular) matrix. Suppose that Xn×p = (xij) is the data
matrix where each column is composed by independent and identically distributed (iid) sam-
ples from 6.1 with size n. The estimation of Σ is based on the observed values x1, · · · , xn, xi =
{xi1, xi2, · · · , xip}. The likelihood function is then given by

L(µ,Σ) = (2π)−
np
2

n∏
i=1

det(Σ)−
1
2 exp(−1

2
(x− µ)TΣ−1(x− µ)) (6.2)

It can be shown that

l(µ,Σ) ∝ log det(Σ−1)− tr(SΣ−1), (6.3)

where l(µ,Σ) is the loglikelihood function and S = 1
n

∑
(Xi − X̄)(Xi − X̄)T . Therefore, MLE of Σ

is

Σ̂MLE = argmax
Σ>0

log det(Σ−1)− tr(SΣ−1). (6.4)

However datasets with much more variables than samples, n << p lead to a sample covariance
matrix S that is not of full rank, so its inverse does not exist. This makes equation 6.4 very complex
to be solved, and sometimes even inapplicable. In this section we present two methods that deal
with this high dimensional problem using regularization penalties and compare them with LPC,
described in Chapter 3, which deals with this problem with neighborhood selection.

6.1.1 Graphical lasso

This method was described in [BEGd08, FHT08] and is also known as Graphical Lasso or Glasso.
It is an adaptation of neighborhood selection with the lasso [MB06], where the lasso penalty was
applied to a standard regression problem to each variable individually and each time using the
others as predictors, such as

βi,λ = argmin
β
{n−1‖Xi −Xβ‖22 + λ‖β‖1}, i ∈ V, (6.5)

where β = (β1, · · · , βp), βi = 0 and λ is the tuning parameter. The neighborhood of each node i is
then given by

n̂eλi = {j ∈ V : β̂i,λj 6= 0} (6.6)

This method leads to a sparse graphical model and consistently estimates the set of nonzero elements
of Σ−1.

Since the existence of an edge between two vertices is determined by the non-zero elements of
the inverse covariance matrix Ω = Σ−1, this idea was then implemented more generally in [BEGd08]
by applying the l1-norm penalty to solve the maximum likelihood problem to estimate Ω = Σ−1

and reach a graph as sparse as possible.

Ω̂ = argmax
Ω>0

log det(Ω)− tr(SΩ)− λ‖Ω‖1. (6.7)

It is also shown a dual problem to 6.7

Ω̂ = max{log detW : ‖W − S‖∞ ≤ λ}, (6.8)

where W = S + U with U a symmetric matrix and S + U > 0. To solve 6.8 it was developed also
in [BEGd08] a block coordinate algorithm which is slightly changed in [FHT08] to ascertain the
equivalence to solving the lasso equations 6.5. The estimation of the covariance matrix using lasso
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penalty with the purpose of increasing its sparsity is intuitive and logical. The algorithm can be
found in [FHT08] and is implemented in glasso R package.

6.1.2 Network reconstruction using ridge penalty

In [HS14], they propose a new three-step approach to estimate a high-dimensional sparse graph.
The �rst step of this method is to use Ridge penalty to obtain a penalized partial correlation matrix.
Then a hypothesis test is applied on a mixture distribution and a few entries are set to zero according
to a p-value threshold. Finally, the non-zero partial correlation coe�cients are re-estimated. Since
this research is focused on reproducing the graph structure, we will only considered the �rst and
second steps. This method will be referred to as GGMridge or Graphical Ridge.

Step 1

Let's assume X ∈ Rp, X ∼ Np(µ,Σp). As already seen in Equation 2.2, the partial correlation
estimate following the inverse method is given by

P̂ = −scale(R−1),

where R is the sample correlation matrix and the function scale(.) was de�ned in Section 2.1.2.
Now assume that the data matrix X is standardized to have mean 0 and standard deviation 1 so
that S = XXT

n is the sample correlation matrix. To solve the singularity problem of S when dealing
with n < p, a positive constant λ is added to the diagonal elements of S, that is,

P̂λ = −scale((S + λIp)
−1), (6.9)

where λ is the tuning parameter and Ip is the p × p identity matrix. It is shown that the partial
correlation matrix shrinks towards the identity matrix as λ goes to in�nity.

