• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2008.tde-27102008-101711
Documento
Autor
Nombre completo
Rogério de Faria Porto
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2008
Director
Tribunal
Morettin, Pedro Alberto (Presidente)
Lopes, Sílvia Regina Costa
Pinheiro, Aluísio de Souza
Toloi, Clélia Maria de Castro
Zandonade, Eliana
Título en portugués
Regressão não-paramétrica com erros correlacionados via ondaletas.
Palabras clave en portugués
autocorrelação
erros em séries temporais
estimação semi-paramética
lifting
ondaletas
ondaletas adaptativas
ondaletas deformadas
regressão não-paramétrica
Resumen en portugués
Nesta tese, são obtidas taxas de convergência a zero, do risco de estimação obtido com regressão não-paramétrica via ondaletas, quando há erros correlacionados. Quatro métodos de regressão não-paramétrica via ondaletas, com delineamento desigualmente espaçado são estudados na presença de erros correlacionados, oriundos de processos estocásticos. São apresentadas condições sobre os erros e adaptações aos procedimentos necessárias à obtenção de taxas de convergência quase minimax, para os estimadores. Sempre que possível são obtidas taxas de convergência para os estimadores no domínio da função, sob condições bastante gerais a respeito da função a ser estimada, do delineamento e da correlação dos erros. Mediante estudos de simulação, são avaliados os comportamentos de alguns métodos propostos quando aplicados a amostras finitas. Em geral sugere-se usar um dos procedimentos estudados, porém aplicando-se limiares por níveis. Como a estimação da variância dos coecientes de detalhes pode ser problemática em alguns casos, também se propõe um procedimento iterativo semi-paramétrico geral para métodos que utilizam ondaletas, na presença de erros em séries temporais.
Título en inglés
Non-parametric regression with correlated errors using wavelets
Palabras clave en inglés
autocorrelation
design-adapted wavelets
lifting
non-parametric regression
semi-parametric estimation
time-series errors
warped wavelets
wavelets
Resumen en inglés
In this thesis, rates of convergence to zero are obtained for the estimation risk, for non-parametric regression using wavelets, when the errors are correlated. Four non-parametric regression methods using wavelets, with un-equally spaced design are studied in the presence of correlated errors, that come from stochastic processes. Conditions on the errors and adaptations to the procedures are presented, so that the estimators achieve quasi-minimax rates of convergence. Whenever is possible, rates of convergence are obtained for the estimators in the domain of the function, under mild conditions on the function to be estimated, on the design and on the error correlation. Through simulation studies, the behavior of some of the proposed methods is evaluated, when used on finite samples. Generally, it is suggested to use one of the studied methods, however applying thresholds by level. Since the estimation of the detail coecients can be dicult in some cases, it is also proposed a general semi-parametric iterative procedure, for wavelet methods in the presence of time-series errors.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
teseportorf.pdf (1.46 Mbytes)
Fecha de Publicación
2008-12-11
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.