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Abstract

Santos, T.N. Exponential Random Graphs. Dissertation — Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2013.

We study the behavior of the edge-triangle family of exponential random graphs (erg)
using the Markov Chain Monte Carlo method. We compare erg subgraph counts
and edge correlations to those of the classic Binomial Random Graph (brg, also
called Erdős–Rényi model).

It is a known theoretical result that for some parameterizations the limit erg sub-
graph counts converge to those of brgs, as the number of vertices grows [BBS11,
CD11]. We observe this phenomenon on graphs with few (≈ 20) vertices in our
simulations.
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Resumo

Santos, T.N. Grafos Aleatórios Exponenciais. Dissertação — Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2013.

Estudamos o comportamento da família aresta-triângulo de grafos aleatórios expo-
nenciais (erg) usando métodos de Monte Carlo baseados em Cadeias de Markov.
Comparamos contagens de subgrafos e correlações entre arestas de ergs às de Grafos
Aleatórios Binomiais (brg, também chamados de Erdős–Rényi).

É um resultado teórico conhecido que para algumas parametrizações os limites
das contagens de subgrafos de ergs convergem para os de brgs, assintoticamente
no número de vértices [BBS11, CD11]. Observamos esse fenômeno em grafos com
poucos (≈ 20) vértices em nossas simulações.
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Chapter 1

Introduction

Many interesting questions may be formulated in terms of a “network” of interactions
among some class of objects. This abstraction is very versatile: one may consider
physical networks (for instance, train lines connecting cities, neuronal conexions),
social networks (collaboration between researchers, friendship relations), conceptual
(links among internet pages, gene interaction), among others.

The focus of this dissertation is the exponential random graph (erg), a model
used for the study of empirical networks (that is, networks which are observed in
nature, society et cetera). It is a probabilistic model, and its application entails
calculations made using a computer. We study one of the most commonly used
methods for erg sampling, called Markov Chain Monte Carlo (mcmc, defined in the
section 4.2). In addition, we sampled some exponential random graphs (from the edge-
triangle model, described in section 3.4), and compared some of its characteristics to
those observed on samples from another distribution (binomial random graph, see
section 3.1).

The next chapter presents some important concepts from probability (section 2.2),
combinatorics (section 2.3) and statistics (section 2.4).
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Chapter 2

Preliminaries

In this chapter we introduce notation and concepts used throughout the text. We use
the symbols

.= indicates “equality by definition”

N set of natural numbers N .= {1, 2, 3, . . .}

R set of real numbers

2A power set of A, 2A .= {B : B ⊆ A}

[n] “canonical” subset with n elements, [n] .= {1, . . . , n}

|A| number of elements on the set A, for instance
∣∣2[n]∣∣ = 2n

n! factorial, n! .= n(n− 1)(n− 2) · · · 2 · 1

(n)k falling factorial, (n)k
.= n(n− 1)(n− 2) · · · (n− k + 1)(A

k

)
family of k-subsets,

(A
k

) .= {
B ⊆ A : |B| = k

}
(n
k

)
number of k-subsets of [n],

(n
k

) .= ∣∣( [n]
k

)∣∣ = (n)k

k!

f [A] image of the function f , restricted to A, f [A] .= {f(a) : a ∈ A}

Ak if A is a set, denotes the cartesian product A×A× · · · ×A (k factors)

p, q except if otherwise noted, 0 ≤ p ≤ 1 amd q .= 1− p

V (H), E(H), N(v) set of the vertices, edges of a graph H; set of neighbors of the
vertex v

We adopt the notation “[ proprerty ]” from Iverson, which means:

[ property ] .=

1 if the property holds, and

0 otherwise.

For instance:
(n
k

)
=
∑
A⊆[n]

[
|A| = k

]
.

3



Chapter 2. Preliminaries 4

2.1 Asymptotic values

Let f and g be sequences of positive numbers. We write f = o(g) if limn→∞
f(n)
g(n) = 0;

and we write f = Ω(g) if there exist constants C and n0 such that Cf(n) ≥ g(n)
for n > n0. Finally, we write f = Θ(g) se f = Ω(g) and g = Ω(f).

All logarithms are relative to the natural base e ≈ 2.718.

2.2 Discrete probability

A probability space is a triple (Ω,F ,P), where Ω is a countable set (i.e., there is an
injection f : Ω → N), F = 2Ω is the set of all subsets of Ω (the possible events of
a random experiment) and P: F → [0, 1] is a function which satisfies the following
properties:

1. 0 ≤ P ≤ 1, for all A ∈ F ;

2. P(Ω) = 1;

3. if A1, A2, . . . ∈ F are pairwise disjoint, then P
(⋃∞

k=1Ak
)

=
∑∞
k=1 P(Ak).

We can motivate these probability axioms interpreting P(A) as the empirical fre-
quency expected for the occurence of the event A. If we perform n “independent”
experiments (that is, such that the outcome of each one does not interfere with the
others), and if we count the number nA of ocurrences of A (that is, the number
of times the result of one such experiment was an element a from A), then the
empirical frequency f(A) .= nA/n should approximate P(A) when n is “large enough.”
Note that the function f satisfies the three properties above.

Conditional probability

Many statements about probability have the form “if A happens, then the probability
of B is p”, where A and B are events and p is a probability. To include such
formulations in our formalism, we consider an experiment repeated n times, and two
events A and B: we count the number of occurrences nA, nB, nA∩B of the events A,
B and A ∩ B (simultaneous occurrences of A and B), respectively. Considering
only the experiments in which B ocurred, the empirical frequence of A is nA∩B/nB
(assuming B occurs), and we may write

nA∩B
nB

= nA∩B/n

nB/n
.

These fractions can be seen as probabilities, and motivate the following definition.
Given that B occurs, we know that A occurs if and only if A ∩B occurs. Hence,

the conditional probability of A given B, which we denote by P(A|B), must be
proportional to P(A ∩ B). Let P(A|B) = αP(A ∩ B) for some constant α = α(B).
The conditional probability P(Ω|B) must be 1, and therefore αP(Ω ∩ B) = 1,
thus α = 1/P(B). We define the conditional probability of some event A given the
occurrence of some event B by P(A|B) .= P(A ∩B)/P(B). Note that (ΩB,FB,PB),



Chapter 2. Preliminaries 5

where ΩB
.= Ω ∩ B, FB

.= {A ∩ B : A ∈ F}, and PB(A) .= P(A|B) is a probability
space.

This definition is a starting point for the notion of “independence:” we say that
the events A and B are independent if P(A ∩B) = P(A) · P(B). If P(B) > 0, this
implies P(A|B) = P(A) e P(B|A) = P(B).

Finally, we enunciate an important result, the law of total probability. Let F =
{Bi : i ∈ I} be a partition of Ω, that is, a family of Ω subsets such that

⋃
i∈I Bi = Ω

and, for i, j ∈ I, we have Bi ∩Bj = ∅ whenever i 6= j. Hence, for every event A, we
have P(A) =

∑
i∈I P(A|Bi) · P(Bi).

Random variables

Let (F ,Ω,P) be a probability space, as in the previous section. A (real) random
variable, or rv, is a function X : Ω→ R such that for all a ∈ R, we may attribute
probability to the event

{X ≤ a} .= {ω ∈ Ω: X(ω) ≤ a}.

In other words, X is such that {X ≤ a} ∈ F . In particular, a function X : Ω→ E,
where E is a countable set is called discrete random variable if for all x ∈ E we
have {X = x} ∈ F (where {X = x} .= {ω ∈ Ω: X(ω) = x}). An indicator variable
of an event A is fA(ω) .= [ω ∈ A].

