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Resumo

NOGUEIRA, G. M. Evoluindo o Suporte à Tolerância a Falhas na Macroprogra-
mação de Redes de Sensores sem Fio. 2014. 120 f. Dissertação (Mestrado) - Instituto
de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2014.

Redes de Sensores Sem Fio (RSSF) são sistemas distribuídos em rede para sensoreamento,
compostos de pequenos dispositivos conectados entre si. Esses sistemas são utilizados para
construir aplicações que medem e atuam no meio físico. Cada dispositivo da rede, chamado
de nó, é equipado com sensores, e algumas vezes, atuadores. Os nós também comumente
possuem limitações em termos de suprimento de energia e capacidade de armazenamento
e processamento. Em adição à essas limitações, redes de sensores sem fio também estão
sujeitas à diversos tipos de falhas, especialmente quando são implantadas em ambientes de
condições naturais extremas, como florestas e plantações.

Por essas razões, desenvolvedores de aplicações para redes de sensores sem fio necessitam
utilizar mecanismos de tolerância a falhas. Alguns dos mecanismos de tolerância a falhas
são implementados em hardware, porém são mais comumente deixados para implementação
em software. Além disso, a maior parte do desenvolvimento de aplicações para RSSF é feita
em baixo nível de abstração, perto do sistema operacional. Desse modo, além de terem
que concentrar-se na lógica da aplicação em baixo nível, os desenvolvedores ainda têm que
implementar os mecanismos de tolerância a falhas junto à aplicação, pela falta de bibliotecas
ou componentes genéricos para esse fim. Técnicas de programação em alto nível para RSSF
já foram propostas na forma de linguagens e arcabouços de macroprogramação. No entanto,
uma minoria lida com aspectos de tolerância a falhas.

O objetivo desse trabalho é incorporar funcionalidades para tolerância a falhas ao Srijan,
um arcabouço de macroprogramação para redes de sensores sem fio. Srijan possui código
aberto e é baseado em uma linguagem mista declarativa-imperativa chamada Abstract Task
Graph (ATaG). Evoluímos o arcabouço para dar suporte à geração automática de código
lidando com quedas de nós da rede e falhas que resultam em dados incorretos de sensores.
Nesta dissertação, apresentamos a nossa implementação de tais funcionalidades, juntamente
com a avaliação conduzida sobre a ferramenta. Mostramos que é possível prover um ar-
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cabouço de macroprogramação com suporte apropriado ao desenvolvimento de aplicações
para RSSF que necessitam tolerância a falhas.

Palavras-chave: redes de sensores sem fio, tolerância a falhas, macroprogramação, Srijan.



Abstract

NOGUEIRA, G. M. Improving Fault Tolerance Support in Wireless Sensor Net-
work macroprogramming. 2014. 120 f. Dissertation (Master) - Institute of Mathematics
and Statistics, University of São Paulo, São Paulo, 2014.

Wireless Sensor Networks (WSN) are distributed sensing network systems composed of
tiny networked devices. These systems are employed to develop applications for sensing and
acting on the environment. Each network device, or “node,” is equipped with sensors and
sometimes actuators as well. WSNs typically have limited power, processing, and storage
capability, and are also subject to faults, especially when deployed in harsh environments.

Given WSNs limitations, application developers often design fault-tolerance mechanisms.
Although developers implement some fault-tolerance mechanisms in hardware, most are
implemented in software. Indeed, WSN application development mostly occurs at a low level,
close to the operating system, which forces developers to focus away from application logic
and dive into WSN’s technical background. Some have proposed high-level programming
solutions, such as macroprogramming languages and frameworks; however, few deal with
fault-tolerance.

This dissertation aims to incorporate fault-tolerance features into Srijan, an open-source
WSN macroprogramming framework based on a mixed declarative-imperative language
called Abstract Task Graph (ATaG). We augment Srijan’s framework to support code gen-
eration for dealing with devices that crash or report meaningless values. We present our
feature implementation here, along with an evaluation of the tool, demonstrating that it is
possible to provide a macroprogramming framework with appropriate support for developing
fault-tolerant WSN applications.

Keywords: wireless sensor networks, fault tolerance, macroprogramming, Srijan.
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Chapter 1
Introduction

Wireless Sensor Networks (WSNs) are distributed systems composed of embedded de-
vices, which typically have limited processing, storage, and power supply capability, but are
equipped with sensors, actuators or both [MP11, MP12, ASSC02]. These systems are increas-
ingly employed to sense and act on the environment, permeating a variety of application
domains such as avionics, wide-area surveillance [MLZ+06], structural sensing, telemedicine,
river flood monitoring [HUM+11], smart grid monitoring [HMLU10], and space exploration
[PH07]. Langendoen et al. [LBV06], for example, reports the experience of deploying over
100 wireless sensor nodes over the course of three months in a precision agriculture setting
(agriculture led by very close analysis of environmental conditions), monitoring a potato
field’s temperature and humidity.

WSN fault tolerance is critical because, in addition to their limited processing power,
storage, and power supply, WSNs are also subject to failures, especially when deployed in
harsh environments. Langendoen et al.’s [LBV06] report on the multiple failures they en-
countered in their experiment emphasizes the need for WSN worst-case scenario application
design.

Failures in wireless sensor networks arise from a variety of sources and at three levels:
Node, Network, or Sink [dSVB07]. Node-level failures may occur due to nodes’ fragility:
external events can damage them and they can begin behaving inappropriately. Network-
level failures relate to network routing, which is essential for sensor data collection and WSN
coordination. Communication links between nodes are highly volatile, meaning interference
can occur, and nodes also sometimes have a degree of mobility. This volatility leads to
network partitions, dynamic changes in topology, blocked links, message collision, and packet
loss/corruption [PH07]. Finally, sink-level failures occur at a higher network level, wherein
a device that collects network-generated data, a sink, is subject to its components’ faults.
Unless a fault tolerant mechanism is available, this device failure may cause system-wide
failure, since the sensing data cannot be aggregated and accessed.

To deal with these kinds of faults, hardware and software solutions may be implemented.
However, although hardware advances are important to WSNs, the technology can only be
exploited if applications developers have access to proper software platforms. Nevertheless,
there are a few experiences reported in the literature wherein WSN applications have been
deployed relying on high-level programming support [MP11]. In most applications, the devel-
opment process occurs at a low level, close to the operating system, which forces developers
to deal with distributed applications’ design, including network issues, synchronization, and
data aggregation, data structure implementation, and fault management. Since developers
must therefore direct their focus away from application logic and toward WSN’s technical
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aspects, it is challenging for domain experts to create WSN applications.
High-level WSN application programming approaches are implemented using a variety

of tools and languages that provide different features for systems with varied characteristics
[GGG05, NMW07, AJG07, Kar10]. However, only a few of them deal with fault-tolerance,
and thus provide limited guarantees. For instance, transient faults, such as sensors tem-
porarily providing erroneous readings, are often overlooked. According to Mottola and Picco
[MP11], high-level programming frameworks in which faults are a first-class notion are nec-
essary for developing WSN applications better adapted for harsh environments.

1.1 Goal
The general goal of this work is to investigate how to enhance macroprogramming lan-

guages to support fault tolerance mechanisms. To do so, we have chosen the Srijan macro-
programming framework [Pat08] (described in Chapter 4) to implement and evaluate fault
tolerance mechanisms. We thus intend to foment discussion about better ways to specify
and implement fault tolerance properties in WSN application development.

Based on this framework, this work’s objective is to provide WSN application develop-
ment support, specifically for building fault tolerant properties designed for network sinks.
We do this by expanding Srijan to include: (i) fault-tolerance specification for Abstract
Tasks; and (ii) code generation for common fault-tolerance processes, such as replication in
master/slave fashion for sinks [SFR12] and data validation of sensor-produced values.

We use two approaches to evaluate the work. First, we use quantitative evaluation to
analyze Srijan’s framework code generation efficiency with our proposed fault tolerance
support. Second, we conduct a qualitative study on how the fault tolerance features work,
and compare it in detail to related work.

1.2 Context of the Work
This work’s thematics were born from the author’s participation in the CHOReOS and

Baile projects, both of which studied the web service choreographies applicability at large
scales. The CHOReOS project was financed by the European Commission and included
the participation of several universities and private companies, USP being the only non-
European one.

During his participation in these projects, he developed prototypes, conducted experi-
ments, presented talks, helped with written deliverables, co-wrote papers and reports, and
interacted with project partners during meetings and technical discussions.

Because of this, the author was invited intern at Inria Paris-Rocquencourt laboratory
ARLES, with the goal of studying wireless sensor networks’ fault tolerance.

This dissertation contains work that was conducted during and after his internship.

1.3 Structure of the Document
The text is divided in 8 chapters. We start by giving an overview of the Wireless Sensor

Network field in Chapter 2. Following, we present current practices in fault tolerance for
sensor networks in Chapter 3. In Chapter 4, we provide an overview of the Srijan, the wireless
sensor network macroprogramming framework used as a base for this work. In Chapter 5, we
present the proposed modifications to Srijan for supporting fault-tolerance aspects. Related
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work regarding efforts to better support WSN application development and fault-tolerance
is shown in Chapter 6. In Chapter 7, we present qualitative and quantitative evaluation of
our work. Finally, in Chapter 8 we list our final remarks and future work.



Chapter 2
Wireless Sensor Networks

Wireless Sensor Networks began with sensors and sensing systems. They were single
systems deployed in one location to measure and process environmental properties. Later,
those systems evolved to Sensor Networks: inter-connected wired platforms, each with its
own sensors. Sensor Networks could sense and process data from different areas and reason on
that data, such as aggregating weather measurements from reporting stations near airports.

By the end of the 1990s, new technology enabled the production of low-power processing
units equipped with sensors and wireless antennas. Thus came Wireless Sensor Networks
[SMZ07], a system integrating automated sensing, embedded computing, and communication.
In Wireless Sensor Networks, each networked unit senses and processes a small area, and,
working together via wireless communication in a distributed and collaborative fashion, they
gather and process information over large areas.

The most basic sensor network characteristic is physical world interaction. By means
of sensors, they read environmental properties, such as temperature, humidity, and motion
tracking. These measurements can then be processed to generate high-level information sent
to decision systems. By means of actuators, the network then acts on the environment, such
as by toggling a switch or turning on a motor.

These networks captured researchers’ attention, who saw wireless sensor networks as an
“exciting emerging domain of deeply networked systems of low-power wireless motes with a
tiny amount of CPU and memory, and large federated networks for high-resolution sensing
of the environment” [SMZ07]. The research area quickly expanded as technological advances
produced cheaper and more efficient motes, and as more and more people recognized the
potential applications of these networks.

In this chapter, we present applications, characteristics, and classifications of Wireless
Sensor Networks.

2.1 Key Applications
Traditionally, sensor networks have been used in the context of high-end applications

such as radiation and nuclear-threat detection systems, “over-the-horizon” weapon sensors for
ships, biomedical applications, habitat sensing, and seismic monitoring. Initially, applications
focused on networked biological and chemical sensors for security. Nowadays, however, the
existing and potential applications of sensor networks have been envisioned in the following
areas [SMZ07]:

Military applications: Monitoring enemy and friendly forces and equipment; mili-
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tary theater or battlefield surveillance; targeting; battle damage assessment; and nu-
clear, biological, and chemical attack detection

Environmental applications: Microclimates; forest fires and river flood detection;
and precision agriculture

Health applications: Remote monitoring of physiological data; tracking and monitor-
ing doctors and patients inside a hospital; drug administration; and elderly assistance

Home applications: Home automation; and instrumented environments

Commercial/Business applications: Environmental control in industrial and office
buildings; inventory control; vehicle tracking; and traffic flow surveillance

2.2 Properties of Wireless Sensor Networks
Wireless Sensor Networks can be employed in many different contexts, with different

kinds of devices and configurations. In this section, we explain some properties of Wireless
Sensor Networks and their importance.

2.2.1 Node configuration

The choice of nodes can heavily influence the overall network. Nodes come in many types,
and when choosing one type there is always a trade-off. Node prices range from low to high,
depending on battery life, processing power, sensing accuracy, and so on. They vary in size
from large boxes to very small particles; these size variations in turn influence the available
computing, storage, and transmission capacity resources.

All these properties influence other aspects of the network: how long the network can be
left unattended, the sensing interval, how often the nodes communicate, how many nodes
can be used to cover an area, and so on.

2.2.2 Deployment type

There are two types of WSN deployment: ad-hoc or planned. Ad-hoc deployment is
random, for example, sensors might be dropped by airplanes to cover remote areas. A planned
deployment usually involves sensors placed at fixed locations, such as in a factory or office
building.

Deployment can also be classified by its periodicity; either as a one-time event or as
a continuous process, wherein new nodes are added to replace failed ones or to increase
accuracy in certain areas of interest.

Deployment type affects important properties such as expected node density, location,
regular location patterns, and the expected degree of network dynamics.

2.2.3 Node mobility

Nodes may change their location after the initial deployment. A certain degree of mobility
can result from the environment, such as from wind or water or from animal interference.
Nodes may also be attached in a controlled manner to mobile platforms or robots, or to
animals.
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In other words, mobility can be an accidental or desired network property. It can be
intended, such as robots moving towards an area of interest, or unintended, such as wild
animals moving network sensors.

The degree of mobility relates to the quantity of moving sensors in the network, how
often they move, and how long the distance they dislocate is.

Mobility influences networking protocols and distributed algorithms design. Routing pro-
tocols, transmission tables, and sensor accuracy are all affected by mobility.

2.2.4 Network Topology

One important sensor network property is diameter, that is, the maximum number of
hops between any two nodes. In its simplest form, a sensor network forms a single-hop
network, with every sensor node able to directly communicate with every other node.

An infrastructure-based network with a single base station forms a star network with a
diameter of two. A multi-hop network may form an arbitrary graph, but often one constructs
an overlay network with a simpler structure, such as a tree or a set of connected stars.

Topology affects many network characteristics, such as latency, robustness, and capacity,
as well as the complexity of data routing and processing.

2.2.5 Processing architecture

WSN processing architecture, which refers to where data is processed in the network,
is somewhat coupled with topology and available nodes. Processing architecture can be:
centralized in a node with high processing power and with better power supply; distributed
among the nodes; or, hybrid, in which pre-processing occurs in the nodes, and the heavy
duty processing is centralized.