Step 2

The hypothesis testing is done as follows:

1. Fisher's Z-transformation is applied on P̂λ = (p̂ij), denoted by {Ψ(p̂ij)}

2. {Ψ(p̂ij)} are assumed to follow a mixture of null and alternative distributions

f(Ψ) = ηf0(Ψ) + (1− η)fa(Ψ) (6.10)

where f0(Ψ) ∼ N(µ0, σ
2
0) is the null distribution related to H0 : ρij = 0, fa(Ψ) is the

alternative distribution related to Ha : ρij 6= 0 and is left unspeci�ed, and η is the proportion
of non-rejected null hypotheses.

3. Efron's central matching method is used to estimate f0(Ψ) while f(Ψ) is estimated using
polynomial Poisson regression.

4. P-values are then calculated for each p̂ij .

The non-zero partial correlation estimates are selected according to a threshold αRidge which is
calculated using cross-validation alongside with λ.
ERidge = {(i, j) ∈ V × V : p-valueRidge < αRidge}

6.2 Average of ROC Curves

The Receiver Operating Characteristic curve, commonly called ROC curve, is a plot that indi-
cates the accuracy of a model when compared with the real case. The vertical axis represents the
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model sensitivity, and the horizontal axis corresponds to 1− speci�city as the p-value threshold
α varies from 0 to 1. Sensibility is the percentage of true positives (TP) out of all real positives,
that is the sum of true positives and false negatives (TP+FN), while speci�city is the percentage of
true negatives (TN) out of all real negatives, that is, the sum of true negatives and false positives
(TN+FP).

In network reconstruction, positives are existing edges and negatives are non-existing edges.
When comparing the reconstructed network with the original structure used to generate data, we
can tell which edges have been correctly identi�ed (TP) or not (FP). The same comparison can be
done regarding non-existing edges (TN) and (FN). The best models are the ones that combine both
high sensitivity and speci�city, since models with high sensibility present low type II error and
models with high speci�city have low type I error. Therefore, the higher the curve is (the higher
the area under the curve is) the better as can be seen in Figure 6.1

Figure 6.1: Example of ROC curve

Assume that α = {α1, α2, · · · , αm}, where α1 = 0 and αm = 1, and knowing that αi+1 = αi+ 1
m .

For each αi we have a value for speci�city and for sensitivity forming corresponding vectors. Each
simulation produces a speci�city and a sensitivity vector. Lets stack these vectors in a such a way
that each column i will correspond to the speci�city or sensitivity values produced by αi. Figure
6.2 shows two matrices where each row is the vector for sensitivity (left matrix) or speci�city (right
matrix) and the columns are composed by entries of each vector corresponding to a speci�c αi.
The average of ROC curves is the plot of the mean vectors of speci�city and sensibility where each
entry i is the mean of column i, that is, mean of sensibility or speci�city values produced by αi
in each simulation. Then the standard deviation is added and subtracted from the mean to form a
variation range.

Figure 6.2: Example of how sensitivity (left) and speci�city (right) vectors are stacked into matrices. The
columns are composed by entries of each vector corresponding to a speci�c αi.
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6.3 Simulations

Local partial correlation, graphical lasso and GGMridge methods are �rst applied to data from
two di�erent simulation methods: GGM and GNW. Since these simulation methods provide the
original graph structure used to generate the data, we can use ROC curves to compare the e�ciency
of each partial correlation method.

6.3.1 Graphical Gaussian Models

Data was generated from a normal distribution with mean µp = 0p and covariance matrix Σsim

simulated according to the steps described in 5.6.1. The simulation process was repeated 300 times
for each scenario (graph structure, number of nodes and sample size). Erdos Renyi, scale free and
small world are the three graph structures selected to perform this study. We started with a small
size of network: p = 50, n = 20. Then we proceed to a slight bigger size: p = 100, n = 50, and then
p = 200, n = 50. Note that the sample size is always smaller than the number of nodes due to our
goal to assess partial correlation methods on high-dimensional data. For each generated dataset, we
apply local partial correlation, graphical lasso and GGMridge methods separately leading to three
reconstructed networks.

The three methods are compared using ROC curves. The p-value threshold range used to
generate the speci�city and sensitivity vectors were {0.001, · · · , 1; by 0.005}, for GGMridge and
(0.0001, · · · , 0.4; by 0, 1} ∪ {0.6, 0.7, 0.8, 0.9, 1} for LPC. Since GLasso does not use p-values to
build the sparse graph, the ROC curves were built based on the following range for the lasso tuning
parameter λ: {0.0001, · · · , 40; by 0.1}. For each method, the average of the ROC curves obtained
from the 300 simulations are plotted in Figure 6.3 along with the 1 standard deviation range. We
can see that in all graphs the GGMridge curves are higher than the curves corresponding to LPC
and GLasso, while these last two curves are very close to each other and sometimes overlap, which
means that, although LPC and GLasso methods present similar results, GGMridge has proven to
be a slightly better method to be used on GGM simulations.