Two discrete random variables X and Y are independent if for all x ∈ X[Ω]
and y ∈ Y [Ω] we have P(X = x and Y = y) = P(X = x) · P(Y = y). Furthermore,
two discrete random variables X,Y are conditionally independent, given variables Zi,
for i ∈ I (I an index set) if for all values zi ∈ Zi[Ω], i ∈ I and all x ∈ X[Ω]
and y ∈ Y [Ω]

P(X = x e Y = y|ΩZ) = P(X = x|ΩZ) · P(Y = y|ΩZ),

where ΩZ
.=
⋂
i∈I{Zi = zi}. Note that neither independence implies conditional

independence nor the reverse.
Finally, a set of random variables {Xλ}λ∈Λ is independent if for all subsets of

indexes A ⊆ Λ and all sets of values {xλ}λ∈A, with xλ ∈ Xλ[Ω] we have

P
( ⋂
λ∈A
{Xλ = xλ}

)
=
∏
λ∈A

P(Xλ = xλ
)
.

Expected value and variance

The expectation E(X) of a random variable X is a “weighted average” of the val-
ues X[Ω]. If X is a discrete rv,

E(X) .=
∑
ω∈Ω

X(ω)P(ω) =
∑

x∈X[Ω]
xP(X = x).

Note that for all rvs X,Y , we have E(X + Y ) = E(X) + E(Y ), and for every
constant c, we have E(cX) = cE(X). At last, if X is an indicator variable of the
event A, then E(X) = P(A). The variance Var(X) de X is defined as

Var(X) .= E
(
(X − E(X))2).
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The two following inequalities justify interpreting the expectation of X as the “ex-
pected value” of the variable, and its variance as a measure of concentration of X’s
values on the interval [E(X)− kVar(X),E(X) + kVar(x)], para k > 0.

Theorem 2.1 (Markov’s inequality). Let X be a rv which assumes only nonnegative
values. For all t > 0 we have P(X − E(X) ≥ t) ≤ E(X)/t.

Theorem 2.2 (Chebyshev’s inequality). Let X be a rv with finite expectation µ .=
E(X) and finite variance σ2. For all k > 0 we have P

(
|X − µ| ≥ kσ) ≤ 1/k2.

Conditional expectation

The conditional expectation of the discrete rv X, given an event B is

E(X|B) .=
∑
ω∈Ω

X(ω)P(ω|B) =
∑

x∈X[Ω]
xP(X = x|B)

where B ∈ F is some event. If E(X) is limited, we have the law of total expectation:
E(X) =

∑
i∈I P(Bi)E(X|Bi), where {Bi : i ∈ I} is a partition of Ω.

2.3 Graphs

The usual abstract representation of a network, or graph G = G(V,E) consists
of a set V of vertives and a set of edges E ⊆

(V
2
)
. When {x, y} ∈ E, we say the

vertices x and y are connected, or that they are neighbors. A vertex is isolated if
it has no neighbors. For example, the graph with 3 vertices all connected among
themselves is called a triangle, and the graph such that all but one vertex have the
same (unique) neighbor is called a star (see figure 2.1). The graph on n vertices all
connected is called complete graph and denoted by Kn. A subgraph of G = (V,E) is
a graph H = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E; we denote “H is a subgraph
of G” by H ⊆ G. Bollobás [Bol98] and Diestel [Die10] have excellent introductions
to the theory of graphs.

Two graphs G = (V,E) and H = (W,F ) are isomorph if there is a bijec-
tion f : V →W such that ij ∈ E if and only if f(i)f(j) ∈ F .

In this text, all graphs are finite, that is, have a finite set of vertices.

Figure 2.1: Examples of graphs. To the left, a triangle; to the right, a 5-star. Dots
represent vertices and the lines represent edges.

Studies conducted in the last decades have highlighted structural characteristics
shared by many empirical networks. The interested reader will find many surveys
about such characteristics [AB02]. For example, these networks have many vertices,
and a number of edges roughly linear on the number of vertices.
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Clustering in empirical networks

Another property of interest which was observed in empirical networks is called clus-
tering. This notion is an attempt to measure “transitivity” of the relation indicated
by the edges of the graph. Informally, we can interpret this in the lines of “friends of
my friends are my friends.”

We now formalize the notion of clustering. Consider a graph G = (V,E) (whose
vertices and edges represent, say, people and their friendship relationships, respec-
tively). Let N(v) be the set of neighbors of some vertex v ∈ V , and let d(v) .= |N(v)|.
The number ev

.=
∣∣E ∩ (N(v)

2
)∣∣ of edges connecting neighbors of v is a natural number

between 0 and
(d(v)

2
)
. We define the clustering clus(v) .= ev

(d(v)
2
)−1

. Studies suggest
that the average of clus(v) is “high” in empirical networks [AB02].

We denote the average clustering (or simply clustering) of a graph G by clus(G) .=
|V |−1∑

v∈V clus(v). Note that each connection between two neighbors u and w of v
corresponds to a triangle (u, v, w) in G. Thus, we expect to find a “high” number of
triangles in empirical networks.

Naturally, it is important to agree as to what is a high clustering. We adopt the
convention of taking as a reference the average value of clus(G), over (all) graphs
wich n vertices. This approach is very common (see section 3.1).

Claim 2.3 (Average clustering of graphs on n vertices). Let Gn be the set of the
graphs whose vertex set is [n]. We have

1
|Gn|

∑
G∈Gn

clus(G) = 1
2 .

Proof. See appendix B for a proof based on counting. A shorter, probabilistic
argument is presented in the section 3.1.

In general, we use n to denote the number of vertices of a graph. The number
of edges and triangles of a graph G are e(G) and t(G), respectively. Also, if G is a
graph with vertex set V and A is some set such that A ⊆

(V
2
)
, we say A ⊆ G if all

edges in A are edges of G. For i, j ∈ V , we write “ij ∈ G” whenever {i, j} is an edge
of G.

2.4 Statistics

We distinguish parameters and estimators of probability distributions. A parameter is
a function of the probability space (for instance, the expectation of a random variable),
and an estimator is a function of a sample (i.e., the realization of experiment), which
we often use to estimate the value of some parameter (for example, the sample
mean—see discussion below).

As an example, consider a probability distribution P , uniform, over the set [n].
The probability of the event A ⊆ [n] is P(A) .= |A|/n. Let X(i) .= i be a rv
in the probability space ([n], 2[n],P). The expectation of X is a parameter of
the model, and has value E(X) .=

∑
i∈[n] iP(X = i) =

∑n
i=1 i/n = (n + 1)/2.
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Let X1, X2, . . . , Xk be rvs independent and identically distributed to X. We can
estimate X by the sample mean M .=

∑k
i=1Xk/k. Note that E(M) = E(X).

We adopt the sample mean X and the sample standard deviation sX as estimators,
respectively, of the expectation E(X) and the standard deviation

√
VarX.

The sample mean of X is denoted by X, and the sample standard deviation
by sX .

X
.=
∑N
i=1Xi

N
and sX

.=

√∑N
i=1(Xi −X)2

N − 1 ,

where the samples are indexed from 1 to N . Furthermore, we estimate the covari-
ance C(x, y) .= E

(
(X−E(X)(Y −E(Y ))

)
and the correlation C(x, y)/

√
VarX ·VarY

between two rvs X and Y , using their sample covariance Cov(X,Y ) and sample
correlation Corr(X,Y ), respectively:

Cov(X,Y ) .=
∑N
i=1(Xi −X)(Yi − Y )

N − 1 and Corr(X,Y ) .= Cov(X,Y )
sXsY

.