2.2.6 Area Coverage

Network coverage describes how much of the area of interest the sensor nodes cover,
taking into account each individual sensor’s range. Coverage can be sparse or dense. With
sparse coverage, the area of interest is partially covered; the nodes may not detect some
events of interest, or may take longer to detect them. With dense coverage, the area is
completely sensored, and therefore sensors are more likely to detect significant events.

Degree of coverage influences data processing. Robust system design requires high cov-
erage, yet consequently also produces a larger data-set to analyze.

2.2.7 Node Connectivity

Connectivity relates to both each node’s connection range, and their connection’s peri-
odicity. Each node’s range defines how the node is connected to others, creating a graph.
This graph can be connected or partitioned, with moving nodes transferring information
from one another. Nodes can also disable their antennas to save battery, and thereby split
the graph.

A network can be: fully connected; intermittent when nodes are sleeping; and sporadic
when nodes lose communication for long periods.

Connectivity influences the networking protocols and data-acquiring methods.
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2.2.8 Network size

Network connectivity and coverage requirements, as well as the area of interest’s size,
determine the number of nodes participating in a sensor network. Network size in turn
determines protocol and algorithm scalability requirements.

2.3 Programming Tools
When talking about sensor network applications, for which the hardware and applications

and very domain-specific, it is important to emphasize available tools for building such
applications. Here we cite some of the tools used to create such applications in both low and
high levels of abstraction.

2.3.1 Low abstraction level tools

The primary low abstraction level platforms for application building are very close to
the operating system. Among them we cite:

TinyOS: This most widely used WSN operating system [Lev12] supports several mod-
els of motes (such as Mica, Telos, iMote, and others), and offers the nesC language for
its applications. It is a C extension with some constructs specific for the TinyOS exe-
cution model, which is event-based with a FIFO scheduler. The OS and its language’s
main characteristic is that they are designed to minimumally impact the device’s re-
source usage, specially the power supply. For this reason, it is not recommended for
CPU-bound applications. The platform provides a simulator called TOSSIM.

Contiki: This open-source operating system is more recent than TinyOS. It has an
event-based execution model, but is multi-threaded. Although it does not support
as many models as TinyOS, it has considerable usage [BHG+13], especially within
the Internet of Things paradigm, including an active developer community. The pro-
gramming language is C. Contiki developers also provide a virtual machine with a
pre-installed system and the SDK containing its simulator, called Cooja, which has
ready-to-run example applications.

nano-RK: As opposed to TinyOS and Contiki, nano-RK is specifically designed for
supporting real-time applications. It has a monolithic architecture and a thread-based
development model. The programming language is C, the supported model is MicaZ,
and the platform does not have a simulator.

2.3.2 High abstraction level tools

High abstraction level sensor network programming is commonly referred to as macro-
programming. Macroprogramming simplifies development of distributed applications, com-
prising wireless networked nodes, by abstracting away many of the complexities involved
in orchestrating communication among them [GGG05, Kar10]. Since this is the paradigm
we base our work on, we describe its great variety of frameworks and macroprogramming
languages with different paradigms and applicable scenarios in further chapters.

We specifically focus on the Srijan framework, our work’s basis, with a detailed descrip-
tion on Chapter 4. Other frameworks are described in Section 6.2 of Related Works.
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2.4 Discussion
A wireless sensor network is a distributed system designed to interact with the real

world. It has its own properties and constraints to overcome, and it is applicable to different
scenarios. Its operating systems, frameworks, and languages ecosystem is vast and diverse.

In this chapter, we presented an overview of the possible applications for sensor networks,
their inherent characteristics, and the main available platforms.



Chapter 3
Fault Tolerance in Wireless Sensor
Networks

As discussed before, WSN applications are inherently subject to failures. Thus, building
practical and reliable sensor network systems is a significant challenge [GKMG07]. WSNs
combine many of the difficulties of traditional embedded systems with those of traditional
distributed systems, including the need for proper synchronization and fault tolerance. WSN
volatility poses a challenge to ambitious application goals, such as long-term, multiple-year
deployments, large-scale networks of thousands of nodes, and highly reliable data delivery. As
the WSN field matures, strategies for detecting (and possibly correcting) the anomalies that
are inherent to their physically coupled low-end system design will only grow in importance
[JWOV11].

Tolerating faults, or maintaining fault resilience, involves prevention, detection, and
recovery. Prevention involves taking actions before the faults’ occurrence to reduce the
probability of the network breaking. Detection describes actively monitoring the wireless
network system at network, device, or data-layers. Finally, recovery amounts to overcom-
ing a system/component failure, which can be done by replicating a system component,
discarding corrupted data, or even informing an administrator of the failure’s occurrence
[dSVB07, PH07].

3.1 Prevention
Fault prevention in wireless sensor networks aims to prevent failure by ensuring the

network has enough sensors to provide redundancy, while still covering the desirable area. In
other words, it aims for full coverage and connectivity. Prevention usually happens during
the design and deployment phases. Most commonly, coverage and connectivity are expressed
using the following metrics: (i) k -coverage, which means that any location in the network is
monitored by at least k nodes, and (ii) k -connectivity, which means that the network can
remain connected even if k - 1 nodes fail.

One maintains k -connectivity by employing k -connected routing algorithms in the net-
work stack, which are usually implemented in the operating system. However, for these
algorithms to provide good connectivity, the deployment must have a low node sparsity.
With high sparsity, the area coverage might be high, but k -connectivity will be low. Huang
et al. [HT05] try to solve this coverage problem by provident polynomial-time algorithms to
analyze coverage given the area and number of sensors available.

Different routing algorithms exist to suit different network topologies, such as flat, hier-

9
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archical and location-based protocols [AKK04, AY05]. These algorithms all aim to extend
the sensor network’s lifetime by reducing battery usage in transmission, while not compro-
mising data delivery. The routing algorithm is usually chosen by the underlying platform or
framework, and the developer does not have to actively choose one if not strictly necessary.

3.2 Detection
To detect faults, we must first understand how they occur. The work of Souza et al.

[dSVB07], Paradis and Han [PH07], and Jurdak et al. [JWOV11] provide an overview of
faults types that occur in WSN, their common sources, and their detection mechanisms.

Faults can be grouped into categories according to which network layer experiences failure
when they occur. Commonly, they are grouped into network, node/device, sink, and data-
related faults.

Network-related failures occur when there is a communication problem among net-
work nodes. Several factors come into play when ensuring WSN node connectivity.
Nodes can have some degree of mobility, even if small, such as deploying sensors on
plants, that can alter their radio link range. Radio interference can also occur, espe-
cially in urban areas. Furthermore, when a network is too dense, message collision can
occur if several spatially close nodes transmit bursts at the same instant [SPMC04].
Szewczyk et al. [SMP+04], for example, reported a delivery rate of only 58% of their
deployment’s messages.

Node-related failures can range from erratically behaving software, to failing hard-
ware, to external factors destroying the node. When deploying in the wild, nodes can
be destroyed or removed by animals and bad weather conditions. When left unattended,
batteries may run out. Software bugs can also lead to node failures, such as memory
leaks leading to application crashes, infinite loops, and high CPU usage, leading to
quickly depletion of battery.

Sink-related failures, as defined by Sá et al. [dSVB07], occur on a higher network level.
Sinks are devices that collect all the data in a certain region. Failures in these devices
are especially significant, since they bridge the sensing nodes and the backend system,
and are deployed in much smaller numbers [GY03]. Sinks are usually high-capacity
devices, with a permanent power supply or a more efficient supply, such as batteries
combined with solar cells [MOH04, LBV06]. However, sink-failures are detected using
the same techniques as node-related failures.

Data-related failures occur when there are discrepancies in data collected by the sens-
ing nodes or received by the sink. These failures can occur due to node hardware failure,
bad sensor calibration, or, in case of reception, by transmission interference. Data fail-
ures can be perceived by establishing the relation between nodes, and comparing in
time or space their data range [JWOV11].

Detecting each kind of failure depends on how they present, i.e. what is the measurable
property affected by its occurrence. Detection also depends on how quickly one needs to find
the fault, or at each network layer it needs to be detected – i.e,. a network layer fault can
lead to data layer faults and be detected only in the higher level. When detecting faults at
their layer of occurrence, the following metrics are commonly used [JWOV11]:
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At the network-level, one can detect connectivity loss and intermittent connection by
monitoring the packet delivery rate. If it is zero, this means the connection is lost; if
there is high variability, it indicates intermittent connection. It is also possible to detect
routing loops if a packet is received with the origin address equal to the forwarder,
which might occur due to a failing node’s damaged routing tables.

At the node and sink-level, it is possible to detect anomalies by the lack of interaction
among nodes, node and sink, and sink and backend systems. Resets can be detected
when a packet counter is zeroed. Also, for nodes running on batteries, it is possible
to monitor the battery voltage decrease rate. If the battery decrease rate is too high
in comparison to other nodes, it can indicate hardware malfunctions or software bug.
This is useful, as monitoring CPU and memory usage would lead to too much power
usage.

Finally, at the data-level, one can detect: temporal anomalies by analyzing a single
node reading’s value time series; spatial anomalies by comparing the variation among
nodes in the same neighborhood; and spatiotemporal anomalies by correlating the
metrics.

There are different ways to design a detection mechanism based on these metrics. One
main difference is architecture type: centralized, in the sink or backend, and distributed or
hybrid. As examples of fault detection mechanisms employed for each category, we can cite:

Detecting network faults in a centralized matter, Sympathy [RCK+05] acts as a network-
related metrics collector and reasoning tool. All the metrics collected are transmitted
within the application packets, and the network sinks run code to reason on the met-
rics. Octopus [JRBB11] is another centralized tool similar to Sympathy, but acts as a
backend system visualization tool. Memento [RB06] is a distributed tool for detecting
failures based on variance of time between packet arrivals, which can be used to detect
network faults and node crashes. These tools are implemented on top of TinyOS.

Among tools for detecting node crashes, there are examples such as the aforementioned
Memento. Chen et at.[CKS06] and Yuan and Zhang [YZ08] also provide distributed
detection of device crashes. However, the latter is focused on sink nodes, using state-
checkpointing of the sink to neighboring nodes, which can take the role of sink if it
fails.

Data anomaly detection has the largest variety of techniques employed. Wang et al.
[WLO+08], Krishnamachari and Iyengar [KI04], and Luo et al. [LDH06] use Bayesian
classifiers to detect unreliable data. The first in a centralized way, and the latter two in
a decentralized one. Both Obst [Obs09] and Chang et al. [CTB09] use recurrent neural
networks. Obst uses a decentralized approach and Change et al. use a centralized
one. Rajasegarar et al. [RLPB06] use a data clustering algorithm implemented in a
hybrid manner: nodes build data clusters in a distributed fashion, which later can be
aggregated and evaluated. Finally, Rajagopal et al. [RNEV08] provide a distributed
online fault detection mechanism with an algorithm using statistical correlation of
groups of measures taken by closely placed nodes.
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3.3 Recovery
Although there are many sources for WSN system faults, recovery is mainly based on

replication. Sá et al. [dSVB07] divide recovery techniques into two categories: active repli-
cation and passive replication. In active replication, the replicated nodes or tasks are active
before failure, and in passive replication the replicated node or task is activated only when
an instance fails.

Active replication is applied in scenarios in which all or many nodes provide the same
functionality. For example, in sensing applications, all nodes have a sensing task that reads
data and sends it to a sink. In this case, all nodes capable of sensing are deployed and active;
if one fails, the sink can still collect the results from the other nodes. Some approaches to
recovery using active replication are cited below, which can be used alone or combined.

Multipath routing [GGSE01, AKK04] works at the network level to avoid network
partitioning in response to node failure. In this sense, the goal is to provide a k-
connected network, meaning the network remains connected when k-1 nodes fail.

Sensor value aggregation, or sensor value fusion [WHVC05], seeks to derive high-level
information from low-level sensor readings. The replication of sensor nodes can provide
fault tolerance through tradeoffs between reading interval precision and the number of
failures.

Disregarding data from faulty nodes simply and effectively avoids propagating wrong
values to tasks that aggregate or process them [dSVB07]. The challenge in this case
comes from identifying the faulty data and deciding how much data can be discarded
before reaching a state where no conclusive reasoning is possible.

One applies passive replication when maintaining task or node replicas is costly or other-
wise undesirable. When it is applied, the primary replica alone actively processes input data.
Only when the primary replica fails does a backup becomes active. When the application
needs to maintain a state among replicas, there are two options: the active replica’s internal
state can be synchronized; or, input data can be forwarded to inactive replicas, which will
not generate output. Given the constraints of WSN systems, applications usually have little
or no state, minimizing the overhead of synchronization.

The replication itself is divided into two steps: node selection and service distribution.
Node selection selects which node will take over the primary replica. It can be pre-selected,
or, in cases where all nodes have equal capabilities, chosen in a distributed manner by self-
election or group election. Service distribution describes the chosen node’s service or task
activation. In some cases, the code for all tasks is present in every node, and they only
require a simple configuration change; in others, one must inject code into the node.

In both active and passive replication, the system can reach a state where there is no
possible automatic recovery. When that happens, the reasonable solution is to inform a
network administrator of the failures so they can be manually fixed.

3.4 Discussion
In this chapter, we presented the concepts of fault tolerance in Wireless Sensor Networks,

as well as commonly used techniques for achieving fault tolerance in WSN applications.
These concepts and techniques are important to understanding the types of faults that

occur in WSN, but they also underscore the challenges of dealing with faults in this context.



Chapter 4
Srijan, a WSN macroprogramming
framework

Srijan is a graphical macroprogramming toolkit for simplifying WSN application develop-
ment. Like other current WSN macroprogramming tools, it results from an academic realm;
it was initially developed by Animesh Pathak during his doctoral course at the University
of Southern California [Pat08]. Its first version was published in 2008, and since then it has
been open source software 1 published under the Eclipse Public License. Although there is
no known use outside academia, Srijan is often acknowledged as a data-driven macropro-
gramming tool [Oce08, dBSdR+07, BK07, Bis08, ZS09], a data-abstraction programming
tool for sensor networks [BDU+12, CB11, LRST07], and as a network-level programming
tool [LKK10, Ame11].

Srijan’s framework is built upon the concepts defined by the Abstract Task Graph (ATaG)
language [BPRL05], a wireless sensor network data-driven macroprogramming language
where applications are defined using a mixed declarative-imperative code. Srijan further
improves ATaG by providing graphical tools for specifying WSN programs and networks,
and a compilation module able to tune ATaG compiler’s parameters.

Srijan is composed of the following components:

Task Graph Specification GUI: implemented as an Eclipse plugin in which the
user designs the abstract task graph representing the application.

