• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2018.tde-15062018-110116
Document
Author
Full name
Rafael Aquino de Carvalho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Lejbman, Alfredo Goldman Vel (President)
Francesquini, Emilio de Camargo
Madeira, Edmundo Roberto Mauro
Title in Portuguese
Uma análise comparativa de ambientes para Big Data: Apche Spark e HPAT
Keywords in Portuguese
Apache Spark
Arcabouços de Big Data
Comparação de desempenho
HPAT
Abstract in Portuguese
Este trabalho compara o desempenho e a estabilidade de dois arcabouços para o processamento de Big Data: Apache Spark e High Performance Analytics Toolkit (HPAT). A comparação foi realizada usando duas aplicações: soma dos elementos de um vetor unidimensional e o algoritmo de clusterização K-means. Os experimentos foram realizados em ambiente distribuído e com memória compartilhada com diferentes quantidades e configurações de máquinas virtuais. Analisando os resultados foi possível concluir que o HPAT tem um melhor desempenho em relação ao Apache Spark nos nossos casos de estudo. Também realizamos uma análise dos dois arcabouços com a presença de falhas.
Title in English
A comparative analysis for Big Data environments: Apache Spark and HPAT
Keywords in English
Apache Spark.
Big data frameworks
HPAT
Performance comparison
Abstract in English
This work compares the performance and stability of two Big Data processing tools: Apache Spark and High Performance Analytics Toolkit (HPAT). The comparison was performed using two applications: a unidimensional vector sum and the K-means clustering algorithm. The experiments were performed in distributed and shared memory environments with different numbers and configurations of virtual machines. By analyzing the results we are able to conclude that HPAT has performance improvements in relation to Apache Spark in our case studies. We also provide an analysis of both frameworks in the presence of failures.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-06-15
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.