Informally, the covariance is a measure of a linearity relation between rvs, and
the correlation is a normalized version of the covariance (since |Corr(X,Y )| ≤ 1).
Note that an equivalent expression for the covariance between X and Y is E(XY )−
E(X)E(Y ), and therefore independent variables have covariation zero.



Chapter 3

Binomial and Exponential
Random Graphs

In the following discussions, we use the word model somewhat loosely, to indicate
a distribution, or family of distributions of probability. The models we describe
have parameters, such as the number of vertices n, and often we are interested in the
behaviour of the model as n tends to infinity.

3.1 Binomial Random Graph

A random graph is a random varaible assuming graphs as values. One of the
most studied random graph models is the Binomial Random Graph (brg), denoted
by G(n, p). It is a graphs on n labelled vertices, constructed adding each edge
independently of the others with probability p = p(n). Therefore, G(n, 1/2) is
an uniform distribution over the 2(n

2) labelled graphs. In general, the probability
of G(n, p) be a given graph H = ([n], E) is

P(H) = pe(H)(1− p)(
n
2)−e(H). (3.1)

For a more extensive study of random graphs, we refer the reader to Bollobás [Bol01]
and to Janson, Łuczak and Ruciński [JŁR00].

Properties of G(n, p)

In this section we calculate the expected number of edges and triangles of G(n, p).
The calculations are elementary, and illustrate a kind of reasoning very typical of
probabilistic combinatorics.

Claim 3.1 Let G ∼ G(n, p) be a brg, and A ⊆ [n] be a subset of the vertices of G.
The expected number of edges of G between vertices of A is E(e(A)) =

(|A|
2
)
p.

Proof. Let Xe = [ e ∈ E(G) ]. Thus, Xe = 1 if the edge e is present in G, and 0
otherwise. Since Xe is an indicator variable, we have E(Xe) = P(Xe = 1). Also,

9
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e(A) =
∑
e∈(A

2)Xe, and by linearity of expectation

E(e(A)) = E
( ∑
e∈(A

2)
Xe

)
=

∑
e∈(A

2)
E(Xe) =

(
|A|
2

)
p.

Claim 3.2 Let G ∼ G(n, p). We have E
(
clus(G)

)
= p.

Proof. By linearity of expectation, we have

E
(
clus(G)

)
= n−1 ∑

v∈[n]
E
(
clus(v)

)
. (3.2)

consider the events ΩA
.= {N(v) = A}, for A ⊆ [n]−v. These events form a partition

of Ω (since Ω =
⋃
A⊆[n]−v ΩA and also ΩA ∩ ΩB = ∅ if A 6= B). Therefore,

E(clus(v)) =
∑

A⊆[n]−v
P(ΩA)E(clus(v)|ΩA)

=
∑

A⊆[n]−v
P(ΩA)E(e(A)|ΩA)

(|A|
2
)−1

=
∑

A⊆[n]−v
P(ΩA)

(|A|
2
)
p
(|A|

2
)−1

= p,

Where we used claim 3.1 to obtain E(e(A)|ΩA). =
(|A|

2
)
p. Making the substitution

of this value in the equation (3.2), we complete the proof.

Another proof of the claim 3.2 is providade on the appendix B.

Claim 3.3 Let G ∼ G(n, p). We have E
(
t(G)

)
=
(n

3
)
p3.

Proof. Let X({u, v, w}) =
[
{u, v, w} form a triangle in G ]. We have

E(t(G)) = E
( ∑
A∈([n]

3 )
X(A)

)
=

∑
A∈([n]

3 )
E
(
X(A)

)
=

∑
A∈([n]

3 )
p3 =

(
n

3

)
p3.

3.2 Exponential Random Graph

In spite of being rich in properties, the brg model is not appropriate to describe
empirical networks—as observed by Erdős and Rényi [ER60]. In fact, there exist
many other models for networks in the literature [WS98, AB99, CDS10, vdH09],
which have been proposed with such goal. Our focus is the model called Exponential
Random Graph (erg), which is used in the social sciences [HL81, SPRH06]. In this
model, the probability of a graph G with n vertices is

pβ(G) .= exp
(

k∑
i=1

βiTi(G)− ψ(β)
)

(3.3)

where β = (β1, . . . , βk) is a vector of real parameters; T1, T2, . . . , Tk are real functions
on the space of graphs (for instance, the number of edges, triangles, stars, circuits,. . . ),
and ψ is a normalizing constant, so that

∑
G pβ(G) = 1.
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The expression in the exponent is occasionally referred in the literature as Hamil-
tonian (a term from statistical mechanics, not related to the graph theory usage),
which is used to weight the probability measure over the graphs, assigning greater
mass to graphs with “desirable” properties. For instance, fix parameters h, β > 0
and, for every graph G with n labelled vertices, e(G) edges and t(G) triangles, define
the Hamiltonian of G as

H(G) .= he(G) + βt(G). (3.4)

A probability measure on the space of (labelled n-vertex) graphs may then be defined
as

pn(G) = eH(G)

e−ψ
, (3.5)

where ψ is the normalizing constant, occasionally called partition function of the
model.

We now show that every brg is a erg. Consider the erg with distribu-
tion pn(G) = exp(βe(G)− ψ), where ψ is a function of n and β. Since the sum of
probabilities of the graphs with n vertices equals 1, we have

1 =
(n

2)∑
i=0

∑
G

e(G)=i

exp(βi− ψ) = e−ψ
(n

2)∑
i=0

((n
2
)
i

)
eβi = e−ψ(1 + eβ)(

n
2), (3.6)

whereG runs over all labelled graphs with n vertices and i edges. Thus eψ = (1+eβ)(
n
2)

and

pn(G) = ee(G)β(1 + eβ)−(n
2) =

(
eβ

1 + eβ

)e(G)(
1− eβ

1 + eβ

)(n
2)−e(G)

, (3.7)

which is G
(
n, eβ/(1 + eβ)

)
with 0 < p = eβ/(1 + eβ) < 1. In the extreme cases

of p ∈ {0, 1}, the random graph G(n, p) takes on unique values, and may be written
in the form of an erg model using indicator functions (of the empty and complete
graph).

However, in general, the probability distributions of ergs and of brgs are distinct.
Furthermore, the former are hard to compute (the normalizing constant may involve
a nontrivial sum over 2(n

2) graphs), rendering practically impossible direct sampling
of ergs. This motivated the search of distributions to approximate erg models. In
particular, one wish to sample from these distributions, an essential step of statistical
applications of these models [CD11].

We present a characterization of the probability distributions of random graphs,
obtained by Frank e Strauss [FS86], through application of the Hammersley–Clifford
Lemma [Bes74, Gri]. It is expressed in terms of conditional dependencies between
the indicator variables of the edges.

It will be useful to represent a graph G = (V,E) with n vertices by a vector x =
(xe) ∈ {0, 1}(

n
2), such that xe = [e ∈ E]. Thus, a random graph is a probability

distribution over the vectors in {0, 1}(
n
2).
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Dependency structure

Let Z1, . . . , Zm be discrete random variables. The dependency graph D of Z1, . . . , Zm

is a graph D = (V,E) with V = [m], and edges consisting of the pairs {i, j} ∈
([m]

2
)

such that Zi e Zj are conditionally dependent, given the values of Zk, for k ∈
[m] \ {i, j}. That is, ij ∈ E if

P(Zi = zi, Zj = zj |Zk = zk, k 6= i, j)

= P(Zi = zi |Zk = zk, k 6= i, j) P(Zj = zj |Zk = zk, k 6= i, j),
(3.8)

where zk ∈ {0, 1}, for all k ∈ [m] and {i, j, k} ∈
([m]

3
)
. For instance, a sequence

of independent random variables has an empty dependency graph (i.e., with no
edges), and a Markov Chain (Z1, . . . , Zm) has dependency graph with edges {i, i+ 1}
for i ∈ [m− 1] (see section 4.1). A clique of the dependency graph D is a nonempty
subset A of [m] such that

(A
2
)
⊆ E(D).