Code Template Generator: a customizable code-generator module that generates
templates for imperative code that the developer fills in with the application logic.

Target System Description GUI: in which the developer edits the target network’s
description.

Compilation and Deployment module: which takes the imperative template code
and the system description to generate node-specific code, build node-level binaries,
and deploy them to the target system nodes.

Figure 4.1 shows an application’s development workflow in Srijan. Each component is fol-
lowed by its output, which is connected as an input to another component of the framework.
In the next sections, we provide an explanation of each component

1Available at http://code.google.com/p/srijan-toolkit/
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Measurement Action

Sampler

instance-per-node:
1@sensor

periodic: 10s

Processor

instance-per-partition:
1/Room

anydata

Controller

instance-per-node:
1@sensor

anydata

Firing rule Instantiation rule

Abstract Data Abstract Task
Abstract Channel

Task Graph 
Specification GUI

Customizable Code
Generation

Target System
Network Description

Compilation and 
Deployment

Task Graph [XML/Graphical Representation]

Imperative Code [Java]
Code Deployed on SunSPOT nodes and/or PCs

Network Description

Figure 4.1: Srijan components and flow

4.1 Task Graph Specification and the ATaG language
Abstract Task Graph (ATaG) is a wireless sensor network macroprogramming language

based on two concepts: a data-driven macroprogramming paradigm and a mixed imperative-
declarative specification [BPRL05].

In data-driven programming, developers break up their application’s functionality into
processing units called tasks. Tasks interact with each other solely by means of data items
that they produce and/or consume, and do not share state in any other way. A task can
be scheduled for execution upon the availability of its operands by an underlying runtime
system managing the data received from other tasks. This paradigm is attractive for several
reasons:

• tasks can use data items at any needed abstraction level;

• tasks do not have to specify how the needed data is produced;

• there is no direct task-to-task coupling, making programs more extensible and reusable;

• can be easily supported by an event-driven runtime system.

Mixed imperative-declarative specification facilitates separation of functionality from
other non-functional aspects, such as task placement and coordination. In WSN, this sep-
aration is desirable, as it enables a program, without modification, to be synthesized onto
various deployments. These deployments may have different non-functional requirements
that can be specified by modifying only the ATaG program’s declarative portion, which is
also useful for building GUI editors, such as Srijan.
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WSN applications can have different interaction paradigms, which lead to some overspe-
cialization of languages and tools. ATaG, however, has been shown to be useful for at least
three common interaction paradigms, as described by Pathak et al. [PMB+07]:

Hierarchical Data Collection is used by the largest fraction of sensor networks
applications. In this paradigm, usually several identical nodes are employed to sense
the environment, and their data is compressed in the network and then sent to a base
station.

Localized Interactions encompass applications in which nodes have to interact with
other nodes in their vicinity before making decisions. These localized interactions are
useful in scenarios such as tracking a moving object or finding the contour of an
oil spillage. Localized interactions also differentiate WSN from traditional distributed
applications, where the processors’ geographical location is irrelevant.

Actuation Driven by Sensing, or “sense-compute-actuate,” represents applications
where data collected from sensors in a region is used to make decisions about actions
to be taken in a possible different region. Examples of such applications include traffic
control and fire-fighting.

Measurement Action

Sampler

instance-per-node:
1@sensor

periodic: 10s

Processor

instance-per-partition:
1/Room

anydata

Controller

instance-per-node:
1@sensor

anydata

Firing rule Instantiation rule

Abstract Data Abstract Task
Abstract Channel

Figure 4.2: Sample sense-compute-actuate application in graphical ATaG

What makes ATaG so versatile is its declarative language portion, the Task Graph (Figure
4.2), which is a graphical description of the program containing the following components:

Abstract Tasks, representing the network’s processing units. They are annotated
with instantiation rules, specifying where they can be located, as well as firing rules,
specifying whether a task is triggered periodically or upon receiving certain data
item(s). Each task is labeled with a unique name by the programmer and has an
associated imperative code in the target system programming language.

Abstract Data, represents a type of application-specific data object that can be
produced and/or consumed by abstract tasks.

Abstract Channels, connects task declarations to data declarations. They represent
not only data consumed or produced by tasks, but also are annotated with logical
scopes expressing the interest of a task in instances of a data item.



4.2 TASK GRAPH SPECIFICATION AND THE ATAG LANGUAGE 16

In the majority of sense-compute-actuate applications, for example, sensing tasks are
periodically fired, and only produce data items. They usually have an instantiation rule
wherein one task per node contains the desirable sensor. Similarly, actuating tasks are in-
stantiated in each node containing the desirable actuator, but will be fired upon receiving
a certain data item. The computing tasks, however, aggregate data items produced by sen-
sors, process them, and generate output designed either for another computing task or for
actuating ones.

Example

Figure 4.3: Srijan’s Task Graph editing GUI as an Eclipse Plugin

Srijan’s task graph GUI is implemented as an Eclipse plugin, which helps designing task
graph specifications of abstract tasks, data, and channels together with their annotations.
In Figure 4.3, we show a sample application for sensing light and actuating on a display. It
contains three tasks:

LightSampler, a task responsible for sensing light, which is instantiated in every node
with a light sensor.

LightCollector, a task responsible for gathering all light data from the samplers,
which is instantiated in exactly one node per Room, which must have the “Processor”
ability. It computes the current medium light value for the room and outputs a value
for the controller.

LightController, is a task to be instantiated in each Room in nodes with actuators.
Based on the collector’s output, it may increase or decrease the light in the room.
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4.2 Customizable Code Generator
The customizable code generator is responsible for generating code templates for each

task and data item defined in the ATaG declarative part. These code templates need to be
fulfilled by developers with the actual task logic or extensions to the data item. After they
are completed, the framework can take the system description, the abstract graph, and the
templates and generate the full code to be deployed into each network node.

The current implementation deals only with Java as the imperative language, target-
ing SunSPOTs and JavaSE devices. As such, there are four types of Java classes that are
generated by this module:

Constants Each task and data item has an assigned integer id, which is matched to
a final static variable in a wrapper class. It is generated only as a helper for naming
tasks across the application.

Data items For each data item, a matching Java class provides methods for its serial-
ization and deserialization. If the item was annotated with a schema in the declarative
portion of ATaG, the class fields are automatically generated. If not, the developer has
to implement the fields. They are generated as Java Beans with getters and setters for
all fields. DataItems also have serialization and deserialization methods that read and
write from the communication channel.

Tasks For each task, two classes are generated: an abstract class, which encompasses
the communication with the framework and controlling states, and the concrete task
class, which extends the abstract one and must be completed by the developer. Abstract
Tasks are responsible for each task’s boilerplate code and provide the methods for
receiving data items meant for the task, and for sending data items produced by the
task to the data pool. They extend ATaGAppTask, which implements Runnable and
provides methods for retrieving the region the task is operating on.

Manager The manager contains the definition of logical scopes corresponding to each
data item, so the runtime system can deliver it to the appropriate tasks as they are
produced. It does not require any editing by the developer.

Example

We provide an example of generated code in Appendix A.

4.3 System Description
One of ATaG’s characteristics is that its declarative part is deployment agnostic. That

means application developers can use the same program specification to deploy into different
wireless network configurations, or systems, according to Srijan’s naming convention.

The system description GUI (Figure 4.4) is used to create a target system description,
which the ATaG compiler takes as input during task allocation. This description consists of
global parameters of the network, such as area covered, number of nodes, and radio range,
and of the following parameters for each node:

• ID

• Physical Address (MAC)
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• Physical Position (coordinates)

• Abilities (Sensors and/or Actuators attached)

• Partition/Region

• Node type (BaseStation, Node, etc)

Figure 4.4: Srijan system description GUI

Example

1 10 1000 1000 100 100
2
3 00 0014.4F01.0000.79B5 20 20 Room:0 Processor hostspot
4 01 0014.4F01.0000.F9FC 20 20 Room:0 LightSensor freespot
5 02 0014.4F01.0000.78E3 20 30 Room:0 LightSensor,LEDActuator freespot
6
7 03 0014.4F01.0000.72B3 20 20 Room:1 Processor hostspot
8 04 0014.4F01.0000.7A61 20 20 Room:1 LightSensor freespot
9 05 0014.4F01.0000.79B1 20 30 Room:1 LEDActuator freespot

10
11 06 192.168.1.10 20 20 Room:2 Processor j2se
12 07 0014.4F01.0000.7A61 20 20 Room:2 LightSensor freespot
13 08 0014.4F01.0000.74E1 20 30 Room:2 LightSensor,LEDActuator freespot
14 09 0014.4F01.0000.7CA5 20 30 Room:2 Processor hostspot

Listing 1: Sample network description file



4.5 COMPILATION AND DEPLOYMENT 19

4.4 Compilation and Deployment
The compilation and deployment module provides the application developer the ability

to tune the compilation parameters, generate node-level code, and deploy the generated
code to the nodes in the target system. Currently, the ATaG compiler supports only random
optimization, and the module enables the randomization seed setting. However, the toolkit
can be extended to support more optimization techniques as they are developed [PP10].

Figure 4.5: Srijan compiler and deployment module

4.5 Discussion
In this chapter we presented the Srijan framework, a macroprogramming platform for

wireless sensor networks. This framework is used as a basis for our fault tolerance extensions.
As such, we presented the data-oriented paradigm this framework follows, as well as the tools
it is composed of, and code examples.



Chapter 5
Supporting Fault-Tolerance in Srijan

This work aims to implement fault-tolerance features into Srijan, a macroprogramming
framework for Wireless Sensor Networks. In this chapter, we present the features we added
and discuss how we implemented them.

We named this implementation Srijan-FT.

5.1 Fault tolerance features
To deal with WSN application faults, actions can be taken for prevention, detection,

and recovery. Prevention relates to active replication, dealing with the problem of main-
taining communication and having as many active sensor nodes as possible. Communication
guarantees are commonly given by maintaining the network infrastructure as connected and
redundant. Communication is also most commonly treated in hardware or operating systems
[PH07, JWOV11]. Detection and recovery can be performed using different techniques, as
discussed in Chapter 3, and are dealt with at the operating system or application level. In
this work, we decided to deal with detection and recovery of network node unavailability, or
crashes, and data anomalies from sensing devices. In the following subsections, we explain
which methods we employed for each.

5.1.1 Crash faults

Crash faults are rooted in a single node’s hardware or software problems. These faults’
observable symptom is that the node stops transmitting data, and thus the other nodes
stop receiving data. Because crashes are linked to a single node, detection, and sometimes
recovery, can be highly effective [JWOV11].

There are several sources of crash faults, such as battery depletion, poor or defective
hardware components, external agents destroying the device, overuse of resources, etc. One
can locate the fault’s source by actively monitoring devices and their resource usage, however
it is costly and not always useful. We decided to support fault recovery without information
about what caused them.

Recovering from crash faults involves replicating the available tasks on the crashed device.
By the sense-compute-actuate convention, sensing tasks are already fault tolerant against
crash, since they are replicated per-se by being instantiated in every single node capable of
receiving them. Computing tasks, on the other hand, are not supposed to run on every node,
and to tolerate crashes they should have some sort of replication associated with them.

20
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Computing tasks are the ones receiving and processing the sensor data, e.g. the Light-
Collector example from Section 4.1. They are most often run on sinks, devices connected to
a large or constant power supply that has a higher processing power. These sinks are usually
deployed on a one-per-area basis. Therefore, to support fault tolerance against crash, the
application developer must provide at least one other sink as a replicating device per region.

We implemented methods for automatically replicating processing tasks when redundant
sinks are available.

5.1.2 Data anomalies

Data anomalies can occur due to hardware malfunctions, software bugs, or external
factors altering the sensing device state. To detect such anomalies, it is necessary to analyze
the sensing-data time series and the correlation among neighboring nodes. Once detection is
done, we can leverage active sensor nodes’ replication and ignore faulty data in the overall
computation.

Detection can take place in either a centralized or distributed fashion. Since Srijan tar-
gets sense-compute-actuate applications, and computing tasks are usually run on sinks, we
decided to implement centralized data anomaly detection. Although we imposed on the com-
puting node a greater processing requirement, in a decentralized approach this processing
power would be necessary on sensing nodes, which have less processing and power capability.

Based on common techniques for time-series data anomaly detection [GGAH14], we
decided to use a simple algorithm using the moving average to identify and discard outliers.
This is a simple algorithm, but sufficient enough to show that it can be integrated into the
framework.

5.2 Runtime System
To implement these fault-tolerant features, we first had to understand how each node’s

runtime system was laid. We had to define the hook points of the framework where the fault
tolerant modules would be plugged. The ATaG runtime system is mainly organized in three
layers: network communication, framework control logic, and user-defined tasks.

The control layer, called ATaGManager, is composed of runtime classes managing the
control of the application and node information. The most important class is also named
AtaGManager, and is responsible for setting up the node once it is started. In Srijan, all
nodes have the code for all tasks. What distinguishes them is the configuration performed
by the ATaGManager. To support modifications of the configuration in runtime or to start
or stop a task based on events, it is necessary to extend the manager to control tasks based
on input from a fault tolerance module. Since not all tasks require fault tolerance, and the
FT protocol is strongly related to tasks, we decided to insert hooks in: (i) the Abstract Task
classes, which will talk to the FT protocol when the task needs fault tolerance, and (ii) the
ATaGManager, which will load the protocol for the tasks and receive calls from the protocol
to start or stop tasks (Figure 5.1).

5.3 The Fault Tolerance Module
The initial implementation of this work was done as part of the MURPHY project1,

in partnership with LAAS’ dependability analysis laboratory. As such, the fault tolerant
1http://cedric.cnam.fr/~sailhanf/murphy

http://cedric.cnam.fr/~sailhanf/murphy
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Figure 5.1: Runtime system with fault tolerance protocol

module is heavily based on the fault tolerance protocol defined by LAAS. It leverages Service
Component Architecture (SCA) to define a generic component system (Listing 2). The fault
tolerant methods implement a common interface and basic operations, which are wired to
the protocol at runtime. These basic operations are:

syncBefore: a method that is called before the computation is performed

proceed: a method that is called when the computation is allowed to continue

replyLog: used to save information after proceed is executed

syncAfter: a method that is called after the computation is performed

1 package fr.inria.arles.srijan.ftm.api;
2
3 public interface FTMProtocolAPI {
4
5 void executeBefore(byte[] s);
6
7 void replyLog(int id, String s);
8
9 void executeAfter(byte[] s);

10
11 Object proceed(FTTask task, Object o);
12
13 }

Listing 2: Generic fault tolerance protocol interface

The rationale behind this basic protocol is that such generic operations can be used to
implement a great number of replication and verification methods.
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5.3.1 Crash Faults

The mechanism to treat crash faults works by replicating sink/processor tasks, which are
deployed on nodes with larger processing capabilities and power supplies.

