• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2016.tde-24032016-153903
Documento
Autor
Nome completo
Marcos Rafael Nogueira Cavalcante
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Bolfarine, Heleno (Presidente)
Azevedo, Caio Lucidius Naberezny
Elian, Silvia Nagib
Título em português
Robustecendo a distribuição normal
Palavras-chave em português
Distribuição slash
Distribuição slash assimétrica
Resumo em português
Esta dissertação tem como objetivo o estudo da distribuição ``slash'', considerando seus casos simétrico e assimétrico univariados. Serão apresentadas propriedades probabilísticas e inferenciais dessa distribuição, assim como peculiaridades e problemas. Para serem feitas inferências será considerado o enfoque clássico através do uso dos métodos dos momentos e máxima verossimilhança. São apresentados também os cálculos para a obtenção destes estimadores. Nos casos onde estes estimadores não podem ser obtidos algebricamente foram utilizados métodos computacionais, através da implementação do algoritmo EM. Para isto, foi utilizado o software R e os comandos estão no apêndice. No caso dos estimadores de máxima verossimilhança será implementado o método de Louis para estimar os elementos da matriz de informação de Fisher. Foram realizados estudos de simulação e aplicações para dados reais. Nas aplicações foi analisado o modelo de regressão linear simples, onde foi considerado que os erros seguem distribuição slash assimétrica.
Título em inglês
Robustifying the normal distribution
Palavras-chave em inglês
Distribution slash
Distribution slash asymmetrical
Resumo em inglês
This dissertation aims at studying the ``slash'' distribution considering its symmetric and asymmetric versions. We present probabilistic as well as inferential aspects of this distribution, including peculiarities and problems related to model fitting. The classical approach based on maximum likelihood estimation is used. Moments estimation is also considered as starting values for the maximum likelihood estimation. The implementation of the EM algorithm is developed for the implementation of the likelihood approach. For this implementation software R was used and codes required are presented in the Appendix. As a byproduct of the EM algorithm, Louis method is considered for estimating the Fisher information matrix which can be used for computing large sample intervals for model parameters. Extensions for a simple regression model is considered. Simulation studies are presented illustrating the performance of the estimation approach considered. Results of real data analysis indicate that the methodology can perform well in applied scenarios.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tesemarcos.pdf (1.08 Mbytes)
Data de Publicação
2016-09-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.