Theorem 3.4 (Frank–Strauss [FS86]). The probability distribution of a random
graph G on the vertex set [n] and dependency structure D can be written as

P(G) = c−1 exp
∑
A⊆G

αA[A is a clique of D ], (3.9)

where c is a normalizing constant

c =
∑

G : P(G)>0
exp

∑
A⊆G

αA[A is a clique of D ], (3.10)

and αA are arbitrary constants.

As an example, let us consider the brg G(n, p). The m =
(n

2
)
indicator vari-

ables of edges X =
(
X(1), . . . , X(m)

)
de G(n, p) are independent, and therefore its

dependency graph is empty. Thus its probability distribution may be written as

P(X = x) = c−1 ∏
xe=1

expαe, (3.11)

where x = (x1, . . . , xm) ∈ {0, 1}(
n
2) is a vactor with

(n
2
)
coordinates, representing a

graph on n vertices, and αe = α{e}. The normalizing constant is

c =
∑

y∈{0,1}k

∏
e edge of y

expαe =
∏
i<j

(1 + expαe). (3.12)

Factoring c according to the presence or absence of each edge e, the equation (3.11)
becomes

P(X = x) =

 ∏
e edge of x

expαe
1 + expαe

 /  ∏
e is not edge of x

(1 + expαe)

 . (3.13)

(Compare with equation (3.7).) And then the probability pe
.= P

(
X(e) = 1

)
is pe = expαe/(1 + expαe), or, equivalently αe = log

(
pe/(1− pe)

)
.



Chapter 3. Binomial and Exponential Random Graphs 13

3.3 Markov Graphs

The dependency structure introduced in the last section motivates the definition of
yet another class of random graphs, the Markov graphs [FS86]. A random graph is
a Markov graph if disjoint edges are conditionally independent. In symbols, denoting
by Xab

.=
[
{a, b} ∈ E(G)

]
the indicator variable of the edge {a, b}, we have, for

all distinct vertices a, b, c and d of the graph:

P(Xab = xab e Xcd = xcd |Ω′) = P(E(ab) = eab |Ω′) · P(E(cd) = ecd|Ω′) (3.14)

where Ω′ .=
{
Xe = xe, e ∈ E(G) \ {ab, cd}

}
and xab, xcd, xe ∈ {0, 1}. Hence, for

Markov graphs, the cliques of the dependency graph D correspond to sets of edges
such that any pair of edges shares a vertex. (The only graphs without isolated
vertices satisfying this restriction are triangles and stars—see Lemma 3.5.)

We highlight (again) that independence does not imply conditional independence
(nor vice-versa), and note that the Markov graphs are not, a generalization (or a
subclass) of brgs. On the other hand, they are a subclass of ergs (theorems 3.6
and 3.7).

Lemma 3.5 Let G = (V,E) be a graph with at least one edge and no isolated
vertices. If all pairs of edges e, f ∈ E of G have a common vertex (i.e.: e ∩ f 6= ∅),
then G is a triangle or a star.

Proof. See appendix B.

In the same article, Frank and Strauss present general expressions for the proba-
bility distributions of Markov Graphs. The following result deals with the particular
case in which isomorph graphs have the same probability.

Theorem 3.6 (Frank–Strauss [FS86]). The probability distribution of a Markov
Graph may be written as

P(G) = c−1 exp
(
τt+

n−1∑
k=1

σksk

)
, (3.15)

where τ and σk are arbitrary constants, t and sk are the number of triangles and
k-stars in G, respectively, and c is a normalizing constant.

We demonstrate (theorem 3.7) that, if a random graph has probability distribution
which can be written in the form of the equation (3.15), then it is a Markov Graph,
thus completing the characterization of these models in terms of their probability
distribution.

3.4 The edge-triangle model

The edge-triangle family of ergs consists of the probability distributions over labelled
graphs on n vertices of the form

pn,β1,β2 = pβ1,β2(G) = exp
(

2β1e(G) + 6β2
n
t(G)− n2ψ

)
, (3.16)
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where ψ = ψn(β1, β2), and the normalization ensures the model is non-trivial for
large n (otherwise almost all graphs are empty or complete). This model has been
the focus of many studies (see, for example [FS86, HJ99]).

The following theorem completes a characterization of the Markov Graphs (see
theorem 3.6).

Theorem 3.7 Every edge-triangle erg is a Markov Graph.

Proof. We prove that if G is a random graph with probability distribution given
by (3.16), then, for all edges e .= {a, b} and f .= {c, d},

P(Xe = xe, Xf = xf |Ωef ) = P(Xe = xe|Ωef ) · P(Xf = xf |Ωef ), (3.17)

where by convenience we write “Xe = xe, Xf = xf” for “{Xe = xe} ∩ {Xf = xf}”,
and Ωef

.=
⋂
g∈([n]

2 )\{e,f}{Xg = xg}. As before, for any edge e′ = {u, v} ∈
([n]

2
)
,

we write xe′
.= xuv ∈ {0, 1}, and for any triple of vertices {u, v, w} ∈

([n]
3
)
, we

set xuvw
.= xuvxuwxvw. We write the probability distribution of G as

p(G) .= exp
(
β1

∑
{i,j}∈([n]

2 )
Xij + β2

∑
{i,j,k}∈([n]

3 )
Xijk − ψ,

)

where Xij
.= [ ij ∈ G ], Xijk

.= XijXikXjk, and ψ = ψn is the normalizing constant
of the model. Let Ωe

.= {Xe = xe}, and Ωf
.= {Xf = xf}. We have

P(Xe = xe|Ωef ) · P(Xf = xf |Ωef ) .= P(Ωe|Ωef ) · P(Ωf |Ωef ) (3.18)
.= P(Ωe ∩ Ωef ) · P(Ωf ∩ Ωef )(

P(Ωef )
)2 . (3.19)

since P({Xe = xe, Xf = xf |Ωef ) = P(Ωe ∩ Ωf ∩ Ωef )/P(Ωef ), it is enought to prove
that

P(Ωe ∩ Ωef ) · P(Ωf ∩ Ωef ) = P(Ωe ∩ Ωf ∩ Ωef ) · P(Ωef ).

Observe that P(Ωe ∩Ωef ) =
∑
i∈{0,1} P({Xe = xe} ∩ {Xf = i} ∩Ωef ). Since {0, 1} =

{xf , 1− xf} = {xe, 1− xe}, we can write

P(Ωe ∩ Ωef ) =
∑

k∈{xf ,1−xf}
exp

(
β1
(
xe + k +

∑
ij 6=e,f

xij
)

+ β2
( ∑

u,v,w∈[n]
ab/∈{uv,uw,vw}
cd/∈{uv,uw,vw}

xuvw +
∑
u6=a,b

xexuaxub +
∑
v 6=c,d

kxvcxvd
)
− ψ

)
.

