• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2017.tde-01082017-193924
Documento
Autor
Nombre completo
Paulo Bittencourt Moura
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Kon, Fabio (Presidente)
Camargo, Raphael Yokoingawa de
Cordeiro, Daniel de Angelis
Endler, Markus
Lejbman, Alfredo Goldman Vel
Título en portugués
Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
Palabras clave en portugués
Computação em nuvem
Elasticidade
Escalabilidade
Modelagem de Escalabilidade
Teste de escalabilidade
Resumen en portugués
Provedores de serviços de nuvem disponibilizam uma interface através da qual seus clientes podem solicitar, usar e liberar estes recursos. Muitos serviços implantados em nuvens incluem um componente para gerenciamento automatizado de recursos, encarregado de requisitar e librar recursos sem intervenção humana, à medida que a demanda varia. A técnica padrão para o gerenciamento de recursos se baseia em regras sobre utilização de recursos. Quando ocorre um aumento significativo na carga em um curto espaço de tempo, o sistema pode levar vários ciclos de monitoramento e ação até alcançar uma configuração adequada. Neste período, o sistema permanece sobrecarregado. Nesta pesquisa, investigamos como compreender adequadamente os efeitos da variação na disponibilidade de recursos sobre a capacidade de um sistema e como aplicar este conhecimento para melhorar sua elasticidade. Propomos uma estratégia que abrange avaliação da escalabilidade do sistema, visando sua modelagem, e a aplicação deste modelo nas estimativas de necessidade por recursos com base na carga de trabalho. Introduzimos um arcabouço para automatizar a avaliação de escalabilidade de sistemas distribuídos e efetuamos uma validação experimental da estratégia proposta. Comparamos a alocação de recursos e o desempenho obtido usando nossa estratégia e estratégia baseada em regras, fazendo a reprodução de carga real e usando cargas sintéticas. De forma geral, nossa proposta foi capaz de prover melhor desempenho, ao ponto que o uso de recursos cresceu, e consequentemente o custo de utilização. No entanto, a melhora de desempenho foi mais significativa que o aumento dos custos.
Título en inglés
Dynamic resource allocation for elastic systems based on scalability modeling
Palabras clave en inglés
Cloud computing
Elasticity
Scalability
Scalability modeling
Scalability testing
Resumen en inglés
Cloud computing is a new paradigm in which virtual resources are leased in the short-term. Cloud providers publish an API through which users can request, use, and release those resources. Thus, a properly architected system can be quickly deployed and their infrastructure can be quickly updated to better accommodate workload fluctuations and limit expenses. Many services running in clouds comprise an automated resource management unit, which is in charge of requesting and releasing resources without human intervention, as demand changes. The rule based approach, commonlly applied to automate the resource management, is especially problematic in cases of load surge. When of a quick and drastic increase of the workload, the system may take many cycles of infrastructural redimensioning until achieve an adequate state. In this case, the system remains overloaded during all those cycles, affecting user experience. In this research, we investigate how we can properly understand what are the effects, in system capacity, incurred by variations in resource availability, and how this knowledge can be applied to improve elasticity. We propose a strategy that comprises performing scalability tests to model scalability and apply the model to estimate resource need, according to the arriving workload. We introduce a framework for automated scalability evaluation of distributed systems and experimentally evaluate the proposed strategy. We compare the allocation and performance obtained using our strategy with a rule based strategy in a trace-driven simulation and with synthetic workloads. We also evaluate six variations of the model-based approach. Generally, our approach can deliver better performance, while increasing resource allocation and, consequently, cost. The extent of the performance improvement is larger than the cost increment, though.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-09-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.