• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2014.tde-02072014-150049
Documento
Autor
Nome completo
Jorge de Jesus Gomes Leandro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2014
Orientador
Banca examinadora
Cesar Junior, Roberto Marcondes (Presidente)
Barrera, Junior
Marana, Aparecido Nilceu
Miranda, Paulo Andre Vechiatto de
Oliveira, Claudia Lucia Mendes de
Título em português
Análise de formas usando wavelets em grafos
Palavras-chave em português
análise de formas
análise espectral
análise espectral de grafos
aprendizagem de máquina
classicação
discriminação
grafos
processamento de imagens
reconhecimento de padrões
redes complexas
transformada wavelet
visão computacional
Resumo em português
O presente texto descreve a tese de doutorado intitulada Análise de Formas usando Wavelets em Grafos. O tema está relacionado à área de Visão Computacional, particularmente aos tópicos de Caracterização, Descrição e Classificação de Formas. Dentre os métodos da extensa literatura em Análise de Formas 2D, percebe-se uma presença menor daqueles baseados em grafos com topologia arbitrária e irregular. As contribuições desta tese procuram preencher esta lacuna. É proposta uma metodologia baseada no seguinte pipeline : (i) Amostragem da forma, (ii) Estruturação das amostras em grafos, (iii) Função-base definida nos vértices, (iv) Análise multiescala de grafos por meio da Transformada Wavelet Espectral em grafos, (v) Extração de Características da Transformada Wavelet e (vi) Discriminação. Para cada uma das etapas (i), (ii), (iii), (v) e (vi), são inúmeras as abordagens possíveis. Um dos desafios é encontrar uma combinação de abordagens, dentre as muitas alternativas, que resulte em um pipeline eficaz para nossos propósitos. Em particular, para a etapa (iii), dado um grafo que representa uma forma, o desafio é identificar uma característica associada às amostras que possa ser definida sobre os vértices do grafo. Esta característica deve capturar a influência subjacente da estrutura combinatória de toda a rede sobre cada vértice, em diversas escalas. A Transformada Wavelet Espectral sobre os Grafos revelará esta influência subjacente em cada vértice. São apresentados resultados obtidos de experimentos usando formas 2D de benchmarks conhecidos na literatura, bem como de experimentos de aplicações em astronomia para análise de formas de galáxias do Sloan Digital Sky Survey não-rotuladas e rotuladas pelo projeto Galaxy Zoo 2 , demonstrando o sucesso da técnica proposta, comparada a abordagens clássicas como Transformada de Fourier e Transformada Wavelet Contínua 2D.
Título em inglês
Shape analysis using wavelets on graphs
Palavras-chave em inglês
classication
complex networks
computer vision
discrimination
graphs
machine learning
pattern recognition
shape analysis
spectral analysis
spectral graph analysis
wavelet transform
wavelets
Resumo em inglês
This document describes the PhD thesis entitled Shape Analysis by using Wavelets on Graphs. The addressed theme is related to Computer Vision, particularly to the Characterization, Description and Classication topics. Amongst the methods presented in an extensive literature on Shape Analysis 2D, it is perceived a smaller presence of graph-based methods with arbitrary and irregular topologies. The contributions of this thesis aim at fullling this gap. A methodology based on the following pipeline is proposed: (i) Shape sampling, (ii) Samples structuring in graphs, (iii) Function dened on vertices, (iv) Multiscale analysis of graphs through the Spectral Wavelet Transform, (v) Features extraction from the Wavelet Transforms and (vi) Classication. For the stages (i), (ii), (iii), (v) and (vi), there are numerous possible approaches. One great challenge is to nd a proper combination of approaches from the several available alternatives, which may be able to yield an eective pipeline for our purposes. In particular, for the stage (iii), given a graph representing a shape, the challenge is to identify a feature, which may be dened over the graph vertices. This feature should capture the underlying inuence from the combinatorial structure of the entire network over each vertex, in multiple scales. The Spectral Graph Wavelet Transform will reveal such an underpining inuence over each vertex. Yielded results from experiments on 2D benchmarks shapes widely known in literature, as well as results from astronomy applications to the analysis of unlabeled galaxies shapes from the Sloan Digital Sky Survey and labeled galaxies shapes by the Galaxy Zoo 2 Project are presented, demonstrating the achievements of the proposed technique, in comparison to classic approaches such as the 2D Fourier Transform and the 2D Continuous Wavelet Transform.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
jleandrotese.pdf (38.31 Mbytes)
Data de Publicação
2014-07-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.