• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2010.tde-27052013-085717
Documento
Autor
Nome completo
Valdivino Vargas Junior
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2010
Orientador
Banca examinadora
Machado, Fabio Prates (Presidente)
Lebensztayn, Élcio
Martinez, Mauricio Zuluaga
Prado, Fernando Pigeard de Almeida
Sobottka, Marcelo
Título em português
Modelagem de epidemias via sistemas de partículas interagentes
Palavras-chave em português
modelo epidêmico
processo de ramificação
transição de fase
Resumo em português
Estudamos um sistema de partículas a tempo discreto cuja dinâmica é a seguinte. Considere que no instante inicial sobre cada inteiro não negativo há uma partícula, inicialmente inativa. A partícula da origem é ativada e instantaneamente ativa um conjunto aleatório contíguo de partículas que estão a sua direita. Como regra, no instante seguinte ao que foi ativada, cada partícula ativa realiza esta mesma dinâmica de modo independente de todo o resto. Dizemos que o processo sobrevive se em qualquer momento sempre há ao menos uma partícula ativa. Chamamos este processo de Firework, associando a dinâmica de ativação de uma partícula inativa a uma infecção ou explosão. Nosso interesse é estabelecer se o processo tem probabilidade positiva de sobrevivência e apresentar limites para esta probabilidade. Isto deve ser feito em função da distribuição da variável aleatória que define o raio de ação de uma partícula. Associando o processo de ativação a uma infecção, podemos pensar este modelo como um modelo epidêmico. Consideramos também algumas variações dessa dinâmica. Dentre elas, variantes com partículas distribuídas sobre a semirreta dos reais positivos (nesta vertente, existem condições para as distâncias entre partículas consecutivas) e também com as partículas distribuídas sobre vértices de árvores. Estudamos também para esses casos a transição de fase e probabilidade de sobrevivência. Nesta variante os resultados obtidos são funções da sequência de distribuições dos alcances das explosões e da estrutura dos lugares onde se localizam as partículas. Consideramos também variações do modelo onde cada partícula ao ser ativada, permanece ativa durante um tempo aleatório e nesse período emite explosões que ocorrem em instantes aleatórios.
Título em inglês
Modeling epidemics through interacting particle systems
Palavras-chave em inglês
branching process
epidemic model
phase transition.
Resumo em inglês
We studied a discrete time particle system whose dynamic is as follows. Consider that at time zero, on each non-negative integer, there is a particle, initially inactive. A particle which is placed at origin is activated and instantly activates a contiguous random set of particles that is on its right. As a rule, the next moment to what it has been activated, each active particle carries the same behavior independently of the rest. We say that the process survives if the amount of particles activated along the process is infinite. We call this the Firework process, associating the activation dynamic of a particle to an infection or explosion process. Our interest is to establish whether the process has positive probability of survival and to present limits to this probability. This is done according to the distribution random variable that defines the radius of infection of each active particle, Associating the activation process to an infection, we think this model as a model epidemic. We also consider some variations of this dynamic. Among them, variants with particles distributed over the half line (there are conditions for the distances between consecutive particles) and also with particles distributed over the vertices of a tree. We studied phase transitions and the correspondent survival probability. In this variant the results depend on the sequence of probability distributions for the range of the explosions and on the particles displacement. We also consider a variation where each particle after activated, remains active during a random time period emitting explosions that occur in random moments.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
definitiva_05052010.pdf (387.94 Kbytes)
Data de Publicação
2013-05-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.