The two methods chosen are Primary-Backup replication and Leader-Follower replication
[SFR12]. Leader-Follower replicates systems by sending the input data to both master and
slave nodes, with only the master producing the output, whereas Primary-Backup replicates
systems by sending snapshots of the master device’s internal state to the slave (shown in
Figure 5.2). The former is only suitable for deterministic systems, as it assumes the same
input will always produce the same output. The latter is suitable for any system.

Master

Slave

State

input

XState

Master

Slave

State

input

State

copy

Leader Follower Primary/Backup

Figure 5.2: Primary-Backup vs Leader-Follower replication

We implemented a prototype application using both methods integrated into the ATaG
runtime system, demonstrating how they can work together. We also began improving the
code generation tool to support such integration.

With crash faults, the FT protocol is used as follows: LFR implements only the SyncBe-
fore operation, which is used to forward inputs, and PBR implements only SyncAfter, which
is used to sync states among replicas after the computation is performed.

In Srijan, the protocol is instantiated in ATagManager, as the code sample 23 shows.
We use the FraSCAti SCA framework [SMR+12] to load the composite files with the proper
wirings for each method. Depending on which node type loads the protocol, different actions
are taken: if it is a master node, one that is active, the protocol is returned. If it is a slave
node, one that is inactive in the beginning of the execution, we configure ATagManager as
a task starter service in the fault tolerance protocol. If the master fails, the protocol calls a
method asking the manager to start the task in the slave replica. A reference to the task is
also set in the controller, if the node is a slave replica.

FTTaskController is an interface the SlaveServer implements. The server receives inputs
from the corresponding methods in the master protocol, and dispatches them to the fault
tolerant task to process. This combines with the abstract task class, which implements the
FTTask interface and provides methods to handle these generic calls: SyncAfter is used to
deserialize internal states into the concrete class’ annotated fields, whereas SyncBefore is
used to forward inputs to the task without generating output.

In the master replica, the FT protocol is called with the result of state serialization.
Serialization takes place by looping through all fields of the concrete class and checking for
the @FTState annotation. The state is then sent to the slave via the syncAfter call.

The aforementioned code parts are available in Appendix B.
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5.3.2 Data Faults

Data fault tolerance mechanism implementation is much simpler than Crash Fault. For
one, a separate detection mechanism is not needed. Detection occurs upon receiving a value
and passing it through the algorithm. It is also simpler because there is no need to synchro-
nize states among motes, since the analysis is centralized.

The algorithm uses only the SyncBefore and Proceed hooks. Upon receiving a data item,
the fault tolerant task will send it to the FT Protocol, which will execute the SyncBefore
hook. The SyncBefore hook is then plugged to a data validation module that will compare
the current value to a configurable number of previous values in the time series and decide
if it is valid.

If the data item is valid, the computed task is called in the Proceed hook. In case the data
is invalid, it can be disregarded, or a network administrator can be contacted and informed.

In our approach, a simple algorithm to identify outliers in the time series was employed:
to calculate the moving average of the last N readings and consider any value outside of
x ∗ std_deviation as an outlier. X can be defined as a parameter, but has a default value of
3, which is approximately 97% of the values in the normal distribution.

Figure 5.3 shows an example of how this approach works. In the figure, the moving
average is shown in a black line at the center. With a discrete increase in the absolute values
of readings, the first values are considered errors. Then, the moving average adjusts and they
fall within the variance window again.

Figure 5.3: Moving average filter with variance window

5.4 Code Generation
We have added simple modifications to the Srijan compiler, enabling automatic genera-

tion of tasks supporting LFR and PBR fault tolerant replication mechanism, as well as using
the moving average method for data fault detection. Adding support for LFR and PBR re-
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quired significantly larger change, whereas data fault detection only involved the template
processing.

Code generation consists of two main tasks: node selection and template processing.
Node selection allocates tasks to specific nodes, generating a task mapping. In these initial
steps, we randomly assigned fault tolerant tasks. For each available region, the algorithm
presented in Listing 3 will cycle through the available nodes and select a master and a slave
node, if available. The node type information is stored in the nodes’ attribute map.

After the node mapping is created, each task’s templates is processed for the assigned
nodes, using the node’s attributes when necessary. For example, to process the composite
file for PBR master node, the slave node’s IP address needs to be wired to the SyncAfter
call, as shown in line 7 of Listing 5.

1 private void assignFaultTolerantTask(
2 HashMap<Integer, Set<Integer>> partialAssignment,
3 ATaGTaskDeclaration at, ArrayList<NodeInfo> targetNodes) {
4 // fault tolerant task requires j2se node
5 Iterator<NodeInfo> it = targetNodes.iterator();
6 while (it.hasNext()){
7 NodeInfo node = it.next();
8 if (!node.getAttributeByName("type").equals("j2se")){
9 it.remove();

10 }
11 }
12
13 if (targetNodes.size() == 0){
14 // TODO Oh! Snap! No j2se nodes!
15 } else if (targetNodes.size() == 1) {
16 // only room for a master node, and this is the one!
17 NodeInfo ni = targetNodes.get(0);
18 partialAssignment.get(ni.getMyId()).add(at.getID());
19 at.assign(ni.getMyId());
20 ni.addNodeAttribute(new IntegerAttribute("ft-node-type", 0));
21 } else {
22 // master and slave!
23 Random rand = new Random();
24 int master = rand.nextInt(targetNodes.size());
25 int slave = rand.nextInt(targetNodes.size());
26 while (master == slave) slave = rand.nextInt(targetNodes.size());
27 NodeInfo masterNode = targetNodes.get(master);
28 NodeInfo slaveNode = targetNodes.get(slave);
29 String masterIP = (String) masterNode.getAttributeByName("physicaladdress");
30 String slaveIP = (String) slaveNode.getAttributeByName("physicaladdress");
31
32 masterNode.addNodeAttribute(new IntegerAttribute("ft-node-type",1));
33 masterNode.addNodeAttribute(new StringAttribute("ft-pair-ip", slaveIP));
34
35 slaveNode.addNodeAttribute(new IntegerAttribute("ft-node-type",2));
36 slaveNode.addNodeAttribute(new StringAttribute("ft-pair-ip", masterIP));
37
38 partialAssignment.get(masterNode.getMyId()).add(at.getID());
39 partialAssignment.get(slaveNode.getMyId()).add(at.getID());
40 at.assign(masterNode.getMyId());
41 at.assign(slaveNode.getMyId());
42 }
43 }

Listing 3: Fault tolerant task: node assignment using random selection

The template files are created using the Apache Velocity template language2. Each tem-
plate is merged with a context, which contains the necessary variables. Listing 4 shows
an example of how a template can be merged. In that snippet, three variables are put in
the context ("taskName", "isGUI", and "taskID") and merged with the abstract_class.vm
template file.

2http://velocity.apache.org/
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We created and modified template files for composite files, abstract task classes, concrete
classes and the ATag manager.

1 public class AbstractClassGenerator extends BaseGenerator {
2 String PATH = "./velocity/templates/java/abstract_class.vm";
3
4 public void generate(ATaGTaskDeclaration t, boolean isGUI, String dartRoot) {
5 VelocityContext context = new VelocityContext();
6 context.put("isGUI", isGUI);
7 context.put("taskName", t.getName());
8 context.put("taskID", "T_" + t.getName().toUpperCase());
9

10 Template template = null;
11 template = Velocity.getTemplate(PATH);
12 if (template != null) {
13 StringWriter writer = new StringWriter();
14 template.merge(context, writer);
15 writeFile(writer, t.getName(), faultTolerant, dartRoot);
16 }
17 }
18 }

Listing 4: Merging a velocity template file

1 <component name="syncAfter">
2 <implementation.java class="fr.inria.arles.srijan.ftm.pbr.SyncAfter" />
3 <service name="execute">
4 <interface.java interface="fr.inria.arles.srijan.ftm.api.TriggerSyncAfterService" />
5 </service>
6 <reference name="synchronizeService">
7 <frascati:binding.rest uri="http://${pair_ip}:8069/syncAfter" />
8 </reference>
9 </component>

Listing 5: PBR composite template: SyncAfter snippet

5.5 Discussion
In this Chapter we presented our implementation of fault tolerance features into Srijan,

therefore creating our Srijan-FT extension. We presented the chosen techniques for dealing
with crash faults, and data anomalies. We presented the internal runtime system modifica-
tions, as well as code generation done by the tool.

This represents our core contributions to improving macroprogramming for Wireless
Sensor Networks, and in the next chapters, we present related works, the evaluation of
Srijan-FT, our conclusion and future work on the platform.



Chapter 6
Related Work

In this section, we present related work in high abstraction platforms. As such, we divide
them into two main categories.

In the first category, we discuss WSN middleware and operating systems, which are the
basis for creating WSN applications as well as the first step towards making it easier to
define and administrate WSNs.

The second category describes macroprogramming languages, focusing on their program-
ming characteristics, and how they deal with faults. This category provides works in high-
level abstractions for Wireless Sensor Network programming, and is more closely related to
Srijan and our enhancements.

We used the following queries and online databases to find related work, and systemati-
cally selected works based on abstracts and full text:

query: ("Wireless Sensor* Network*" OR WSN) AND (middleware OR platform OR
macroprogramming OR high-level)

fields: title AND abstract

sources: Google Scholar, IEEE Xplore, ACM Digital Library

6.1 Middleware and OS
Although Middleware and OS are on a lower level of abstraction than macroprogram-

ming, the majority of wireless sensor networks applications are written with them. For this
reason, it is important to describe not only their advances in fault-tolerance, but also how
applications can be programmed using this low-level approach.

The scarcity of computing and communication resources on wireless motes makes tradi-
tional middleware and operating system architectures costly. Current approaches to WSN
application development favor architectures where the stack is highly application-specific,
or even deployment-specific, rather than application-agnostic [MP12].

TinyOS [LMP+05], for example, is one of the most frequently used operating system
for WSNs, and its system is component-based during compilation time only. The compiler
assembles together the different components required by the application, and generates a
static runtime monolithic system image. MagnetOS [BBD+02], like TinyOS, is monolithic,
yet based on a virtual machine. Other systems, such as Contiki [DGV04], are modular
operating systems, but still provide a very tight system-application integration. Contiki
uses components at runtime in the form of local services: everything, from communication

27
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to device drivers and sensor reading, is implemented as a system service, for which the
application only knows the public interface.

Middleware are implemented on top of an operating system, or several, extending or
encapsulating it inside a virtual machine. TinyOS is most often used as a base for build-
ing middleware, and several middleware, such as Matè [LGC04], Agilla [FRL05], Autosec
[HV01], Mires [SGaV+04], and EnviroTrack [ABC+04], are implemented on top of it. Middle-
ware are also often component-based, with the further requirement of being lightweight. Such
component-based middleware include: RUNES (Reconfigurable, Ubiquous, Networked Em-
bedded Systems) [CCG+07], which allows network runtime reconfiguration; and the loosely
coupled Component Infrastructure (LooCI) [HTH+09], which is implemented in JavaME,
supports a wide array of sensor devices, and favors heterogeneity.

WSN middleware are built to facilitate application development by focusing on one aspect
of it, such as security, database-like querying, and so on. However, fault tolerance has been
over-looked. Mottola and Picco [MP11] write that “ Upon failure, current middleware lets the
WSN break down in unpredictable ways, as the run-time support provides no guarantees in
these situations. Transient faults (e.g., incorrect sensors readings) are usually not considered.
Software errors are often fatal, yielding an erratic node behavior. To make things worse,
faults at given nodes often affect others, causing a “domino” effect that ultimately renders
the WSN unusable. These issues will become more and more important as WSNs become
part of safety-critical systems. WSN middleware should provide known failure modes, along
with tools and abstractions helping developers to understand the system behavior in these
exceptional circumstances.”

This scenario corroborates the need for easily available fault tolerant components for
WSN application development. As such, we have identified one recent work regarding fault-
tolerant middleware for WSN: the FlexFT framework [BUdAC13].

The FlexFT framework is a generic component-based framework for the construction
of adaptive fault-tolerant systems. It relies on the “Sensor Web” paradigm of the Open
Geospatial Consortium (OGC) to provide a standardized and interoperable interface for
sensor observation. The authors implemented a Java prototype of the framework, and tested
it against two example scenarios. Significantly, although similar to the work presented here,
whereas Beder et al. focus on the component-based fault-tolerance aspect, we focus on
providing fault tolerance features in macroprogramming. A more detailed comparison with
FlexFT appears in Section 7.2.2.

Programming in TinyOS

TinyOS is heavily used, both as base for middleware and as a developers’ programming
platform. For this reason, we provide an example of TinyOS programming.

In TinyOS, each component is an independent computational entity exposing one or
more interfaces, and built upon three abstractions: commands, events, and tasks. A task is
used for intra-component concurrency, a command is a request to perform some action, and
an event signals a command’s completion.

Multithreading support was not available in TinyOS’ earlier versions, and application de-
velopment strictly followed the event-driven paradigm. However, since version 2.1, TinyOS
provides support for multithreading using TOS Threads [KLP+09]. The authors point out
that, given the resource constraints of the motes, event-based systems enables greater con-
currency, but preemptive threads offer an intuitive paradigm.

TinyOS’ scheduler uses a non-preemptive FIFO algorithm, and therefore is not suitable
for real-time application. However, because of this, TinyOS’s latency is much smaller than
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others, since task creation simply means assigning a task’s function pointer to a ready queue,
and it does not need memory to be allocated.

Programming applications for TinyOS are made in nesC, a dialect of the C language.
Code written in nesC can be run on actual motes or simulated using TOSSIM [LLWC03].
TOSSIM simulates the network stack at bit level, which allows low-level experimentation,
but also provides a GUI tool, which can visualize and interact with running simulations.

An example application that periodically samples a node’s default sensor and displays
the bottom parts of the readings on the leds of the same node is shown in Listings 6 and 7.
Listing 6 is the header file, specifying which components the application uses and defining
the components’ wiring. For example, on line 6, the MainC component, which represents the
entry point of the application, is wired to SenseC.Boot.