6.3.2 GNW

Choice of parameters

To avoid incorrect identi�cation of DCPs, we should work with simulated data that adjusts to
the methods we use to reconstruct networks. In other words, it would be ideal if the methods we used
in this research could reproduce networks similar to the original structures that generated them.
As a starting point, a detailed study was performed on wildtype data - gene expression without
perturbations - generated by GNW from Ecoli goldstandards. We checked how much the signi�cant
correlation coe�cients are able to correctly identify the edges present in the original network, also
called true positives (TP).

Wildtype data was generated from two di�erent sub-networks for di�erent numbers of variables
and samples using two GNW models and several types of noise, which include SDE, microarray,
Gaussian and log-normal noise. Table A.1 shows the models, noise and parameters used along
with their index number. Next, gene coexpression networks based on Pearson correlation were
reconstructed and the percentage of TP were compared.

We can see on Figure 6.4 that there are two groups of parameters that return a higher percentage
of true positives in both networks and that, according to Table A.1, those circled groups are modeled
with only SDE noise. In addition to this �nding, by comparing Figure 6.4(a) with 6.4(b) and Figure
6.4(c) with 6.4(d) we can observe that - with a �xed p - comparing n < p with n >> p shows that
the percentage of TP is higher for n >> p, as expected. Figure 6.5 illustrates this latter observation
further with a bar plot showing the growth of percentage of true positives (TP) as the number of
samples n increases from 25 to 1000. Based on the information provided by this study, we have
decided to work only with SDE noise of 0.4 - index 6 and 27 in Table A.1.
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Comparison of Partial Correlation Methods

The results from GGM simulations in Section 6.3.1 led us to question how the partial correlation
methods would perform on these types of data. Considering both percentage of TP and TN (true
negatives: non-existing edges in original network).To this purpose the ROC curves for GLasso,
GGMridge and lcp methods were calculated and can be found on Figure 6.6. For LPC method we
used correlation p-value threshold of 0.1 and 1. The latter was done so that the percentage of TP
was not pre-determined by the correlation p-value. The parameters chosen this time was SDE noise
of 0.4 for SDE (index 6 in Table A.1) and ODE with SDE (index 27 in Table A.1) models. This
choice of parameter was based on Figure 6.4(b) and 6.4(d) where both networks return similar high
percentage of TP when n >> p. All methods in all charts in Figure 6.6 show poor ROC curves. In
Figure 6.6(b) and 6.6(d), where we have higher p and higher n, we can see that the method GLasso
has a much worse performance comparing to the other methods.

6.4 Real Data

The three partial correlation methods analyzed previously were applied to one of the datasets
used in cervical cancer studies in section 5 and collected in [ZKN+07]. This data can be found in
"GEO repository" and is already processed by the authors.

This dataset has tens of thousands of genes. However, only the 1268 Di�erentially Expressed
Genes (DEGs) identi�ed by [MSY+13] were considered as starting nodes. Dependencies are checked
between every pair of DEGs. We focused on reconstructing the tumor network due to its bigger
sample size (10 normal and 21 tumor samples, see Table A.8). All methods returned di�erent
networks, that is, the nodes connected to one or more edges are not necessarily the same (nodes
with degree 0 are not taken into consideration), and edges may connect di�erent pairs of nodes.

A visual support can be found in Figure 6.7. Figure 6.7(a) illustrates the networks reconstructed
using LPC. Next, in Figure 6.7(b), we add the edges and nodes produced by GGMridge that were
not present in LPC network. Even though the number of edges increases considerably, we can see
that only a few di�erent nodes were added. Finally, we also add the nodes and edges identi�ed by
Graphical lasso that are not common neither to LPC or GGMridge networks, Figure 6.7(c). It is
visually clear how GLasso generates a network completely di�erent form the other two methods.

The number of connected nodes and edges estimated by all three methods can be found in
Venn diagrams in Figures 6.8(a) and 6.8(b) respectively. Besides the 217 nodes present in all three
networks, LPC and GGMridge have a lot more nodes in common (343) when compared to GLasso
and LPC (54) or GLasso and GGMridge (33). This result indicates that GLasso estimates a network
very di�erent from LPC and GGMridge. When considering the intersection of edges, the di�erence
is even more clear. The number of edges present in all three methods is really low (only 14) while
t he intersection between LPC and GGMridge shows a much higher number (247) than GLasso
and LPC or GLasso and GGMridge (64). The illustration of the union of all three networks can be
found in Figure 6.8(c). Here we can see the nodes organized by the intersections observed in Figure
6.8(a).