An analogous expression is valid for P(Ωf ∩ Ωef ):

P(Ωf ∩ Ωef ) =
∑

`∈{xe,1−xe}
exp

(
β1
(
`+ xf +

∑
ij 6=e,f

xij
)

+ β2
( ∑

u,v,w∈[n]
ab/∈{uv,uw,vw}
cd/∈{uv,uw,vw}

xuvw +
∑
u6=a,b

`xuaxub +
∑
v 6=c,d

xfxvcxvd
)
− ψ

)
.
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We can factor the product

P (Ωe ∩ Ωef ) · P(Ωf ∩ Ωef ) = exp
( ∑
ij 6=e,f

xij +
∑

u,v,w∈[n]
ab/∈{uv,uw,vw}
cd/∈{uv,uw,vw}

xuvw − ψ
)2

·
( ∑
k∈{xf ,1−xf}

exp
(
β1
(
xe + k

)
+ β2

( ∑
u6=a,b

xexuaxub +
∑
v 6=c,d

kxvcxvd
)))

·
( ∑
`∈{xe,1−xe}

exp
(
β1
(
`+ xf

)
+ β2

( ∑
u6=a,b

`xuaxub +
∑
v 6=c,d

xfxvcxvd
)))

(3.20)

We observe that for all constants C1, C2, C3, C4,( ∑
k∈{xf ,1−xf}

exp(xeC1 + kC2 + xeC3 + kC4)
)
·
( ∑
`∈{xe,1−xe}

exp(`C1 + xfC2 + `C3 + xfC4)
)

= exp
(
xe(C1 + C3) + xf (C2 + C4)

) ∑
k∈{0,1}
`∈{0,1}

exp
(
`(C1 + C3) + k(C2 + kC4)

)

Substituting in (3.20), we obtain,

P (Ωe ∩ Ωef ) · P(Ωf ∩ Ωef )

= exp
( ∑
ij 6=e,f

xij +
∑

u,v,w∈[n]
ab/∈{uv,uw,vw}
cd/∈{uv,uw,vw}

xuvw − ψ
)2

· exp
(
xe
(
β1 + β2

∑
u6=a,b

xuaxub
)

+ xf
(
β1 + β2

∑
v 6=c,d

xvcxvd
))

·
∑

k∈{0,1}
`∈{0,1}

exp
(
`
(
β1 + β2

∑
u6=a,b

xuaxub
)

+ k
(
β1 + β2

∑
v 6=c,d

xvcxvd
))

= P(Ωe ∩ Ωf ∩ Ωef )
∑

k∈{0,1}
`∈{0,1}

P({Xe = `} ∩ {Xf = k} ∩ Ωef )

= P(Ωe ∩ Ωf ∩ Ωef )
∑

k∈{0,1}
`∈{0,1}

P(Ωef |Xe = `,Xf = k)P(Xe = `,Xf = k)

= P(Ωe ∩ Ωf ∩ Ωef )P(Ωef ).

We note that, with small tweaks, the proof above may be generalized, proving
the theorem 3.7 for ergs

p′n(G) .= c−1 exp
( ∑
{i,j}∈([n]

2 )
βijXij +

∑
{i,j,k}∈([n]

3 )
βijkXijXikXjk

)
,

where βij and βijk are constants which may depend on n, and c is a normalizing
constant. This formulation, slightly more general than the version we enunciated, is
the reciprocal of the theorem presented by Frank and Strauss (Theorem 3 in [FS86]).
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3.5 Edge-triangle model and BRGs

If the parameter β2 of the edge-triangle model is positive, then we can determine the
limit of the normalizing constant in ψn (equation (3.16)) as n→∞. This is a result
obtained by Chatterjee and Diaconis [CD11], using graph limmits (see chapter 5):

ψn(β1, β2) ' sup
0≤u≤1

(
β1u+ β2u

3 − 1
2u log u− 1

2(1− u) log(1− u)
)
. (3.21)

Furthermore, the value u? which attains the maximum in (3.21) is such that G(n, u?)
is, in a sense,“close” to pn,β1,β2(G) (see chapter 5).



Chapter 4

Markov Chain Monte Carlo
method

Markov chains and Monte Carlo Methods are subject of a large body of mathematical
literature. In the followin, we present some aspects of this rich theory. Excellent
introductions to the subject have been written by Brémaud [Bré99], Diaconis [Dia08],
and Levin, Peres and Wilmer [LPW09].

4.1 Markov Chains

Let X be a finite set, and K(x, y) be a matrix with lines and columns indexed by X
such that K(x, y) ≥ 0 for all x, y ∈ X and

∑
y∈X K(x, y) = 1 for each x ∈ X . Hence

each line of K defines a probability distribution and we can use K to direct a random
walk over X : from x, we proceed to y with probability K(x, y). A Markov Chain
is a sequence of random variables {Xi}i≥0 each one taking on values in X , such
that the conditional probability distribution of Xn+1 given Xj = xj , where xj ∈ X
e 0 ≤ j ≤ n is

P(Xn+1 = xn+1 |Xj = xj , 0 ≤ j ≤ n) = K(xn, xn+1). (4.1)

Thus P(Xn+2 = z |Xn = x) =
∑
y∈X K(x, y)K(y, z). In general, the k-th power

of K has Kk(x, y) = P(Xn+k = y |Xn = x). A probability distribution π over X
is stationary for K if ∑

x∈X
π(x)K(x, y) = π(y), (4.2)

that is, if π is a left eigenvector of K with eigenvalue 1. An interpretation of (4.2)
is “pick x according to π and follow one step according to K(x, y); the probability
of going to y is π(y).” The following theorem guarantees that under some natural
correctness conditions, π is unique and large powers of K converge to the matrix
with all lines equal to π(x).

Theorem 4.1 Let X be a finite set and K(x, y) a Markov Chain indexed by X .
If there exists n? such that Kn?(x, y) > 0 for all n ≥ n?, then K has a unique
stationary distribution π and

lim
n→∞

Kn(x, y) = π(y) for each x e y in X .

17
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A Markov Chain satisfying the theorem conditions is said to be ergodic. The
probabilistic content of the theorem is that starting from any initial state x, the n-th
step of a simulation of the chain has probability close to π(y) of being in y if n is
large. A key observation is that, tipically, in the application of the method we are
about to describe, |X | is large; it is simple to go from x to y according to K(x, y);
and it is hard to sample directly from π [Dia08].

As an example, consider the edge-triangle erg. The state space X is the set Gn
of all 2(n

2) labelled graphsgrafos with n vertices, and the normalizing constant of
the model is

e−ψ =
∑
G∈Gn

pβ(G),

which has a number of terms exponential in n.

4.2 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo method (mcmc) is a technique used to sample from
some probability distribution π. It has the advantage of not requiring the calculation
of the normalizing constant (π needs only to be known up to a multiplicative
constant), and its application in this study requires only the computation of the
Hamiltonian of a limited number of graphs. The mcmc method consists in simulating
a Markov Chain having pβ as stationary distribution. To obtain an approximate
sample from pβ , we read the state of the chain after a large enough number of steps
is taken.

Let X be a finite set and π(x) a probability distribution over X , known up to a nor-
malizing constant. Let J(x, y) be a transition matrix of a Markov Chain over X such
that J(x, y) > 0 if and only if J(y, x) > 0, and let A(x, y) .= π(y)J(y, x)/π(x)J(x, y).
Note that J does not need to be related to π. We call J the proposal chain, and A
the accepting ratio. The Metropolis–Hastings algorithm transforms J in a new Markov
ChainK(x, y) with stationary distribution π. The algorithmic description of the trans-
formation is the following: from x, choose y with probability J(x, y); if A(x, y) ≥ 1,
proceed to state y; otherwise, throw a coin with probability of “heads” A(x, y): if
the coin falls “heads”, proceeed to state y and stay in x otherwise. In symbols,

K(x, y) .=


J(x, y) if x 6= y and A(x, y) ≥ 1,

J(x, y)A(x, y) if x 6= y and A(x, y) < 1,

J(x, y) +
∑

z : A(x,z)<1
J(x, z)(1−A(x, z)) if x = y.