1 configuration SenseAppC { }
2 implementation {
3
4 components SenseC, MainC, LedsC, new TimerMilliC(), new DemoSensorC() as Sensor;
5
6 SenseC.Boot -> MainC;
7 SenseC.Leds -> LedsC;
8 SenseC.Timer -> TimerMilliC;
9 SenseC.Read -> Sensor;

10 }

Listing 6: TinyOS sensing application: header file
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1 #include "Timer.h"
2
3 module SenseC {
4 uses {
5 interface Boot;
6 interface Leds;
7 interface Timer<TMilli>;
8 interface Read<uint16_t>;
9 }

10 }
11
12 #define SAMPLING_FREQUENCY 100
13 implementation {
14
15 event void Boot.booted() {
16 call Timer.startPeriodic(SAMPLING_FREQUENCY);
17 }
18
19 event void Timer.fired() {
20 call Read.read();
21 }
22
23 event void Read.readDone(error_t result, uint16_t data) {
24 if (result == SUCCESS){
25 if (data & 0x0004)
26 call Leds.led2On();
27 else
28 call Leds.led2Off();
29 if (data & 0x0002)
30 call Leds.led1On();
31 else
32 call Leds.led1Off();
33 if (data & 0x0001)
34 call Leds.led0On();
35 else
36 call Leds.led0Off();
37 }
38 }
39
40 }

Listing 7: TinyOS sensing application: implementation

6.2 Macroprogramming languages/tools
Macroprogramming, a programming paradigm, simplifies the development of distributed

applications comprising wireless networked nodes by abstracting away many of the com-
plexities involved in orchestrating communication among them [GGG05, Kar10]. The main
idea behind macroprogramming is to provide programming constructs that holistically ad-
dress network behavior. As a result, the compiler gains program execution freedom, which
enables optimizations that are out of reach for low-level languages. However, it significantly
adds complexity to the compiler [Kar10]. Most of the macroprogramming languages limit
developer’s expressiveness in comparison to low-level languages, and instead encapsulate in
a simpler programming interface details such as network communication and thread/task
synchronization.

In this section, we describe macroprogramming languages, acknowledging their authors,
their characteristics, and their different approaches to WSN application programming. We
also classify each according to the following aspects:

Target Application Type: Does the language target sense-only or sense-and-react
(sense-compute-actuate) applications?
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Spatial Visibility: Are the nodes grouped into regional clusters or abstractions, or
do they act as a single global network?

Language Paradigm: Is the framework programming language imperative, declara-
tive, or does it follow a hybrid approach?

Fault-tolerance Features: Does the macroprogramming framework provide any guar-
antees against faults?

Active Development: Is it still under active development? Where can it be found?

6.2.1 Kairos

Kairos [GGG05] is a macroprogramming framework with a programming model that uses
a centralized approach to specify the distributed sensor computation’s global behavior. In
other words, it provides an abstraction of the network as a collection of nodes that together
execute the same task. It was developed in 2005 at the Embedded Networks Laboratory
1 of the University of Southern California in 2005. Kairos and the ideas behind it relate
to shared-memory-based parallel programming models implemented over message-passing
infrastructures.

Kairos provides the programmer with three constructs: reading and writing variables
at nodes, iterating through one-hop node neighbors, and addressing arbitrary nodes. These
three simple constructs can be implemented on top of any existing native language, as
the framework’s code generation is implemented as a language preprocessor add-on to a
native language compiler. The authors argue that these constructs are natural for expressing
computation in sensor networks, stating that, intuitively, sensor network algorithms process
data generated at individual nodes, often by moving such data to other nodes. They also
state that by enabling the programmer to express computation by manipulating variables
at nodes, the use of “textbook” algorithms is almost direct.

Significantly, Kairos achieves very low overhead by using eventual consistency among
nodes. They argue that individual intermediate node states are not guaranteed to be con-
sistent, but, in the absence of failure, the computation eventually converges. Because of
that, Kairos’ runtime loosely synchronizes state across nodes: a read call to a remote object
blocks only until the referenced object is initialized and available at the remote node. After
the object is initialized, further read calls are not blocked. This allows nodes to synchro-
nize changed variables in a lazy manner, thereby reducing communication overhead. When
eventual consistency is inadequate, though, Kairos provides a tighter consistency model.

Listing 8 contains a snippet written in Kairos to compute the shortest-path routing tree.
In the code we see the node and node_list data types being used. get_available_nodes() is
used to return the complete set of nodes in the network, whereas get_neighbors() is used
within a node to obtain a list of its one-hop neighbors. Finally, the @ operator is used to
retrieve the dist_from_root variable at the iter2 node.

1http://enl.usc.edu/projects/kairos/
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1 void buildtree(node root)
2 node parent, self;
3 unsigned short dist_from_root;
4 node_list neighboring_nodes, full_node_set;
5 unsigned int sleep_interval = 1000;
6
7 full_node_set = get_available_nodes();
8 for (node temp = get_first(full_node_set); temp != NULL; temp = get_next(full_node_set))
9 self = get_local_node_id()

10 if (temp == root)
11 dist_from_root = 0
12 parent = self
13 else
14 dist_from_root = INF
15 neighbors = create_node_list(get_neighbors(temp))
16 full_node_set = get_available_nodes()
17 for (node iter1 = get_first(full_node_set); iter1 != NULL; iter1 = get_next(full_node_set))
18 for(;;) //Event Loop
19 sleep(sleep_interval);
20 for (node iter2 = get_first(neighbors); iter2!=NULL; iter2=get_next(neighbors))
21 if (dist_from_root@iter2+1 < dist_from_root)
22 dist_from_root = dist_from_root@iter2+1;
23 parent = iter2;

Listing 8: Shortes-path routing tree using Kairos

Classification

Target Application Type: Sense-only.

Spatial Visibility : Global.

Language Paradigm: Imperative. The language constructs are implemented as exten-
sions to the Python programming language.

Fault-tolerance Features : Yes. A declarative checkpoint restoring API.

Active Development : No. It has been dropped in favor of Pleiades.

6.2.2 Pleiades

Pleiades is Kairos’ successor, which was also implemented as language extensions to an
existing programming language. Whereas Kairos is built using Python extensions, Pleiades
extends the C language with constructs to address the nodes in the network and their local
state. The C program is compiled by Pleiades into node-level nesC programs that can be
directly linked with standard TinyOS components and the Pleiades runtime system.

By default, a Pleiades program has a single sequential thread of control, which provides
a simple semantics for programmers to understand and reason about. This means only one
node in the system is executing any Pleiades instruction at any time. However, Pleiades
includes a novel language construct for parallel iteration called cfor, which can be used,
for example, to iterate concurrently over all network nodes or all one-hop neighbors of a
particular node.

In the example below we can see these constructs used in practice to build a street
parking application. The function reserve is used to reserve a parking spot near a certain
destination by looping through neighboring nodes and looking for an open spot.

The nodelocal modifier (line 3) indicates that the variable is present in each node of
the application, and can then later be accessed using the @node notation, as done in line
14. The node and nodeset types are defined to represent a node, and a collection of nodes.
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Helper functions come together with these types, such as: add_node, remove_node, and
get_neighbors. The cfor is like a normal for, except that the execution of the block is
concurrent for the nodes in a nodeset, which is required in the example to guarantee that
only one free node is reserved in an iteration. Access to loose variables, such as nToExamine
and nExamined, are synchronized among all nodes inside the loop.

1 #include "pleiades.h"
2
3 boolean nodelocal isfree=TRUE;
4 nodeset nodelocal neighbors;
5 node nodelocal neighborIter;
6
7 void reserve(pos dst) {
8 boolean reserved = FALSE;
9 node nodeIter,reservedNode = NULL;

10 node n = closest_node(dst);
11 nodeset loose nToExamine = add_node(n, empty_nodeset());
12 nodeset loose nExamined = empty_nodeset();
13
14 if (isfree@n) {
15 reserved = TRUE;
16 reservedNode = n;
17 isfree@n = FALSE;
18 return;
19 }
20
21 while(!reserved && !empty(nToExamine)){
22 cfor(nodeIter=get_first(nToExamine);nodeIter!=NULL;
23 nodeIter = get_next(nToExamine)){
24 neighbors@nodeIter=get_neighbors(nodeIter);
25 for(neighborIter@nodeIter=get_first(neighbors@nodeIter);
26 neighborIter@nodeIter!=NULL;
27 neighborIter@nodeIter=get_next(neighbors@nodeIter)){
28 if(!member(neighborIter@nodeIter,nExamined))
29 add_node(neighborIter@nodeIter,nToExamine);
30 }
31 if(isfree@nodeIter){
32 if(!reserved){
33 reserved=TRUE; reservedNode=nodeIter;
34 isfree@nodeIter=FALSE;
35 break;
36 }
37 }
38 remove_node(nodeIter,nToExamine);
39 add_node(nodeIter,nExamined);
40 }
41 }
42 }

Listing 9: Pleiades street-parking application

Classification

Target Application Type: Sense-only.

Spatial Visibility : Global.

Language Paradigm: Imperative.

Fault-tolerance Features : No.

Active Development : No.
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6.2.3 Regiment

Regiment [NMW07] is a system based on a functional programming language and de-
signed for applications with spacial locality, such as object tracking or intrusion detection.
Regiment exposes the sensor network to the developer as a set of data streams, called signals,
which represent individual states of nodes (readings, or the result of a local computation),
or an aggregated value obtained by processing multiple input signals. The programmer can
manipulate sets of these signals, which may be defined by topological, functional, or geo-
graphical relationships between nodes.

The authors cite the benefits of a functional approach to sensor network programming
as:

• Parallelism can be extracted in a straightforward manner;

• Computation can be migrated or replicated without effecting evaluation; and

• Functional programming hides state manipulations from the developer, which allows
the compiler to decide how state should be stored.

Regiment is an unrestricted functional language, since it enables function composition
in which functions are arguments. Functional programs written in Regiment may compute
and derive events from abstractions of the sensor network’s elements, space, and time. Each
sensor is represented as a Node data object that exposes state, a collection of Nodes sharing a
common characteristic is a Space, and a stream of Spaces is called Region. Regiment provides
constructs to manipulate these data types, including aggregation, mapping, filtering, and
conditional event handlers.

The Regiment system takes multiple compilation steps to generate the final node-level
executable. The program is first translated into an intermediate language called Rquery,
and, subsequently, the region streams are translated into local streams. The output of the
compiler is an event-driven code written in an intermediate language called Token Machine
Language [NTW05]. This language does not assume a threaded concurrency model, and is
therefore suited for implementation on top of event-driven WSN operating systems, such as
TinyOS. Regarding communication, nodes in a given region exchange data using a spanning
tree of the network Graph that is created and maintained on every node by the Regiment
runtime support.

Listing 10 shows a simple program that detects plumes by ensuring that the overall sum
of readings around the phenomena exceeds a pre-specified threshold. The program first starts
by defining: abovethreshold, a boolean function for filtering sensed data; read, a function to
read values from the sensors; and sum, which uses rfold to aggregate values in a region r.
In line 5, it reads values from all sensors, mapping the read function to the world region,
comprised of all the nodes in the system. Then, it builds a region of detected nodes using the
rfilter function, which is expanded into the hoods region in line 8, which is itself generated
by taking the one-hop neighborhood of all nodes in the detected region. It next sums the
values in the expanded detected region and sends a notification to the base station if any
sum is exceeds the threshold.
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1 fun abovethreshold(t) { t > CHEMICAL_THRESHOLD }
2 fun read(n) { sense("concentration", n) }
3 fun sum(r) { rfold( (+), 0, r) }
4
5 readings = rmap(read, world);
6 detects = rfilter(abovethreshold, readings);
7
8 hoods = rmap( fun(t, nd){ khood(1, nd) }, detects);
9 sums = rmap(sum, hoods);

10
11 base <- rfilter( fun(t){ t > CLUSTER_THRESHOLD }, sums);

Listing 10: Plume detection using Regiment

Classification

Target Application Type: Sense-only.

Spatial Visibility : Regional.

Language Paradigm: Functional.

Fault-tolerance Features : None.

Active Development : No.

6.2.4 SOSNA

SOSNA [KC08, Kar10], like Regiment and Proto, is a functional macroprogramming
language focused on the stream programming paradigm for wireless sensor and actuator
networks. It was developed by Marcin Karpiński during his doctoral studies at Trinity College
Dublin.

The author claims that wireless sensor and actuators networks (WSANs) are not just an
extension to WSNs with actuators, because the addition of actuators changes the focus from
sensing to control, and thus poses new requirements. In this view, WSAN is a kind of control
system in which sensing, actuation, and decision-making are distributed, whereas resource-
constrained components communicate over unreliable channels. Also, because WSAN is a
kind of control system, real-time functionality is operationally important and often requires
actuator synchronization.

Based on these requirements, SOSNA is proposed with the following properties:

• Network topology, node heterogeneity and node mobility are abstracted while making
it possible to realize different sensor-sensor, sensor-actuator, and actuator-actuator
coordination strategies

• Program execution time is deterministic and proceeds in rounds. Together with the
provision of time synchronization in the network, it imposes real-time bounds on ac-
tuator decision-making and enables actuator synchronization

• Distributed state can be maintained by accessing the previous round’s stream values.

• Static program semantic enables the compiler to generate communication protocols
that use radio duty-cycling2 for energy conservation.

2A duty cycle is the percent of time that an entity spends in an active state as a fraction of the total
time under consideration. For example, in an electrical device, a 60% duty cycle means the power is on 60%
of the time and off 40% of the time
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There are two kinds of spatial values used to form the streams SOSNA programs operate
on: fields and clusters. Local values are data items stored in an individual node, and fields
are collections of these local values of a given type, present at a subset of the nodes in a
given execution round. Each node can contribute to at most one local value to a field, and
fields do not have to be contiguous. Nodes that contribute a local value to a field are called
members of that field. SOSNA field streams have the same semantics as regions in Regiment.

Clusters, on the other hand, are sparse fields, whose local values reside on network nodes
that may be separated from each other by nodes that hold without values. Contrary to fields,
separated nodes form an integral part of clusters and are called cluster members. Clusters
are collections of local values that possess certain spatial aspects.

SOSNA programs are compiled into nesC code to be compiled and run by TinyOS.

Classification

Target Application Type: Sense-and-react.

Spatial Visibility : Global.

Language Paradigm: Functional.

Fault-tolerance Features : None.

Active Development : No.