This study shows that there is a greater similarity between the networks produced by LPC
and GGMridge than with GLasso. This result gives us support to believe that LPC is an e�cient
method and that LPC and GGMridge are more trustful methods than GLasso. Much more still
need to be done to prove these assumptions, such as applying these on other datasets or comparing
networks estimated by the same methods using di�erent datasets.
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(a) 50 variables and 20 samples

(b) 100 variables and 50 samples

(c) 200 variables and 50 samples

Figure 6.3: ROC curves from three di�erent partial correlation methods (G-rigde in black, GLasso in red,
LPC in in green) applied on data generated from Erdos-Renyi, Scale free and Small world graph structures
with: (a) 50 nodes and 20 samples; (b) 100 nodes and 50 samples; and (c) 200 nodes and 50 samples.
The straight lines are average ROC curves, while the dashed and dotted lines refer to average plus standard
deviation and average minus standard deviation respectively.
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(a) 50 variables and 25 samples (b) 50 variables and 500 samples

(c) 100 variables and 25 samples (d) 100 variables and 1000 samples

Figure 6.4: Study of the percentage of true positives in the reconstruction of two di�erent sub-networks (red
and blue) for 42 di�erent GNW parameters. Note that the parameters are indexed as natural numbers and
are described in Table A.1. The circled regions of all 4 plots correspond to the data generated with only SDE
noise.

Figure 6.5: Bar plot showing the growth of percentage of true positives (TP) as the number of samples n
increases from 25 to 1000 for three networks with di�erent number of vertices p: 50 (in blue), 100 (in red)
and 1000 (in green).
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(a) 50 variables and 500 samples: SDE model
with SDE noise of 0.4

(b) 100 variables and 1000 samples: SDE
model with SDE noise of 0.4

(c) 50 variables and 500 samples: ODE + SDE
model with SDE noise of 0.4

(d) 100 variables and 1000 samples: ODE +
SDE model with SDE noise of 0.4

Figure 6.6: ROC curves of di�erent partial correlation methods (GLasso in black, G-rigde in red, LPC
with correlation p-value threshold 1 in green and LPC with correlation p-value threshold 0.1 in blue) in the
reconstruction of networks using two di�erent number of variables (50 and 100) and two di�erent number
of samples (500 and 1000). Note that in (a) and (c) all the curves overlap close to the identity curve while
in (b) and (d) the GLasso ROC curve is much lower than the other curves. Regardless of the overlapping
results, all the ROC curves show poor performance.
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(a) LPC (b) LPC + GGMridge

(c) LPC + GGMridge + Lasso

Figure 6.7: (a) Network built with LPC method; (b) Union of networks built with LPC method and GGM-
ridge: the blue nodes in the network appear after the union of GGMridge network with (a); (c) Union of
networks built with LPC method, GGMridge and Graphical Lasso: the orange nodes in the network appear
after the union of Graphical Lasso network with (b)
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(a) Number of nodes (b) Number of edges

(c) Union of all networks

Figure 6.8: Venn Diagrams. (a) Number of connected nodes in networks reconstructed through the three
partial correlation methods herein analyzed: Graphical lasso (yellow circle), LPC (green circle) and GGM-
ridge (blue circle). We can see that the number of nodes in the intersection of LPC and GGMridge (purple
hex) is considerably bigger that the other pairwise intersections (red diamond and blue square). (b) Number
of edges in common in all three networks. The circle colors are kept the same. The number of similar edges
in the intersection of LPC and GGMridge are also higher than the other pairwise intersections. (c) Union
of all networks organized in a Venn Diagram. The circle colors are once more kept the same. The nodes in
each region represent the numbers in (a).
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Chapter 7

Conclusions

In this work, a methodology for biological network reconstruction was developed in order to
answer commonly asked questions made by biological research community. It was applied to two
previously published biological data - Bcell knockout and cervical cancer - in order to evaluate
the importance of di�erentially correlated pairs in detecting nodes responsible for state transition.
Overall, the obtained results support the idea that di�erentially co-expressed genes play a regulatory
role. While an enrichment of causal genes among DC genes was observed in B cell knockout system,
only one causal gene (key driver) was found among DC genes in cervical cancers. On the other
hand, the DCPs were located close to genes involved in chromosomal-aberration (perturbations).
Moreover, the DCPs identi�ed in cervical cancer have also been found closer to key regulators than
other genes in the network, representing "bottlenecks" for communication between driver genes and
the rest of the network. Therefore, the idea that genes presenting alterations in correlation patterns
between di�erent phenotypes play a critical regulatory role in transitions from one state to another
was con�rmed.