(4.3)

Note that the normalizing constant is cancelled in the calculations. The accepting
ratio is such that the chain K satisfies π(x)K(x, y) = π(y)K(y, x); this implies K
has a stationary distribution π. In fact,∑

x∈X
π(x)K(x, y) =

∑
x∈X

π(y)K(y, x) = π(y)
∑
x∈X

K(y, x) = π(y),

and thus K and π satisfy (4.2). When the proposal chain is simmetric (that
is, J(x, y) = J(y, x)), the algorithm of equation (4.3) is called Metropolis.
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Given a proposal chain, the essential question is determining the “speed” of
convergence to the stationary distribution, that is, how many steps of the simulation
are necessary for the current state distribution to be “close” to the stationary
distribution. This value is called mixing time of the chain.

4.3 Mixing time of ERGs

We can evaluate the distance between the Markov Chain K(x, y) and its stationary
distribution π using the total variation distance

‖Kn
x − π‖TV

.= sup
A⊆X

∣∣Kn(x,A)− π(A)
∣∣, (4.4)

where Kn(x,A) =
∑
y∈AK

n(x, y) and π(A) =
∑
y∈A π(y). If X is finite, we have

‖Kn
x − π‖TV = max

A⊆X

∣∣Kn(x,A)− π(A)
∣∣ (4.5)

= 1
2
∑
y∈X

∣∣Kn(x, y)− π(y)
∣∣. (4.6)

To demonstrate (4.6), consider the set A? which attains the maximum

∣∣Kn(x,A?)− π(A?)
∣∣ = max

A⊆X

∣∣Kn(x,A)− π(A)
∣∣,

and let B .= X \A?. We have

Kn(x,X ) = Kn(x,A?) +Kn(x,B) = π(A?) + π(B) = π(X ) = 1

Kn(x,A?)− π(A?) = −
(
Kn(x,B)− π(B)

)
. (4.7)

Also, note that if a ∈ A? then the sign of Kn(x, a) − π(a) is the same as the sign
of Kn(x,A?)− π(A?), for otherwise, if A′ .= A \ {a},

∣∣Kn(x,A′)− π(A′)
∣∣ > ∣∣Kn(x,A?)− π(A?)

∣∣.
The same reasoning shows that there is no b ∈ B such that the sign of Kn(x, b)−π(b)
is the same as the sign of Kn(x,A?)− π(A?), for otherwise, if A′ .= A ∪ {b},

∣∣Kn(x,A′)− π(A′)
∣∣ > ∣∣Kn(x,A?)− π(A?)

∣∣.
In both cases, the set A′ contradict the choice of A?.

All this shows that we can decide whether a given element y ∈ X belongs to A?

(or to B) by checking the signal of K?(x, y)− π(y), which amounts to say that∣∣∣∑
y∈B

Kn(x, y)− π(y)
∣∣∣ =

∑
y∈B

∣∣Kn(x, y)− π(y)
∣∣,

and also ∣∣∣ ∑
y∈A?

Kn(x, y)− π(y)
∣∣∣ =

∑
y∈A?

∣∣Kn(x, y)− π(y)
∣∣.
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Therefore, by (4.7)∣∣Kn(x,A?)− π(A?)
∣∣ =

∣∣Kn(x,B)− π(B)
∣∣

2
∣∣Kn(x,A?)− π(A?)

∣∣ =
∣∣Kn(x,A?)− π(A?)

∣∣+ ∣∣Kn(x,B)− π(B)
∣∣

2 max
A⊆X

∣∣Kn(x,A)− π(A)
∣∣ =

∑
y∈A?

∣∣Kn(x, y)− π(y)
∣∣+ ∑

y∈B

∣∣Kn(x, y)− π(y)
∣∣

max
A⊆X

∣∣Kn(x,A)− π(A)
∣∣ = 1

2
∑
y∈X

∣∣Kn(x, y)− π(y)
∣∣.

The expression ‖Kn
x − π‖TV is a number between 0 and 1, and we are interested in

the following problem: given K,π, x and ε > 0, how large must be n so that

‖Kn
x − π‖TV < ε. (4.8)

The mixing time of K is the smallest time n? such that maxx∈X ‖Kn?

x − π‖TV < e−1.
Another way of limiting the mixing time is using coupling of chains [Dia08]. In
that technique, two Markov Chain processes evolve simultaneously, according to the
transition operator K, until the point they meet: from then they become “coupled”
and proceed together.

Formally, the coupling of the chains X and Y , defined over the state space X is a
process Zn = (Xn, Yn) over the state space X × X such that each of the coordinates
is marginally distributed as a Markov process K. That is, writing Q

(
(i, j), (i′, j′)

) .=
P
(
(Xn+1, Yn+1) = (i′, j′)

∣∣ (Xn, Yn) = (i, j)
)
,∑

j′∈X
Q
(
(i, i′), (j, j′)

)
= K(i, j) and

∑
j∈X

Q
(
(i, i′), (j, j′)

)
= K(i′, j′).

As an example, consider two chains, one of wich starts from a random state taken
according to the stationary distribution and another which starts from some fixed
state. Since the stationary chain is stationary at every step, an upper bound to the
mixing time can be obtained estimating the number of transitions until coupling.
We have the following useful Lemma.

Lemma 4.2 (Mixing time Lemma). For a Markov chain K, suppose that there are
two coupled copies, Y and Z, such that each has marginal distribution X and

max
y,z

P(Yt 6= Zt |Y0 = y, Z0 = z) ≤ (2e)−1.

The mixing time of X is bounded above by t.

That is, if the probability of “non-coupling” at the time t is suficiently low,
then t is an upper bound for the mixing time (for a proof and further discussion,
see [LPW09]).

We mention here the results of Bhamidi, Bresler and Sly [BBS11], about the
mixing time of ergs from equation (4.9). Their results hold for proposal schemes
called local dinamics, where the proposal chain only allows transition between graphs
which differ in at most the state of at most o(n) edges. If we allow the change of at
most one edge at per step of the chain, then the proposal scheme is called Glauber
dynamics.
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These authors study the (subclass of) ergs whose distribution may be expressed
as

pn,β(X) = exp
(

k∑
i=1

βi
dens(Gi, X)
ne(Gi)−2 − ψn(β)

)
, (4.9)

where Gi are graphs with e(Gi) edges each, for i = 1, . . . , k, and dens(Gi, X) is
the number of labelled copies of Gi in X (that is the number of edge-preserving
injections V (Gi)→ [n] from the set of vertices of Gi to distinct vertices of X).

Bhamidi, Bresler and Sly obtained a characterization of the behaviour of local
dinamics: when β2, . . . , βk are positive (i.e., β = (β1, β2, . . . , βk) ∈ R × (R+)k−1),
if n is large enough, then

• or the model is essentially the same as some brg, and the mixing time of the
Markov chain is n2 logn;

• or the Markov chain takes an exponential number o steps to mix.





Chapter 5

Graph Limits

Chatterjee and Diaconis [CD11] compare binomial random graphs and exponential
random graphs using the theory of graph limits developed in a series of articles
by L. Lovász, V.T. Sós, B. Szegedy, C. Borgs, J. Chayes, K. Vesztergombi, A. Schriver
and M. Freedman (see [BCL+06, BCL+08, BCL+, LS06, Lov12]). In these studies,
large graphs are compared using subgraph counts. In this section we briefly outline
some of the ideas involved in the comparison of the models, referring the interested
reader to the aforementioned publications.

