• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2015.tde-03122015-155546
Document
Author
Full name
Jorge Luis Guevara Díaz
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Hirata Junior, Roberto (President)
Carvalho, André Carlos Ponce de Leon Ferreira de
Orgambide, Alejandro César Frery
Silva, Paulo José da Silva e
Sussner, Peter
Title in Portuguese
Modelos de aprendizado supervisionado usando métodos kernel, conjuntos fuzzy e medidas de probabilidade
Keywords in Portuguese
Conjunto fuzzy
Descrição de dados usando vetores de suporte
Kernel positivo definido
Máquina de vetor de suporte
Medidas de probabilidade
Métodos de kernel
Abstract in Portuguese
Esta tese propõe uma metodologia baseada em métodos de kernel, teoria fuzzy e probabilidade para tratar conjuntos de dados cujas observações são conjuntos de pontos. As medidas de probabilidade e os conjuntos fuzzy são usados para modelar essas observações. Posteriormente, graças a kernels definidos sobre medidas de probabilidade, ou em conjuntos fuzzy, é feito o mapeamento implícito dessas medidas de probabilidade, ou desses conjuntos fuzzy, para espaços de Hilbert com kernel reproduzível, onde a análise pode ser feita com algum método kernel. Usando essa metodologia, é possível fazer frente a uma ampla gamma de problemas de aprendizado para esses conjuntos de dados. Em particular, a tese apresenta o projeto de modelos de descrição de dados para observações modeladas com medidas de probabilidade. Isso é conseguido graças ao mergulho das medidas de probabilidade nos espaços de Hilbert, e a construção de esferas envolventes mínimas nesses espaços de Hilbert. A tese apresenta como esses modelos podem ser usados como classificadores de uma classe, aplicados na tarefa de detecção de anomalias grupais. No caso que as observações sejam modeladas por conjuntos fuzzy, a tese propõe mapear esses conjuntos fuzzy para os espaços de Hilbert com kernel reproduzível. Isso pode ser feito graças à projeção de novos kernels definidos sobre conjuntos fuzzy. A tese apresenta como esses novos kernels podem ser usados em diversos problemas como classificação, regressão e na definição de distâncias entre conjuntos fuzzy. Em particular, a tese apresenta a aplicação desses kernels em problemas de classificação supervisionada em dados intervalares e teste kernel de duas amostras para dados contendo atributos imprecisos.
Title in English
Supervised machine learning models using kernel methods, probability measures and fuzzy sets
Keywords in English
Fuzzy set
Kernel methods
Positive definite kernel
Probability measure
Support vector data description
Support vector machine
Abstract in English
This thesis proposes a methodology based on kernel methods, probability measures and fuzzy sets, to analyze datasets whose individual observations are itself sets of points, instead of individual points. Fuzzy sets and probability measures are used to model observations; and kernel methods to analyze the data. Fuzzy sets are used when the observation contain imprecise, vague or linguistic values. Whereas probability measures are used when the observation is given as a set of multidimensional points in a $D$-dimensional Euclidean space. Using this methodology, it is possible to address a wide range of machine learning problems for such datasets. Particularly, this work presents data description models when observations are modeled by probability measures. Those description models are applied to the group anomaly detection task. This work also proposes a new class of kernels, \emph{the kernels on fuzzy sets}, that are reproducing kernels able to map fuzzy sets to a geometric feature spaces. Those kernels are similarity measures between fuzzy sets. We give from basic definitions to applications of those kernels in machine learning problems as supervised classification and a kernel two-sample test. Potential applications of those kernels include machine learning and patter recognition tasks over fuzzy data; and computational tasks requiring a similarity measure estimation between fuzzy sets.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
teseJorgeGuevara.pdf (2.83 Mbytes)
Publishing Date
2015-12-08
 
WARNING: The material described below relates to works resulting from this thesis or dissertation. The contents of these works are the author's responsibility.
  • DIAZ, J. G., JUNIOR, ROBERTO HIRATA, and CANU, S. Positive Definite Kernel Functions on Fuzzy Sets. In IEEE International Conference on Fuzzy Systems (FUZZ), Beijing, 2014. IEEE International Conference on Fuzzy Systems (FUZZ) 2014., 2014.
  • DIAZ, J. G., JUNIOR, ROBERTO HIRATA, and CANU, S. Support Vector Data Description for Uncertainty Data Sets. In Machine Learning Summer School, Tübingen, 2013. Machine Learning Summer School. : Max Planck Institute for Intelligent Systems, 2013.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.