Di�erence of correlation after a node or edge knockout was evaluated through a numerical analy-
sis using Graphical Gaussian Models on several types of graph structures. This study demonstrated
that the distance from the network perturbation has direct e�ect on the changes after a network
transition. It con�rmed that DCPs tend to be close to the perturbation site, specially on scale
free graphs. It is known that this type of structure is a good representation of biological networks.
Another observed interesting feature of scale free structures is the e�ect of number of leaves in a
pair of nodes on di�erence of correlation: when comparing pairs with same distance from knockout,
the pairs with more leaves seem to present higher di�erence of correlation. On the other hand,
no evidence was found regarding bottlenecks on GGM simulations. Further investigation is neces-
sary to con�rm the aforementioned conclusions such as more general simulations and mathematical
demonstrations.

Comparison of partial correlation methods was performed in order to evaluate the use of Local
Partial Correlation, a new method developed by the Author. GGMridge presented better ROC
curves on GGM simulated data, besides producing similar networks reconstructed from real biolog-
ical data when comparing to LPC methodology. However, since gene expression data is not entirely
Gaussian due to its complexity and the existence of external factors, the obtained results support
the idea that LPC is an e�cient method and that both LPC and GGMridge are more reliable meth-
ods than Glasso. Also here more work need to be done to prove these assumptions, such as applying
these partial correlation procedures on other datasets, and also comparing networks estimated by
the same methods using di�erent datasets.

The overall conclusions of this work are:

• DCPs can be used to identify a group of genes containing nodes responsible for network
changes. However, further experimental analysis is necessary to correctly identify some of the
real causal genes.

• Local Partial Correlation was proven to be a reliable method to be applied on gene expression
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data, and due to the fact that it follows a straightforward methodology, its application is
strongly recommended when dealing with small number of variables/genes (e.g. p ≤ 200).
Otherwise, for larger number of variables, the GGMridge method seems to be more appropriate
due to its smaller processing time.



Appendix A

Tables

Parameter Index

Model Noise Index
SDE SDE Noise 0.01 1
SDE SDE Noise 0.05 2
SDE SDE Noise 0.1 3
SDE SDE Noise 0.2 4
SDE SDE Noise 0.3 5
SDE SDE Noise 0.4 6
SDE SDE Noise 0.5 7
SDE SDE Noise 0.01 + microarray noise 8
SDE SDE Noise 0.05 + microarray noise 9
SDE SDE Noise 0.01 + Gaussian noise 0.025 10
SDE SDE Noise 0.01 + Gaussian noise 0.01 11
SDE SDE Noise 0.01 + Gaussian noise 0.001 12
SDE SDE Noise 0.05 + Gaussian noise 0.025 13
SDE SDE Noise 0.05 + Gaussian noise 0.01 14
SDE SDE Noise 0.05 + Gaussian noise 0.001 15
SDE SDE Noise 0.01 + log normal noise 0.075 16
SDE SDE Noise 0.01 + log normal noise 0.05 17
SDE SDE Noise 0.01 + log normal noise 0.025 18
SDE SDE Noise 0.05 + log normal noise 0.075 19
SDE SDE Noise 0.05 + log normal noise 0.05 20
SDE SDE Noise 0.05 + log normal noise 0.025 21

ODE + SDE SDE Noise 0.01 22
ODE + SDE SDE Noise 0.05 23
ODE + SDE SDE Noise 0.1 24
ODE + SDE SDE Noise 0.2 25
ODE + SDE SDE Noise 0.3 26
ODE + SDE SDE Noise 0.4 27
ODE + SDE SDE Noise 0.5 28
ODE + SDE SDE Noise 0.01 + microarray noise 29
ODE + SDE SDE Noise 0.05 + microarray noise 30
ODE + SDE SDE Noise 0.01 + Gaussian noise 0.025 31
ODE + SDE SDE Noise 0.01 + Gaussian noise 0.01 32
ODE + SDE SDE Noise 0.01 + Gaussian noise 0.001 33
ODE + SDE SDE Noise 0.05 + Gaussian noise 0.025 34
ODE + SDE SDE Noise 0.05 + Gaussian noise 0.01 35
ODE + SDE SDE Noise 0.05 + Gaussian noise 0.001 36
ODE + SDE SDE Noise 0.01 + log normal noise 0.075 37
ODE + SDE SDE Noise 0.01 + log normal noise 0.05 38
ODE + SDE SDE Noise 0.01 + log normal noise 0.025 39
ODE + SDE SDE Noise 0.05 + log normal noise 0.075 40
ODE + SDE SDE Noise 0.05 + log normal noise 0.05 41
ODE + SDE SDE Noise 0.05 + log normal noise 0.025 42