A graph homomorphism is an edge-preserving function f : V (G)→ V (H) from ver-
tices of one graph G to the vertex set of another graph H. That is, when-
ever ij ∈ E(G), we have f(i)f(j) ∈ E(H). For any graphs G,H, we denote
by | hom(G,H)| the number of homomorphisms from G to H (that is, the number
of functions V (G)→ V (H) between the vertex sets of G and of H such that every
pair connected vertices of H is mapped to a pair of connected vertices in G. We also
define the homomorphism density

dens(H,G) .= |hom(H,G)|
|V (G)||V (H)| (5.1)

which is the probability a function V (H)→ V (G) chosen uniformly at random is a
homomorphism.

Let {Gn}n≥1 be a sequence of graphs such that the number of vertices of Gn
tends to infinity as n → ∞. Suppose the graphs Gn become more similar as n
increases, in the sense dens(H,Gn) tends to a limit dens(H) for every graph H. One
of the results of the work of Lovász and coworkers is the identification of a limit
object to such sequences.

The graph limit of the sequence, or graphon, is an object from which the values
of dens(H) may be read. Also, it is a fact that every graphon (see definition below)
is the limit of some graph sequence [LS06].

The limit objects are functions h ∈ W, where W is the space of all measurable
functions from [0, 1]2 to [0, 1] which satisfy h(x, y) = h(y, x), for all x, y.

The graphon determines all subgraph limit deensities: let H be a graph with
vertex set V (H) = [k] and

dens(H,h) =
∫

[0,1]k

∏
{i,j}∈E(H)

h(xi, xj) dx1 . . . dxk. (5.2)
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We say that a sequence of graphs {Gn}n≥1 converges to h if for every graph H

lim
n→∞

dens(H,Gn) = dens(H,h). (5.3)

For a fixed graph G, we define

fG(x, y) =

1 if (dnxe, dnye) is an edge of G,

0 otherwise.
. (5.4)

It follows that the limit of the constant sequence G,G, . . . is fG, that is dens(H, fG) =
dens(H,G) for every graph H.

In addition, there is a metric in the space of graphons (defined through a distance,
called cut distance) which has the following property: graphons h1 and h2 which
are close have values dens(F, h1) and dens(F, h2) similar, for every fixed graph F .
A more comprehensive discussion of the subject would escapes the escope of this
text, and we refer the interested reader to the aforementioned literature.

Consider two graph sequences {Fk}k≥1 and {G`}`≥1, obtained, respectively, according
to some brg model, and some erg model, with

∣∣V (Fi)
∣∣ =

∣∣V (Gi)| = i; and let α
(resp. β) be the brg (resp. erg) model used to generate the sequence {Fk}k≥1

(resp. {G`}`≥1). Suppose that the sequences have (graph) limits f and g, respectively.
Note that f and g are random variables.

We can compare the models observing the expected distance between f and g.
We shall say two models of random graphs α and β are close, or similar if the cut
distance d(Gα, Gβ), between the respective graphons is arbitrarily small almost-surely.
That is, in symbols símbolos, for all ε > 0,

P
(
d(Gα, Gβ) < ε

)
= 1. (5.5)

Extending results of Bhamidi, Bresler and Sly, Chatterjee and Diaconis [CD11],
observe that many erg models are close to some brg. In the particular case of the
edge-triangle model with β2 > 0, Chatterjee e Diaconis have determined a means of
estimating the parameter u? = u?(β1, β2) (equation (3.21)) such that G(n, u?) is close
to the edge-triangle model with n vertices and parameters β1, β2 (equation (3.16)).



Chapter 6

Computational Experiments

The similarity of the brg and erg models (in the sense of chapter 5) has an asymptotic
nature, steeming from its definition in terms of convergence of the homomorphism
densities in infinite sequences of graphs. In a finite setting, we expect to find similar
homomorphism densities dens(H,F ) ≈ dens(H,G), for graphs F,G with number
of vertices n sufficiently large and H with |V (H)| � n vertices; where F,G are
sampled, respectively, according to the edge-triangle model (equation (3.16)) and
the “corresponding” brg (equation (3.1), with p = u? maximizing (3.21)).

In this section we describe an exploratory study of the behavior of dens(Ki, G),
for i = 2, 3 and for G sampled from the edge-triangle erg model and the brg
model. Note that dens(Ki, G) = i! ·

∣∣{Ki ⊆ G}
∣∣ is proporcional to the number of

subgraphs Ki of G. Therefore, we can measure the homomorphism density by simply
counting the number of copies of Ki in the sampled graphs.

On one hand, the size (number of vertices) of graphs we can sample is limited,
given that the mixing time of the Metropolis-Hastings algorithm may be exponential
on the number of vertices of the model. On the other hand, small graphs may have
very different homomorphism densities, if only because the theorems motivanting
our simulations are asymptotic statements.

However, extensive simulation using computers, reported by Mark Handcock
and David Hunter, indicates that n = 20 vertices already ensure a good approximation
of ψn(β1, β2) using equation (3.21) (see [CD11]), suggesting that the asymptotic
behavior can be observed in models within reach of simulation.

Our simulations were made using the package ergm of statistical tools for analysis
of networks [HHB+13, HHB+08] (see section 6.1). We used this implementation to
sample “close” erg and brg.

We use the following heuristics to choose the number of steps to execute in
the simulation: for models with n vertices, we sampled the Markov Chain state
every n2 ≈ 2

(n
2
)
steps. We chose this number since any two n-vertex graphs differ

in at most
(n

2
)
edges, and, in particular, the graphs ([n], E) and ([n],

([n]
2
)
\E) differ

in exatcly
(n

2
)
edges. We exhibit the relation between the state space size and the

number of transitions between sampling on the table 6.1.
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Table 6.1: Growth of
(n

2
)
as a function of n. The order of x is 10blog10 xc.

n
(n

2
)

order of
(n

2
)

order of 2(n
2)

5 10 101 103

10 45 101 1013

15 105 102 1031

20 190 102 1057

25 300 102 1090

30 435 102 10130

35 595 102 10179

40 780 102 10234

45 990 102 10298

50 1 225 103 10368

100 4 950 103 101490

6.1 Software for the simulation

The ergm package for the R suite of statistical software [HHB+08] provides, among
other tools, an implementation of the Metropolis–Hastings algorithm for simulation
of ergs via mcmc (see section 4.2). The package allows configuration of important
parameters such as which terms constitute the model (for instance: number of edges,
stars, triangles, etc.); their respective coefficients (the vector β of equation (3.3));
the number of steps taken before the first sample is taken (“burn-in” steps); and
the number of steps to take between samples. The package is extensible, and it is
possible to create new terms or proposal chains other then the Glauber dynamics.

6.2 Experiments

As previously discussed, to each parametrization of the edge-triangle model corre-
sponds a unique value u? = u?β1,β2

which attains the maximum on equation (3.21).
This value is such that brg G(n, u?) is asymptotically close (in the sense of section 5)
to the edge-triangle model pn,β1,β2 (see section 5 and figure 6.1).

We have sampled 100 graphs from the edge-triangle model pn,β1,β2 , for every pair

(β1, β2), for β1, β2 ∈ {0 , 0.2 , 0.4 , 0.6 , 0.8 , 1}; and

with n = 5, 10, 15, . . . , 50 and 100 vertices. For each choice of these parame-
ters (n, β1, β2), we also sampled 100 brgs G(n, u?). The Table A.3 shows the
corresponding values of u?. The Metropolis–Hastings algorithm was configured for n2

steps before the first sample, and also n2 steps between samples. We recall that the
size of the state space of the simulated chain is approximately 2n2 (see Table 6.1).