6.2.5 COSMOS

COSMOS [AJG07] is a macroprogramming framework targeting heterogeneous sense-
and-respond networks and based on stream processing. It consists of a programming lan-
guage, called mPL, and the accompanying mOS portable operating system capable of run-
ning mPL programs on different hardware platforms. It offers a static dataflow programming
model in which applications are composed as static graphs of stream processing components,
called functional components.

Each functional component declaration specifies functional requirements, e.g. CPU speed
or sensor type, for the node that will run a functional component instance. Additionally,
the developer can specify constraints for specific instances. An instance of the functional
component will be instantiated onto every node satisfying these conditions. These conditions,
however, must be explicitly specified by the developer, and cannot be inferred using the
overall non-functional application requirements.

The functional components in COSMOS are programmed in a subset of C, and the mPL
language is used for defining components wiring and partitioning. The framework targets
a tiered system architecture in which devices with different capabilities are organized in a
hierarchical tree network topology. The language enables data to flow through the tree in
all directions, making feedback signals possible, which are useful for control systems.

Classification

Target Application Type: Sense-only.

Spatial Visibility : Regional.

Language Paradigm: Declarative.
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Fault-tolerance Features : Yes. Each component declaration specifies functional require-
ments (such as CPU speed, memory, etc.) for the node. The developer can also define
constraints. These constraints, however, are solely based on node capabilities.

Active Development : No.

6.2.6 Chronus

Chronus [WBS10] is a macroprogramming language based on a new programming paradigm
called spatiotemporal macroprogramming, which is designed to aid in WSN spatiotemporal
event detection and data collection. Both the paradigm and the language were created by
PhD. Hiroshi Wada et al. at the National ICT Australia (NICTA) laboratory.

The language treats space and time as first-class programming primitives, combined as
a spacetime continuum. A spacetime is a three-dimensional object consisting of two spa-
tial dimensions and a time dimension. This notion of spacetime provides an abstraction to
seamlessly express event detection and data collection. Perhaps the most noticeable charac-
teristic of using this abstraction is its ability to detect complex events consisting of multiple
anomalies.

Although the language was designed to operate in a variety of dynamic spatiotemporal
environments, it currently targets oil spillage detection and monitoring. Broken coastal oil
station equipment and illegal dumping can cause oil spills, among other causes. Once spilled,
oil can spread, change direction of movement, and split into multiple chunks. Some chunks
may burn, and other may evaporate. These diverse characteristics make detecting oil spillage
hard, as it involves complex events occurring over time.

The language is designed as an extension to Ruby, an object-oriented language that
supports dynamic typing. Ruby accepts embedded domain-specific languages (DSLs), which
extend Ruby’s constructs. Chronus then reuses the language’s syntax and semantics while
introducing new keywords and primitives specific to spatiotemporal event detection and data
gathering. It allows developers to define three types of complex events: sequence, any, and
all. Each complex event is defined with a set of events. A sequence event fires when a set of
events occur in chronological order. An any and all event fires when one or all of the defined
events occur, respectively.

In addition to textual macroprogramming, Chronus also provides a visual environment.
It leverages Google Maps3 to show sensor node locations as icons, and allows application
developers to graphically specify a space where they observe them.

3http://maps.google.com/
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1 sp = Spacetime.new( GLOBALSPACE , Period.new( NOW , INF ) )
2 spaces = sp.get_spaces_every ( Min 10, Sec 30, 100 )
3
4 event spaces {
5 sequence {
6 not get_data(’f-spectrum’, MAX) > 290);
7 get_data (’f-spectrum’, MAX) > 290;
8 get_data (’droplet - concentration ’, MAX) > 10;
9 within MIN 30;

10 }
11 any {
12 get_data (’f-spectrum’, MAX) > 320;
13 window ( get_data(’d- concentration ’, MAX), AVG , HOUR -1) > 15;
14 }
15 all {
16 get_data (’f-spectrum’, AVG) > 300;
17 get_data (’d- concentration ’, AVG) > 20;
18 }
19 }
20 execute{ | event_space , event_time |
21 # query for the past
22 sp1 = Spacetime.new( event_space , event_time , Min -30)
23 past_spaces = sp1.get_spaces_every (Min 6, Sec 20, 50)
24 num_of_nodes = past_spaces.get_nodes. select { |node|
25 # @CWS_ROUTING
26 node. get_data (’f-spectrum’, Min 3) > 280}.size
27
28 # query for the future
29 s2 = Circle.new( event_area.centroid , event_area.radius * 2 )
30 sp2 = Spacetime.new( s2 , event_time , Hr 1 )
31 future_spaces = sp2.get_spaces_every ( Min 3, Sec 10, 80 )
32 future_spaces.get_data ( ’f-spectrum’, MAX , Min 1 ) {
33 | data_type , value , space , time |
34 # data handler }
35 }
36 }

Listing 11: Event-based data query using Chronus

Classification

Target Application Type: Sense-only

Spatial Visibility : Global

Language Paradigm: Imperative, implemented as a DSL on top of Ruby.

Fault-tolerance Features : None.

Active Development : Yes.

6.2.7 Flask

Flask [MMW08] is a functional programming language targeting resource-constrained
stream processing sensor applications. It was developed by Geoffrey Mainland during his
work at Harvard Sensor Network Laboratory. It is embedded in Haskell, a general purpose
functional language, and programs are translated into executable nesC code by a dedicated
pre-processor.

The programming model is based on data-flow, and wiring operators and functions in
an acyclic graph data specifies the flow. Each operator is a computational unit that takes
multiple inputs and produces a single output, and the control flow moves operators in a
depth-first manner. Different operators can be located on different nodes, and connected
through a publisher-subscriber infrastructure.
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Flask is designed such that higher-level abstractions can be built in terms of data-flow
operators. As an example, the authors implement a version of TinyDB [MFHH05] in Flask.

Classification

Target Application Type: Sense-only.

Spatial Visibility : Global.

Language Paradigm: Functional, on top of Haskell.

Fault-tolerance Features : None.

Active Development : No.

6.2.8 Summarization

Framework Target
Application

Type

Spatial
Visibility

Language
Paradigm

Fault-
tolerance
Features

Active De-
velopment

Kairos Sense-only Global Imperative Yes No

Pleiades Sense-only Global Imperative No No

Regiment Sense-only Regional Functional No No

SOSNA Sense-and-
react

Global Functional No No

COSMOS Sense-only Regional Declarative Yes No

Chronus Sense-only Global Imperative No Yes

Flask Sense-only Global Functional No No

Srijan-FT Sense-and-
react

Regional Declarative/
Imperative

Yes Academic-
only

Table 6.1: Summary of Macroprogramming frameworks

6.3 Discussion
In this chapter, we presented a heavily used wireless sensor network operating system and

its accompanying programming language, as well as several macroprogramming languages
and fault tolerance methods applied to this domain. These three areas form the basis of this
work.

We described operating systems and their provided languages, as they are still the stan-
dard for WSN application development today. We showed how programming closely to the
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operating systems can still be a hard task, requiring developers to think and write code in
very low-level abstractions. It represents the complexity we aim to avoid.

A large number of people have studied macroprogramming languages for WSN applica-
tion development. Here we describe seven we consider relevant. Although they vary in types
of applications supported, language paradigm, and visibility, only two of the seven, Kairos
and COSMOS, have some sort of fault tolerance mechanism. During our research, using
sources such as Google Scholar, IEEE Xplore, and ACM DigitalLibrary, we did not find any
other macroprogramming language that described explicit fault tolerance mechanisms.

The fact that almost no macroprogramming language explicitly deals with fault toler-
ance, and that developers have to implement it in low-level code, underscores the need for
developing a macroprogramming tool with fault tolerant features, which is the goal of this
work.



Chapter 7
Evaluation

Our goal is to investigate a way to make it easier for developers to integrate fault-tolerance
into WSN applications. A qualitative approach is thus suitable for evaluating this work, yet
we also conducted a complementary quantitative evaluation. The following presents both.

7.1 Quantitative Evaluation
With quantitative analysis, our purpose is to internally assess the proposed solution’s

efficiency. The tests below regard the framework’s performance during generation time. What
we aim to show is the framework’s performance during development; in other words, the time
it takes to generate an application with fault tolerant features.

The tests were run on a DELL XPS15-L502X notebook with a quad-core 2GHz Core
i7-2630QM CPU and 8GB of RAM.

7.1.1 Code template generation time

We first aim to analyze whether adding fault tolerance features to an application built
with Srijan increases the time it takes to generate it. In other words, we want to measure the
impact in the code template generation phase according to how many fault tolerant tasks
exist in the application.

The code template generation phase (Section 4.2) occurs when the initial graphical de-
scription of the application is translated to code templates that developers must fill in. In this
analysis, we measured the time taken by the modified ATaG compiler to generate task tem-
plates according to the application’s number of fault tolerant tasks. For each number of fault
tolerant tasks, we took five readings and determined the median and standard deviation.

The assumption was that time would linearly scale, since each new FT task’s generation
requires roughly the same amount of code. We observed this behaviour in our tests, as shown
in Figure 7.1. The time taken to generate the templates for each task is approximately 50
milliseconds.

7.1.2 Task mapping time

We also considered the time it took to generate all task mappings according to the number
of fault tolerant tasks and nodes in the system. Task mapping is the process, determined
by the completed templates and a network description, of generating the code that will be

41
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Figure 7.1: Template Generation time x Number of FT tasks

deployed to the nodes. Thus, we measured how long it took to generate the code for all the
nodes, given a fixed number of fault tolerant tasks that needed to be deployed on each.

Figure 7.2 displays the time it took to generate code for applications containing one
to three fault tolerant tasks per node (blue, red, and black lines). The time for the task
mapping process also scales linearly, and the time taken to generate the code for a given
node is approximately 500 milliseconds.

Figure 7.2: Task Mapping time x Number of Motes x Number of FT tasks
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7.1.3 Quantitative analysis conclusion

The two analyses show that the time needed to generate application code scales linearly
regarding the number of fault tolerant tasks and nodes in the network. The linearity was
expected, since the number of generated files per node differs very little. Since writing files
to the disk is what takes the longest time during the generation phase, it follows that the
amount of time to generate all files for a node should be similar.

Given that both are linear, it could be argued that this approach is not suitable for larger
deployments of thousands of nodes. However, one can only assess such a claim by conducting
a proper study, with developers, which could compare the time and effort taken to write and
deploy applications using our framework and an alternative platform, such as TinyOS or
Contiki. Such assessment is left to future work.

7.2 Qualitative Assessments
The purpose of the qualitative assessments is to investigate whether the work fulfils the

goal of providing easier fault tolerance features to WSN application development.

7.2.1 Fault tolerance validation

The first step in validating the proposed modifications is verifying whether they work as
proposed, which means they generate fault tolerant mechanisms based on annotations in a
high-level language.

For analysing the crash fault tolerance, we created an application composed of a producer,
a consumer, and a display task. We generated the code and deployed it in two machines.
Machine A had the producer and the display, while machine B had the consumer. The
consumer gathered data from the producer and generated an output for the display. In this
test, the consumer task was the one annotated to tolerate crash faults.

We manually “crashed” machine B, which was the master node with the consumer task,
by disconnecting the network cable from the machine. Consequently, the system started a
replica of the consumer task in machine A. As soon as we reconnected the previous master,
it came online again and assumed the slave role. Finally, after we disconnected the current
master, the previous machine became master again.

The output of this process can be observed in Figure 7.3.

Fig. 11: Recovery from crash

When executing PBR, the slave node does not 
produce output; while when executing LFR, it 
produces its own copy of the output (which is 

discarded by the FTManager).

PBR
LFR

Fig. 12: Adaptation of FT mechanism

to monitor multiple peers for crashes, which might adversely
affect the time it takes to notice a peer’s crash and trigger a
role-change of the relevant tasks hosted on it. We measured
the time taken for the detection of a crash as a function of
the number of peers that a node needs to monitor, and report
our findings in Fig. 15. As can be seen, the time increases in
a linear-to-sublinear fashion. The large error bars are due to
the fact that since the monitoring happens by repeated polling,
a uniformly random crash generation process leads to a wide
spread of values of time taken before the crash is detected.

Effect of Fault Tolerance Mechanism on Message-
processing Times. Finally, we measured the time taken be-
tween the reception of a data item that triggers a particular
task and the production of that task’s output data (a running
average), in the presence and absence of various fault tolerance
protocols. As can be seen in Fig. 16, the overhead depends
on the specific protocol used. While the delay in TR (Time
Redundancy) is due to the re-execution of the task several
times to counter hardware transient value faults, the overhead
in LFR (resp. PBR) is due to the dispatch of input (resp.
output) data to the other peer. Consequently, as the time taken
to perform the computation in the task itself becomes non-
trivial, the overhead of PBR and LFR is expected to remain
constant, while that of TR will grow linearly with the task’s
complexity due to repeated executions of the task.

The above experiments demonstrate how our approach can
provide adaptive fault tolerance in sensor network macro-
progamming with minimal additional effort by the developer,

and without incurring massive overheads on system perfor-
mance. This overhead is further expected to reduce in the
future with more efficient runtime implementations and better
task-mapping algorithms.

V. CONCLUSION AND FUTURE WORK

While the detection and management of faults has justifiably
been extensively studied in the field of networked sensing,
there is still a relative lack of high-level abstractions using
which non-expert developers can easily develop fault-tolerant
networked sensing applications. The ability for the underlying
system to transparently adapt and change the executing fault
tolerance mechanism while tolerating the same fault further
opens the opportunity to provide such high-level abstractions.
In this paper, we have presented an integration of adaptive fault
tolerance techniques into sensor network macroprogramming,
leading to an updated workflow of how such applications can
be developed, and the related changes in the abstractions,
runtime, and compilation process of the ATaG data-driven
macroprogramming language. Our experiments show that our
techniques enable the above through negligible increase in
overall code size, and with minimal performance penalties.

Although we believe this is a promising beginning since
it dissociates the developer from fault tolerance aspects, we
intend to proceed with future work in three complementary
directions: i) modeling and integrating more diverse adaptive
fault tolerance mechanisms; ii) porting the runtime to a less
resource-hungry component-based middleware so that these

Figure 7.3: Master/Slave replication tolerating a crash fault
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7.2.2 Comparison with a Similar Platform

During our investigation, we found only one platform similar to what we proposed:
FlexFT [BUdAC13]. As the authors describe it, FlexFT is “a generic framework for con-
structing reliable systems that can deal with both hardware and software heterogeneity.” It
consists of a microkernel where fault tolerance policies are incremented as demanded, and
provides a standardized and interoperable interface for sensor observations relying on the
Sensor Web paradigm. These policies are deployed in the form of component plugins, which
are destroyed when no longer required and can be reconfigured at runtime.