Table A.1: Index table to indicate all parameters used in the generation of gene expression through GNW.
The cells in green correspond to the circled groups in Figure 6.4 while the indices in red are the parameters
used to reconstruct the networks in Figure 6.6.
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DEGs DCPs
DEGs Correlation

network

Missing allowed
30% max
(BRB)

30% max
Inherited from

DEGs
Mean p-value

(BRB)
0.05

Inherited from
DEGs

Regulation
same in all
studies

Inherited from
DEGs

Correlation
p-value

if p-value > 0.2,
marked as NOT
signi�cantly
correlated

< 0.2

Correlation
direction

same in all studies
present for at least

one state

Same in all studies,
for each separate

state
Di�erence of
correlation
p-value

< 0.1

Minimum number
of studies present

2 out of 2 2 out of 2
Inherited from

DEGs
Sample size > 2

Di�erence of
correlation
direction

2 out of 2

FDR on Fisher
p-value

< 0.1 < 0.02 < 0.025

PUC
Applied after FDR

�lter

Procedure for
duplicate Gene

symbol

Select pair with
lower di�erence of
correlation �sher

p-value.
Remove daps that
have the same gene
symbol combination
but di�erent probe

ids and have
di�erent change of
correlation direction

If Di�erent probe
IDs have the same
Gene symbol, they
are going to be

interpreted as the
same gene in the

network.

Table A.5: All �lters for all calculations on BcKO data
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DCPs
DEGs Correlation

network
DEGs Local Partial

Correlation

Missing allowed 30% max
30% max in separate

states

Correlation
p-value

if pv > 0.2,
marked as

NOT
signi�cantly
correlated

< 0.1
Signi�cant in DEGs
Correlation network

Correlation
direction

same in all
studies present
for at least one

state

Same in all studies,
for each separate

state

Local Partial
correlation
p-value

< 0.4

Local Partial
correlation
direction

Same in all studies,
for each separate

state
Di�erence of
correlation
p-value

< 0.1

Minimum number
of studies present

3 out of 5

Sample size > 2

Di�erence of
correlation
direction

same in all
studies present

FDR on Fisher
p-value

< 0.0025 < 10− 8 < 0.05

PUC
Applied after FDR

�lter

Procedure for
duplicate Gene

symbol

Select pair
with lower
di�erence of
correlation
�sher pv.

Select pair with
lower correlation
�sher pv. (Nothing
done when they
show di�erent
directions in
correlation)

Select pair with
higher correlation.
(Nothing done when
they show di�erent

directions in
correlation)

Table A.6: All �lters for all calculations on cervical cancer data
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Reference
Accesion
Number

Strain
#

normal
mice

# BcKO
mice

Array
Platform

Approxi-
mate

number of
transcripts

Shulzhenko
et al, 2011 GSE23573

B10.A
litter-
mates

12 12
NIAID
Mmca �
Mouse

38K

Shulzhenko
et al, 2011 GSE23573

BALB/c 10 10
NIAID
Mmca �
Mouse

38K

Table A.7: Datasets included in the meta-analysis of gene expression microarray data for Bcell Knockout.

Reference
Accesion
Number

# normal
tissue
samples

# tumor
tissue
samples

Array
Platform

Approxi-
mate

number of
transcripts

Mine et al,
2013 GSE26342

20 40
In house,
NIAID,
NIH

14K

Biewenga
et al, 2008 GSE7410

5 35
Agilent-
012391
G4112A

41K

Scotto et
al, 2008 GSE9750

21 32
A�ymetrix
HG-U133A

39K

Pyeon et al,
2007 GSE6791

8 20
A�ymetrix

HG-
U133_Plus_2

47K

Zhai et al,
2007 GSE7803

10 21
A�ymetrix
HG-U133A

39K

Table A.8: Datasets included in the meta-analysis of gene expression microarray data for cervical cancer



Appendix B

Algorithms and Scripts

B.1 Graphical structures

B.1.1 Edge Percent Random Tree

1 random . edge . percent . adj = function ( p1 , eta ) {
2 p = cei l ing ( eta∗( p1∗( p1−1) )/2)
3 i f (p<p1 ) stop ( "not enough edges . p l e a s e choose a h igher eta " )
4 # ass i gn in g at l e a s t one edge f o r each node
5 A = matrix (data = 0 , nrow = p1 , ncol = p1 )
6 i=1
7 while ( i <= p1 ) {
8 temp3 = which(apply (A, 2 ,sum) > 0)
9 i f ( length ( temp3 ) == 0)
10 temp2=sample (c ( 1 : p1 ) [− i ] , 1 , replace = T) else {
11 i f ( length ( temp)>1){
12 i f ( length ( temp)>2)
13 temp2=sample (c ( 1 : p1 ) [−c ( i , temp3 ) ] , 1 , replace = T) else
14 i f ( length ( temp)==2)
15 temp2=temp[−which( temp==i ) ]
16 }
17 else
18 i f ( length ( temp)==1)
19 temp2=sample (c ( 1 : p1 ) [− i ] , 1 , replace = T)
20 }
21
22 A[ temp2 , i ]=1
23 A[ i , temp2]=1
24 temp = which(apply (A, 2 ,sum) == 0)
25 i f ( length ( temp) > 0)
26 i = temp [ 1 ] else
27 i = p1+1
28 }
29
30 i f (sum(A > 1) ) stop ( " adjacency matrix with e n t r i e s = 2 . Correct t h i s e r r o r ! " )
31
32 temp=A[upper . t r i (A) ]==0
33 t r i .w = which(upper . t r i (A) )
34 t r i .w=temp∗t r i .w
35 s i g = cei l ing ( eta ∗ length ( t r i .w) )− (sum(A)/2)
36 t r i .w=t r i .w[ t r i .w!=0 ]
37
38 s i g . node = sample ( t r i .w, s i g )
39 A[ lower . t r i (A) ]=0
40 A[ s i g . node ] = 1
41 A = A + t (A)
42
43 return (A)
44 }

63
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B.1.2 Galton Watson Tree

1
2 t r e e . gw=function (p , meanlog=0, sd log=1){
3 A=data . frame (matrix (0 , nrow = p , ncol = p) , s t r i ng sAsFac to r s = F)
4 i=1
5 j=1
6 while ( j<p) {
7 # nf=c e i l i n g ( rgeom (1 ,0 . 5 ) )
8 nf= cei l ing ( rlnorm (1 , meanlog = meanlog , sd log = sd log ) )
9 i f ( j+nf > p) nf=p−j
10 A[ ( j +1) : ( j+nf ) , i ]=rep (1 , nf )
11 j=j+nf
12 i=i+1
13 }
14 A=A+t (A)
15 return (A) }

B.1.3 Lattice with leaves

1
2 graphELeafs <− function ( i , j , l e a f s =0) {
3 # v e r i f y input v a r i a b l e s
4 i f ( i <= 0 | | j <=0) {
5 print ( ' e r r o r : i or j cannot be l e s s than zero ' )
6 return (0 )
7 }
8
9 # ca l c u l a t e the dimension o f the adjacency matrix (max rows and co lunns )
10 # tha t r ep r e s en t s the number o f max l e a f s
11 max_l e a f s = i∗ j
12
13 # va l i d a t e the number o f e x t ra l e a f s
14 i f ( l e a f s <= 0) {
15 l e a f s = max_l e a f s
16 } else
17 i f ( l e a f s > max_l e a f s ) {
18 l e a f s = max_l e a f s
19 cat ( ' warning : l e a f s changed to ' ,max_l e a f s , ' \n ' )
20 }
21
22 gLat t i c e = make_l a t t i c e ( dimvector = c ( i , j ) )
23 mAdjacency = get . adjacency ( gLat t i c e )
24
25 # genera te a new sparse matrix
26 mLeafs = Matrix (0 , nrow=max_l e a f s , ncol=l e a f s , spa r s e=TRUE)
27
28 # genera te a random sequence o f numbers wi thout r e p e t i t i o n
29 # as we permutate the va l u e s from 1 to max_l e a f s ( dimension )
30 new_va lue s = sample ( 1 :max_l e a f s )
31
32 for ( i in 1 : l e a f s ) {
33 mLeafs [new_va lue s [ i ] , i ] = 1
34 }
35 aMatrix = cbind2 (mAdjacency , mLeafs )
36
37 # genera te a sparse matrix to f i l l t he remaining rows to complete a square

matrix
38 mRows = Matrix (0 , nrow=l e a f s , ncol=(max_l e a f s+l e a f s ) , spa r s e=TRUE)
39
40 # conver t the matrix to a square matrix
41 f i n a l_aMatrix = rbind ( aMatrix , mRows)
42
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43 # genera te the f i n a l graph
44 f i n a l_graph = graph_from_adjacency_matrix ( f i n a l_aMatrix , mode=c ( " und i rec ted " ) )
45
46 return ( f i n a l_graph ) }