The component plugins are implemented using the OpenCOMJ api and the OpenCOM
implementation in Java. The fault tolerance components’ rationale is redundancy, using
design diversity both for error detection and error recovery. This means the framework
provides base interfaces for creating recovery blocks and n-version components.

Although the framework could be used with other sensors, the authors provide all the
evaluations using SunSPOT devices, as we do with Srijan.

In the following subsections, we compare important characteristics of Srijan and FlexFT.

Framework type

We regard FlexFT as a middleware for building component-based fault-tolerant appli-
cations that use sensor platforms. As a macroprogramming framework, Srijan, on the other
hand, takes a high-level application design and generates applications for different platforms.

Whereas FlexFT provides a microkernel to load components, Srijan relies on a pre-defined
application architecture, which is implemented using the underlying platform and leaves only
key implementation logic for the developer to fill in.

Programming paradigm

FlexFT relies on a component-based paradigm in which each component implements a
common interface. The internal implementation is purely object-oriented, with no abstrac-
tions regarding data and the interaction model.

Srijan uses a data-driven paradigm, wherein the application is broken into processing
units, called tasks, and data units. This paradigm simplifies the interface and implementation
aspects. Once a task’s code is generated, the internal implementation only needs to know
what data type it expects and what data type to produce.

Fault tolerance aspects

Both our work and FlexFT are based on the premise that wireless sensor applications
have to deal with faults, and that platforms that make it easy to integrate fault tolerance
features are needed. Both platforms aim to provide ways for developers to better integrate
fault tolerance into the development process.

Our approaches differ in implementation. FlexFT focuses on design diversity and provides
very generic components for a developer to implement different algorithm variants. Our
approach focuses on ready-to-use pluggable fault tolerance mechanisms that can be added
to the application via simple declarative properties requiring minimal configuration.

FlexFT vs Srijan-FT

We believe that Srijan-FT presents a higher level of abstraction than FlexFT, which
makes the two solutions complementary. Srijan’s data-driven paradigm could be implemented
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using FlexFT; therefore, Srijan could be used to design an application at a higher level
of abstraction, and then generate FlexFT code with tasks implementing the component
framework’s interfaces.

Our views on fault tolerance are also similar. The N-version technique, for example,
could be added in the declarative Srijan language, thereby offering a simple way to tell the
compiler to generate ”n” versions of a task.

The differing level of abstraction is exemplified by the LightController application, shown
in Chapter 4. In this application, there are three tasks: a light sampling, an aggregator that
calculates the medium light, and a controller or display that consumes the medium light
produced by the aggregator.

In Srijan, the developer would have to specify the application in high-level, as is shown
in Figure 7.4, then generate the templates and fill them with the implementation. All data
transition is handled by the framework runtime. The full templates are shown in Appendix
A, and we display the collector template in Listing 12.

Figure 7.4: LightCollector application in Srijan (high-level)
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1 package atag.apps.mainApp.tasks;
2
3 import atag.runtime.DataPool;
4 import atag.runtime.NodeInfo;
5 import atag.apps.mainApp.gen.*;
6
7 public class LightCollector extends AbstractLightCollector{
8
9 public LightCollector(DataPool dp, NodeInfo myconfig) {

10 super(dp,myconfig);
11 }
12
13 /* This method is called when Light is produced */
14 protected void handleLightProduced(Light r_Light) {
15 debugPrint("[LightCollector]Got a Data Item: Light");
16 //TODO Add code to respond to production of data item Light
17 }
18
19 /*
20 // Sample code for producing MediumLight
21
22 debugPrint("[LightCollector]Producing a Data Item: MediumLight");
23 MediumLight m_MediumLight= new MediumLight();
24 //TODO Fill in the parameters of MediumLight
25 //Use your IDE’s autocomplete features or browse the API of the Autogenerated code
26 this.produceMediumLight(m_MediumLight);
27 */
28
29 }

Listing 12: LightCollector template

With FlexFT, the runtime system does not assume a data-driven application. Thus, the
developer has to program all data flow within the application. This could be accomplished
with a main loop that gathers data from sensors and sends it to the aggregator. Listing 13
displays a pseudo-code exemplifying how this could be implemented in FlexFT.

The pseudo-code describes the flow code needed for data wiring . The developer also must
implement the aggregator and display. Overall, FlexFT provides the necessary components
to produce fault tolerance via redundancy in the application, but the developer still has to
link all the components together via low-level programming.
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1 public LightCollectorApp {
2
3 public run() {
4 List<ISensor> lSensors = buildSensorList();
5
6 while(true) {
7 for(ISensor s : lSensors) {
8 x = s.readMetric();
9 this.mediumValue = aggregate(x);

10 }
11
12 updateDisplay(this.mediumValue);
13 sleep(FIVE_SECONDS);
14 exitIfNecessary();
15 }
16 }
17
18 SensorListObject buildSensorList() {
19 // load openCOM runtime
20 // get interfaces of the Sensors
21 // wire classNames with Sensors
22 // wire referencesList to impl object
23 return SensorListObject representing all Sensors
24 }
25
26 MediumLight aggregate(Value x) {
27 // N variant implementations of the aggregator implement FlexFT NVariant interface
28 // Each variant is executed, and the agreeing value is returned
29 MediumLight value = executeAggregatorVariant(x);
30 }
31
32
33 void updateDisplay(MediumLight value) {
34 // Executes display
35 Display.display(value);
36 }
37
38 }

Listing 13: FlexFT LightCollector pseudo-code

7.3 Discussion
In this chapter, we presented an analysis of our work. Although very preliminary, we

believe this analysis provides evidence that our approach works and can be used as intended.
Our quantitative analysis indicates the algorithms’ linearity in regard to the number of

fault tolerance mechanisms, which should not impact small to medium sized applications.
We also provided a comparison to the most similar work we found, FlexFT. It is our view

that they focus on two different aspects of fault tolerance for Wireless Sensor Networks. As
such, Srijan could be extended to support code generation for the FlexFT framework.
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Conclusion

In this work, we implemented fault tolerance features in a macroprogramming frame-
work for Wireless Sensor Network by integrating an adaptive fault tolerance protocol. We
also presented the updated workflow for writing WSN applications, including the modified
runtime and compilation process.

Through the analysis of related work, we showed that although failure detection and
recovery in the area has widely been studied, proper support for fault tolerance was lacking
in current high-level abstraction tools. This lack of fault tolerance support makes it harder to
program applications for WSN. Although fault tolerance can be achieved by implementing
detection and recovery algorithms at a low level for each application, it makes the process
of creating applications harder and more prone to error.

Although in a small setup and with limited functionality, we demonstrated in this dis-
sertation that fault tolerant features can be added to macroprogramming frameworks and
impact the application development cycle for better, diminishing the amount of code needed
for achieving fault tolerant tasks in a data-driven application.

This outcome is significant as a first effort in bringing fault tolerance to macroprogram-
ming, and for its extensibility, which makes it possible to evolve the platform and use it as
a basis for other work.

8.1 Future Work
We believe this is a promising beginning for fault tolerance becoming a first-class concept

in macroprogramming tools for Wireless Sensor Networks. A great deal of future work can
be done, including:

Extending the platform’s Code Generation tool support to other more
wildly adopted WSN platforms
We used the ATaG language in Srijan to model data-driven applications at a high level,
using a GUI or XML. Currently, Srijan only generates code for the SunSPOT platform,
but this application description model can be used to generate applications for other
platforms, such as TinyOS and Contiki, that target a different range of devices.

Assessment of the platform using real developers
As said in Chapter 7, to better analyze the impact of this work, we need to conduct
a study with developers, comparing the time and effort taken to write and deploy
applications using our framework and an alternative platform, such as TinyOS or
Contiki.

48



PUBLICATIONS 49

Modeling and integrating other fault tolerance techniques to the protocol
As a proof of concept, for this thesis we implemented only a small handful of detection
and recovery techniques. An important evolution of the work will be to implement and
evaluate more techniques (Chapter 3) following the high level protocol.

Using a lightweight component-based middleware for the fault tolerance
protocol
The current version uses the FraSCAti framework in the FT protocol, which, although
a comprehensible service component architecture framework, is not suitable for more
lightweight and resource-less platforms. Therefore, it prevents the protocol from run-
ning in every node in a decentralized fashion.

Optimizing the task assignment process
The task assignment process could take into account properties of the node, such as
location, to analyze the cost of performing a master-slave synchronization among them
and choosing the best pair for each task/section.

Changing to a DSL
Recent work has been conducted on altering the Srijan platform to provide a DSL for
writing Wireless Sensor Network applications. The fault tolerance aspects presented in
this work could be added to the DSL. This could also lead to changes in the language
itself, or its extensibility.

8.2 Publications
During this project we submitted a paper to two Wireless Sensor Networks conferences:

the International Conference on Intelligent Sensors, Sensor Networks and Information Pro-
cessing (ISSNIP) and IEEE International Conference on Mobile Ad hoc and Sensor Systems.

Both times our paper was rejected because reviewers focused on the fault tolerance
mechanisms and not on the macroprogramming extension for supporting these mechanisms.

We are currently working on a different version of the paper to deal with this issue.

8.2.1 Other publications

While working at this project, the author also collaborated with other students at IME-
USP, which culminated in the following publication:

Leonardo A. Leite, Gustavo Ansaldi Oliva, Guilherme M. Nogueira, Marco Aurélio
Gerosa, Fabio Kon, and Dejan S. Milojicic. 2013. “A systematic literature review of
service choreography adaptation”. Service Oriented Computing and Applications. 7, 3
(September 2013), 199-216.



Appendix A
Srijan Code Generation Example

Constants

The constants file is generated only as a helper for naming tasks across the application.

1 package atag.apps.mainApp.gen;
2
3 public class IDConstants {
4
5 public static final int T_LIGHTSAMPLER = 0;
6 public static final int T_LIGHTCOLLECTOR = 1;
7 public static final int T_DISPLAY = 2;
8
9

10 public static final int D_LIGHT = 0;
11 public static final int D_MEDIUMLIGHT = 1;
12 }

Listing 14: Generated IDConstants

DataItems

Data items are generate as Java Beans with getters and setters for all fields. We show
here the Light data item generated for the light controller application. DataItems also
have serialization and deserialization methods that write and read from the communication
channel.
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1 package atag.apps.mainApp.gen;
2
3 import atag.j2mespecific.*;
4 import java.io.IOException;
5 import java.io.DataOutput;
6 import java.io.DataInput;
7
8 public class Light implements Serializable {
9

10 private double val;
11 private double max;
12 private String unit;
13
14 public Light(){
15 //NOTE needs a default constructor for deserialization
16 }
17
18 public double getVal() {
19 return val;
20 }
21 public void setVal(double val) {
22 this.val = val;
23 }
24
25 public double getMax() {
26 return max;
27 }
28 public void setMax(double max) {
29 this.max = max;
30 }
31
32 public String getUnit() {
33 return unit;
34 }
35 public void setUnit(String unit) {
36 this.unit = unit;
37 }
38
39 public void serialize(DataOutput dg) throws IOException {
40 dg.writeDouble(val);
41 dg.writeDouble(max);
42 dg.writeUTF(unit);
43 }
44
45 public void deserialize(DataInput dg) throws IOException,
46 ClassNotFoundException, IllegalAccessException, InstantiationException {
47 val = dg.readDouble();
48 max = dg.readDouble();
49 unit = dg.readUTF();
50 }
51
52 }

Listing 15: Generated Light data item
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Tasks

1 package atag.apps.mainApp.tasks;
2
3 import atag.runtime.DataPool;
4 import atag.runtime.NodeInfo;
5 import atag.apps.mainApp.gen.*;
6
7 public class LightSampler extends AbstractLightSampler{
8
9 public LightSampler(DataPool dp, NodeInfo myconfig) {

10 super(dp,myconfig);
11 }
12
13 /* This method is called periodically */
14 protected void handleExpiryOfTimer() {
15 debugPrint("[LightSampler]Periodic timer expired");
16 //TODO Add code to perform the desired periodic action
17 }
18
19 /*
20 // Sample code for producing Light
21
22 debugPrint("[LightSampler]Producing a Data Item: Light");
23 Light m_Light= new Light();
24 //TODO Fill in the parameters of Light
25 //Use your IDE’s autocomplete features or browse the API of the Autogenerated code
26 this.produceLight(m_Light);
27 */
28
29 }

Listing 16: LightSampler template

1 package atag.apps.mainApp.tasks;
2
3 import atag.runtime.DataPool;
4 import atag.runtime.NodeInfo;
5 import atag.apps.mainApp.gen.*;
6
7 public class LightCollector extends AbstractLightCollector{
8
9 public LightCollector(DataPool dp, NodeInfo myconfig) {

10 super(dp,myconfig);
11 }
12
13 /* This method is called when Light is produced */
14 protected void handleLightProduced(Light r_Light) {
15 debugPrint("[LightCollector]Got a Data Item: Light");
16 //TODO Add code to respond to production of data item Light
17 }
18
19 /*
20 // Sample code for producing MediumLight
21
22 debugPrint("[LightCollector]Producing a Data Item: MediumLight");
23 MediumLight m_MediumLight= new MediumLight();
24 //TODO Fill in the parameters of MediumLight
25 //Use your IDE’s autocomplete features or browse the API of the Autogenerated code
26 this.produceMediumLight(m_MediumLight);
27 */
28
29 }

Listing 17: LightCollector template
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1 package atag.apps.mainApp.tasks;
2
3 import atag.runtime.DataPool;
4 import atag.runtime.NodeInfo;
5 import atag.apps.mainApp.gen.*;
6
7 public class LightController extends AbstractLightController{
8
9

10 public LightController(DataPool dp, NodeInfo myconfig) {
11 super(dp,myconfig);
12 }
13
14 /* This method is called when MediumLight is produced */
15 protected void handleMediumLightProduced(MediumLight r_MediumLight) {
16 debugPrint("[Display]Got a Data Item: MediumLight");
17 //TODO Add code to respond to production of data item MediumLight
18 }
19
20 }

Listing 18: LightController template

Abstract Tasks

Abstract Tasks are responsible for the boilerplate code regarding each task. It provides
the methods for receiving data items meant for the task, and for sending data items produced
by the task to the data pool. They extend ATaGAppTask, which implements Runnable and
provides methods for retrieving the region the task is operating on.
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1 package atag.apps.mainApp.gen;
2
3 import atag.common.ATaGAppTask;
4 import atag.runtime.DataItem;
5 import atag.runtime.DataPool;
6 import atag.runtime.NodeInfo;
7
8 public abstract class AbstractLightSampler extends ATaGAppTask {
9