B.2 Algorithms for Chapter 4

B.2.1 Algorithm for calculation partial correlations.

Algorithm for calculation partial correlations. Implementation of partial correlation is straightforward in R using
the function cor2pcor from package corpcor. The input of this function is a correlation matrix, which should be a
"positive de�nite", a mathematically required property. However, in the omics data it is common that the correlation
matrix is not positive de�nite because thousands of variables are measured in tens or hundreds of samples. Thus, to
apply the inverse method we should make the estimation of the covariance matrix positive de�nite. For this, we use
shrinkage estimation for covariance matrix which is implemented in R in the same package corpcor.

1 #X i s the data matrix where columns rep r e s en t genes/ v a r i a b l e s and rows rep r e s en t
samples/ i n d i v i d u a l s

2
3 C = cor (X)
4 C = cor2pcor (C)

B.2.2 Algorithm for Meta-analysis scheme

1. Select only genes (or pairs of DEGs in case of networks) with the same direction of di�erence of mean (or
correlation in case of networks) throughout all data sets. Each gene or gene-gene correlation should pass a certain
p-value threshold. This threshold controls for heterogeneity between datasets. 2. For each possible gene (or pair of
DEGs in case of networks), calculate the Fisher p-values using the following function created in R:

1 # pva lue i s a matrix where columns r e s p r e s en t pva lue v e c t o r s f o r each da t a s e t
2
3 >pv . meta . a n a l y s i s=function ( pvalue ) {
4 # ca l c u l a t e f i s h e r s t a t i s t i c s
5 sum = log ( pvalue [ , 1 ] )
6 for ( j in 2 : ncol ( pvalue ) ) sum = sum + log ( pvalue [ , j ] )
7 t=−2∗(sum)
8
9 # ca l c u l a t e f i s h e r pva lue
10 pv_f i s h=1−pchisq ( t , 2∗ncol ( pvalue ) )
11 return ( pv_f i s h ) }

Compute FDR over the obtained vector of Fisher p-values using the R function

1 pv=pv . meta . a n a l y s i s ( pvalue )
2 pv . f d r=p . ad jus t (pv , method = " fd r " )

3.Select pairs with FDR less than a threshold.

B.3 Algorithm for DCPs identi�cation

1. Calculate a matrix of pairwise correlation C1 and C2 for two groups of genes expression matrices X1 and X2
(number of columns is number of samples and rows are genes)

1 C1 = cor (X1)
2 C2 = cor (X2)

2. We compute the p-values of di�erence of correlation using the function pv.dif.cor.pearson developed by the
auther using function �sherz from the R package psych. Let n1 and n2 be the number of samples for corresponding
groups (n1 is the number of rows in X1, n2 is the number of rows in X2).

1 pv . d i f . cor . pearson = function (C1 ,C2 , n1 , n2 ) {
2 i f ( ! "psych" %in% instal led . packages ( ) )
3 in s ta l l . packages ( "psych" )
4 l ibrary ( psych )
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5 # Convert c o r r e l a t i o n s to z−s core s
6 z1 = f i s h e r z (C1)
7 z2 = f i s h e r z (C2)
8 # Ca l cu l a t e v e c t o r o f t−t e s t s to compare
9 # co r r e l a t i o n s between c l a s s e s
10 f i s h e r = ( z1 − z2 ) / sqrt ( (1/ ( n1 − 3) ) + (1/ ( n2 − 3) ) )
11 # Ca l cu l a t e raw p−va l u e s
12 pv . d i f . cor = 2∗pt(−abs ( f i s h e r ) , I n f )
13 return ( pv . d i f . cor ) }

3. Compute FDR over the obtained vector of Fisher p-values using the R function. Select pairs with FDR less
than a threshold.

1 pv=pv . d i f . cor . pearson (C1 ,C2 , n1 , n2 )
2 pv . f d r=p . ad jus t (pv , method = " fd r " )
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