10 private DataPool m_dataPool;
11
12 private int _requesting_nodeID;
13
14 public AbstractLightSampler(DataPool dp, NodeInfo myconfig) {
15 super(myconfig);
16 this.m_dataPool=dp;
17 }
18
19 public synchronized void run() {
20 try {
21 while (true) {
22 Thread.sleep(1000);
23 handleExpiryOfTimer();
24 }
25 } catch (InterruptedException e) {
26 return;
27 }
28 }
29
30 /*
31 * This method is called periodically
32 */
33 protected abstract void handleExpiryOfTimer() ;
34
35 /**
36 * This method produces Light
37 */
38 public final void produceLight(Light r_Light) {
39 DataItem m_dataitem = new DataItem(IDConstants.D_LIGHT,
40 IDConstants.T_LIGHTSAMPLER, r_Light);
41 m_dataPool.putData(m_dataitem);
42 }
43
44 }

Listing 19: Generated AbstractLightSampler
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1 package atag.apps.mainApp.gen;
2
3 import atag.common.ATaGAppTask;
4 import atag.runtime.DataItem;
5 import atag.runtime.DataPool;
6 import atag.runtime.NodeInfo;
7
8 public abstract class AbstractLightCollector extends ATaGAppTask {
9

10 private DataPool m_dataPool;
11
12 private int _requesting_nodeID;
13
14 public AbstractLightCollector(DataPool dp, NodeInfo myconfig) {
15 super(myconfig);
16 this.m_dataPool=dp;
17 }
18
19 public void run() {
20 DataItem t_dataItem = m_dataPool.getData(IDConstants.T_LIGHTCOLLECTOR,IDConstants.D_LIGHT);
21 if(t_dataItem != null) {
22 Light recvdLight = (Light) t_dataItem.core();
23 this.handleLightProduced(recvdLight);
24 }
25 }
26
27 /*
28 * This method is called when Light is produced
29 */
30 protected abstract void handleLightProduced(Light r_Light);
31
32 /**
33 * This method produces MediumLight
34 */
35 public final void produceMediumLight(MediumLight r_MediumLight) {
36 DataItem m_dataitem = new DataItem(IDConstants.D_MEDIUMLIGHT,
37 IDConstants.T_LIGHTCOLLECTOR, r_MediumLight);
38 m_dataPool.putData(m_dataitem);
39 }
40
41 }

Listing 20: Generated AbstractLightCollector
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1 package atag.apps.mainApp.gen;
2
3 import atag.common.ATaGAppTask;
4 import atag.runtime.DataItem;
5 import atag.runtime.DataPool;
6 import atag.runtime.NodeInfo;
7
8 public abstract class AbstractLightController extends ATaGAppTask {
9

10 private DataPool m_dataPool;
11
12 private int _requesting_nodeID;
13
14 public AbstractLightController(DataPool dp, NodeInfo myconfig) {
15 super(myconfig);
16 this.m_dataPool=dp;
17 }
18
19 public void run() {
20 DataItem t_dataItem = m_dataPool.getData(IDConstants.T_DISPLAY,IDConstants.D_MEDIUMLIGHT);
21 if(t_dataItem != null) {
22 MediumLight recvdMediumLight = (MediumLight) t_dataItem.core();
23 this.handleMediumLightProduced(recvdMediumLight);
24 }
25 }
26
27 /**
28 * This method is called when MediumLight is produced
29 */
30 protected abstract void handleMediumLightProduced(MediumLight r_MediumLight);
31
32 }

Listing 21: Generated AbstractLightController

Manager

Currently, the generated ATagManager only sets up the neighborhoods for each node,
and populates the task firing table. It extends the PreBuiltAtagManager, which starts the
necessary tasks based on the firing table and verifies all data items generated by tasks
running at the node.
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1 package atag.apps.mainApp.gen;
2
3 import atag.common.*;
4 import atag.runtime.*;
5 import atag.runtime.ln.*;
6 import atag.runtime.ln.neighborhoodDefs.*;
7 import atag.apps.mainApp.tasks.*;
8
9 public class AtagManager extends PrebuiltAtagManager {

10
11 public AtagManager() { }
12
13 public void setUp() {
14 taskDecls.addElement(
15 new RunnableTask((ATaGTaskDeclaration) this.m_program.getTaskList().elementAt(0),
16 new LightSampler(this.m_dataPool, this.m_config),
17 Thread.MAX_PRIORITY - 0));
18 taskDecls.addElement(
19 new RunnableTask((ATaGTaskDeclaration) this.m_program.getTaskList().elementAt(1),
20 new LightCollector(this.m_dataPool, this.m_config),
21 Thread.MAX_PRIORITY - 0));
22 taskDecls.addElement(
23 new RunnableTask((ATaGTaskDeclaration) this.m_program.getTaskList().elementAt(2),
24 new Display(this.m_dataPool, this.m_config),
25 Thread.MAX_PRIORITY - 0));
26 }
27
28 public Neighborhood[] getLNScopeForData(int taskID, int dataID) {
29 switch (dataID) {
30 case IDConstants.D_LIGHT:{
31 Predicate[] tempPred0 = new Predicate[3];
32 int count0 = 0;
33
34 tempPred0[count0++] = new StringSetMembershipPredicate(
35 String.valueOf(IDConstants.T_LIGHTCOLLECTOR),
36 StringSetMembershipPredicate.IS_IN,
37 NodeInfo.ASSIGNED_TASK_ATTR_NAME);
38
39 tempPred0[count0++] = new IntegerRangePredicate("Room",
40 ((Integer) m_config.getAttributeByName("Room")).intValue() - 0,
41 ((Integer) m_config.getAttributeByName("Room")).intValue() + 0);
42 Predicate[] finalPred0 = new Predicate[count0];
43 for(int i = 0; i < count0; i++){
44 finalPred0[i] = tempPred0[i];
45 }
46 Neighborhood scopeOfChannel0 = new ConjunctiveNeighborhood(finalPred0);
47 return new Neighborhood[] { scopeOfChannel0 };
48 }
49 case IDConstants.D_MEDIUMLIGHT:{
50 Predicate[] tempPred0 = new Predicate[3];
51 int count0 = 0;
52
53 tempPred0[count0++] = new StringSetMembershipPredicate(
54 String.valueOf(IDConstants.T_DISPLAY),
55 StringSetMembershipPredicate.IS_IN,
56 NodeInfo.ASSIGNED_TASK_ATTR_NAME);
57
58 tempPred0[count0++] = new IntegerRangePredicate("Room",
59 ((Integer) m_config.getAttributeByName("Room")).intValue() - 0,
60 ((Integer) m_config.getAttributeByName("Room")).intValue() + 0);
61 Predicate[] finalPred0 = new Predicate[count0];
62 for(int i = 0; i < count0; i++){
63 finalPred0[i] = tempPred0[i];
64 }
65 Neighborhood scopeOfChannel0 = new ConjunctiveNeighborhood(finalPred0);
66 return new Neighborhood[] { scopeOfChannel0 };
67 }
68 default:
69 return new Neighborhood[] {};
70 }/*end switch*/
71 }
72
73 }

Listing 22: Generated AtagManager



Appendix B
Prototype code

Listing 23 shows the methods in ATagManager used to instantiate the fault tolerance
protocol. We use the FraSCAti SCA framework [SMR+12] to load the composite files having
the proper wirings for each method, in lines 11 to 23. Depending on which node type is
loading the protocol, different actions are taken: if it is a master node, the one that is active,
the protocol is returned. If it is a slave node, one that is inactive in the beginning of the
execution, we configure the ATagManager as a task starter service in the fault tolerance
protocol. If the master fails, the protocol will call a method asking the manager to start
the task in the slave replica. In the setFTTask method, we set a reference to the task in a
controller, if the node is a slave replica.
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1 private FraSCAti frascati;
2 private Component composite;
3
4 private FTMProtocolAPI getFTMProtocol(Integer ftNodeType) {
5 if (ftNodeType == 0) return null;
6
7 FTMProtocolAPI ft = null;
8 TriggerTaskStarter ts = null;
9

10 try {
11 System.out.println("------------------ >>> Loading FraSCAti");
12 frascati = org.ow2.frascati.FraSCAti.newFraSCAti();
13
14 System.out.println("------------------ >>> Getting composite");
15 composite = frascati.getComposite("srijan-node.composite");
16
17 if (ftNodeType == 1) { // master
18 System.out.println("------------------ >>> Getting FT Protocol");
19 ft = frascati.getService(composite, "r", FTMProtocolAPI.class);
20 } else if (ftNodeType == 2){ // slave
21 System.out.println("------------------ >>> Getting TaskStarterService");
22 ts = frascati.getService(composite, "taskStarter", TriggerTaskStarter.class);
23 ts.setTaskStarter(this);
24 }
25 } catch (FrascatiException e) {
26 e.printStackTrace();
27 }
28 return ft;
29 }
30
31 /**
32 * Sets the fault tolerant task reference on the Task Controller
33 * component of the fault tolerance protocol.
34 *
35 * @param ftNodeType the type of node, i.e. master, slave, etc
36 * @param ft
37 */
38 private void setFTTask(Integer ftNodeType, FTTask ft){
39 if (ftNodeType != 2) return;
40 try {
41 FTTaskController ftc;
42 ftc = frascati.getService(composite, "taskController", FTTaskController.class);
43 ftc.setFTTask(ft);
44 } catch (FrascatiException e) {
45 e.printStackTrace();
46 }
47 }
48
49 /**
50 * Creates the necessary fault tolerance protocol for a task that
51 * is marked to be fault tolerant.
52 *
53 * @return the fault tolerant task
54 */
55 private Runnable getFTTask(){ we
56 // get node type parameter from NodeInfo
57 Integer ftNodeType = (Integer) m_config.getAttributeByName("ft-node-type");
58
59 // load fault tolerance protocol
60 FTMProtocolAPI ftProtocol = getFTMProtocol(ftNodeType);
61
62 // create task
63 LightCollector task = new LightCollector(this.m_dataPool, this.m_config, ftProtocol);
64
65 // set task reference on task controller
66 setFTTask(ftNodeType, task);
67
68 return task;
69 }

Listing 23: Loading fault tolerance protocol in ATagManager

FTTaskController is an interface which the SlaveServer (Listing 24) implements. The
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server receives inputs from the corresponding methods in the master protocol, and dispatches
it to the fault tolerant task to process. This all comes together with the abstract task class
implementing the FTTask interface and providing methods to handle these generic calls.
SyncAfter is used to deserialize internal state into annotated fields of the concrete class
(Listing 25), while SyncBefore is used to forward inputs to the task without generating
output (Listing 26).

1 @Scope("COMPOSITE")
2 @Service(interfaces={})
3 public class SlaveServer implements
4 SyncBeforeService,
5 SyncAfterService,
6 FTTaskController
7 {
8 private FTTask ftTask;
9

10 public void setFTTask(FTTask ftTask) {
11 this.ftTask = ftTask;
12 }
13
14 @Init
15 public void init() {
16 System.out.println("SLAVE SERVER Init");
17 }
18
19 public void executeAfter(byte[] syncMessage) {
20 System.out.println("---->> receiving SyncAfter");
21 this.ftTask.handleSyncAfter(syncMessage);
22 }
23
24
25 public void executeBefore(byte[] syncMessage) {
26 System.out.println("--->> receiving SyncBefore");
27 this.ftTask.handleSyncBefore(syncMessage);
28 }
29
30 }

Listing 24: Slave server composite implementation

1 public void handleSyncAfter(byte[] input) {
2 setState(input);
3 }
4
5 public void setState(byte[] state) {
6 try {
7 ByteArrayInputStream bin = new ByteArrayInputStream(state);
8 while(bin.available() != 0) {
9 Object[] objArray = (Object[]) SerializationUtils.deserialize(bin);

10 if (objArray != null) {
11 String fieldName = (String) objArray[0];
12 Field f = this.getClass().getDeclaredField(fieldName);
13 System.out.println("--> Deserializing: " + fieldName);
14 f.setAccessible(true);
15 f.set(this, objArray[1]);
16 }
17 }
18 } catch (Exception e) {
19 e.printStackTrace();
20 }
21 }

Listing 25: Deserializing internal state when receiving SyncAfter
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1 public void handleSyncBefore(byte[] input) {
2 DataItem dataItem = new DataItem();
3 ByteArrayInputStream bin= new ByteArrayInputStream(input);
4 DataInputStream din = new DataInputStream(bin);
5 try {
6 dataItem.deserialize(din);
7 receiveData(dataItem);
8 } catch (Exception ex) {
9 ex.printStackTrace();

10 }
11 }
12
13 public void receiveData(DataItem t_dataItem){
14 if (t_dataItem != null) {
15 if (ftProtocol != null) {
16 ftProtocol.executeBefore(SerializationUtils.dataItemToBytes(t_dataItem));
17 }
18
19 Light recvdLight = (Light) t_dataItem.core();
20 this.handleLightProduced(recvdLight);
21 }
22 }

Listing 26: Handling forwarded inputs on SyncBefore

On the master replica, the FT protocol is called with the result of state serializaton.
Serialization takes place by looping through all fields of the concrete class and checking for
the @FTState annotation. The state is then sent to the slave via the syncAfter call, as shown
in Listing 27.

1 public final void produceMediumLight(MediumLight r_MediumLight) {
2 DataItem m_dataitem = new DataItem(IDConstants.D_MEDIUMLIGHT,
3 IDConstants.T_LIGHTCOLLECTOR, r_MediumLight);
4 m_dataPool.putData(m_dataitem);
5
6 if (ftProtocol != null){
7 ftProtocol.executeAfter(getState());
8 }
9 }

10
11 public byte[] getState(){
12 ByteArrayOutputStream result = new ByteArrayOutputStream();
13
14 try {
15 for(Field f: this.getClass().getDeclaredFields()){
16 FTMStateVar annotation = f.getAnnotation(FTMStateVar.class);
17 if (annotation != null){
18 System.out.println("--> Serializing: " + f.getName());
19 f.setAccessible(true);
20 result.write(SerializationUtils.serialize(
21 new Object[]{f.getName(), f.get(this)})
22 );
23 f.setAccessible(false);
24 }
25 }
26 } catch (Exception e) {
27 e.printStackTrace();
28 }
29
30 return result.toByteArray();
31 }

Listing 27: Master node call to syncAfter
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