To quantify the proximity of the obtained samples, we chose the number of
edges (K2) and triangles (K3), as well as the correlation between adjacent and
independent edges (the correlation between any edges should be zero for brgs). The
normalized counts of triangles (# triângulos)/

(n
3
)
have been used to compare samples

of graphs with distinct numbers of vertices.
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beta1
beta2

ustar

0.2

0.4

0.6

0.8

1.0

Figure 6.1: Graphic of u? as a function of β1 and β2, for β1, β2 ∈ [0, 1]. See section 3.4,
equation (3.21) and table A.3.

The Tables A.1 and A.2 present a summary of some of the statistics calculated
from the samples. We calculate sample averages and sample deviations of the number
of triangles and edges of the samples.

6.3 Comparison

Consider the edge-triangle models of parameters β1 = 0.2, β2 = 0.2. On Table A.3,
we see the value of u? which attains the maximum on equation (3.21) (u? = 0.743),
and the value of its cube (u?3 = 0.4106). These values are very close to the
edge and triangle densities sampled using the edge-triangle model (see Table 6.2).
This phenomenon can be observed in most of the simulated parametrizations, and
suggests the existence of a similarity between the homomorphism densities exhibited
by both models. This, however, does not seem to be the case for edge correlations:
although simulated brg samples exhibit almost zero correlation between edges,
the corresponding erg model does not seem to be consistent in this respect. The
simulations, however, are not conclusive in this respect.
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Table 6.2: Some sampled values: edge density e/
(n

2
)
and triangle density t/

(n
3
)
of the

models (brg and edge-triangle erg, and their parameters.

brg erg
n β1 β2 u? u?3 e/

(n
2
)

t/
(n

3
)

e/
(n

2
)

t/
(n

3
)

20 0.2 0.2 0.743 0.4106 0.7447 0.4133 0.7330 0.3990
25 0.2 0.2 0.743 0.4106 0.7427 0.4100 0.7303 0.3956
30 0.2 0.2 0.743 0.4106 0.7402 0.4057 0.7260 0.3867

100 0.2 0.2 0.743 0.4106 0.7430 0.4102 0.7352 0.3993

20 0.8 0.4 0.980 0.942 0.9805 0.9439 0.9726 0.9237
25 0.8 0.4 0.980 0.942 0.9807 0.9435 0.9707 0.9191
30 0.8 0.4 0.980 0.942 0.9811 0.9441 0.9722 0.9227

100 0.8 0.4 0.980 0.942 0.8020 0.9419 0.9729 0.9252



Chapter 7

Discussion and final comments

We have studied some known results about binomial and exponential random graphs,
and performed some simulations of both. The study was exploratory, and the choice
of parameterizations was motiated by similarities of subgraph densities the models
seem to display [BBS11, CD11].

On another direction, it would be interesting to investigate parameterizations
of ergs which differ from brgs in the same respect [AR13, BHLN13]. For instance,
it is known that samples of the edge-triangle model with parameter β2 sufficiently
negative (that is, that “forbid” triangles) have typically smaler odd-length cycles
than what would be expected of a brg of same edge density [CD11]. This suggests
an experiment in which we measure how “bipartite” are the sampled graphs: that
can be done, for example, by calculating the maximum umber of edges of a bipartite
subgraphs, the graph’s maximum cut size (see Figure 7.1). This number may
be compared to the expected size of a maximum cut of a brg with same edge
density p = e(G)/

(|V (G)|
2
)
(which is, asymptotically, n2p/4). However, calculating the

exact size of a graph’s maximum cut is a computationally complex (NP-complete)
problem, which needs better estimating than what we have done here. (Observe that,
in general, there is a constant c, positive, such that every graph with 2m2 edges has
a bipartite subgraph with at least m2 +m/2 + c

√
m edges; and that a triangle-gree

graph with e > 1 edges has a bipartite subgraph with at least e/2 + c′e4/5, for some
positive constant c′ [Alo96].)

Finally, we indicate two important topics, related to sampling in general, which
unfortunately could not be covered in this study with the necessary detail. The first
one is the matter of assessing the quality of the obtained samples, estimating how
close we are to the stationary distribution of the erg model); and the second is the
choice of suitable statistical procedures to employ when comparing the densities and
correlations observed.

29
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Figure 7.1: Graph generated by the edge-triangle model with parameters n = 20,
β1 = 100, and β2 = −200. The 77 edges connecting vertices “of the right” to vertices
“of the left” form the largest cut of the graph.
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Appendix A

Tables of computational
experiments

The tables A.1 and A.2 present a selection of our simulation results. The table A.3
presents some points of the function (β1, β2) 7→ u? relating the ege-triangle and the
similar brg model.
Table A.1: Statistical summary of the edge-triangle erg samples. The columns
represent the number of vertices n, the parametrs β1 and β2 of the model (see
equation (3.16)), and, for vertices v1, . . . , v4 uniformly and randomly chosen (and
fixed for each 100 samples), the correlation and covariance between the pairs of
edges e12, e13 and e12, e34.

n β1 β2 e se t st e/
(

n
2

)
t/
(

n
3

)
Corr e12, e13 Corr e12, e34

20 0 0 0.9559e2 0.706e1 0.1449e3 0.347e2 0.5031 0.1271 0.196 -0.817e-2
20 0 0.2 0.1121e3 0.936e1 0.241e3 0.592e2 0.59 0.2114 -0.241e-1 0.578e-1
20 0 0.4 0.1477e3 0.111e2 0.5512e3 0.11e3 0.7774 0.4835 -0.116 0.714e-1
20 0 0.6 0.1788e3 0.95e1 0.9575e3 0.11e3 0.9411 0.8399 -0.602e-1 0.316
20 0 0.8 0.1852e3 0.101e2 0.1065e4 0.119e3 0.9747 0.9342 -0.292e-1 -0.144e-1
20 0 1 0.1878e3 0.914e1 0.1108e4 0.107e3 0.9884 0.9719 NaN NaN
20 0.2 0 0.1149e3 0.626e1 0.2533e3 0.43e2 0.6047 0.2222 -0.107 0.179
20 0.2 0.2 0.1393e3 0.795e1 0.4543e3 0.713e2 0.7332 0.3985 -0.118 -0.561e-1
20 0.2 0.4 0.169e3 0.922e1 0.81e3 0.113e3 0.8895 0.7105 -0.111 -0.116
20 0.2 0.6 0.182e3 0.914e1 0.1009e4 0.109e3 0.9579 0.8851 -0.292e-1 -0.292e-1
20 0.2 0.8 0.1871e3 0.882e1 0.1094e4 0.105e3 0.9847 0.9596 NaN -0.101e-1
20 0.2 1 0.1884e3 0.807e1 0.1117e4 0.988e2 0.9916 0.9798 NaN NaN
20 0.4 0 0.1308e3 0.821e1 0.3719e3 0.706e2 0.6884 0.3262 0.131 0.202e-1
20 0.4 0.2 0.1536e3 0.849e1 0.6081e3 0.954e2 0.8084 0.5334 0.356e-1 -0.114
20 0.4 0.4 0.1757e3 0.799e1 0.9073e3 0.1e3 0.9247 0.7959 -0.807e-1 -0.111
20 0.4 0.6 0.1853e3 0.839e1 0.1063e4 0.104e3 0.9753 0.9325 -0.251e-1 -0.251e-1
20 0.4 0.8 0.1878e3 0.772e1 0.1106e4 0.969e2 0.9884 0.9702 NaN NaN
20 0.4 1 0.1886e3 0.68e1 0.1119e4 0.89e2 0.9926 0.9816 NaN NaN
20 0.6 0 0.1439e3 0.801e1 0.4975e3 0.764e2 0.7574 0.4364 -0.139 0.836e-1
20 0.6 0.2 0.1674e3 0.82e1 0.7852e3 0.943e2 0.8811 0.6888 -0.117 0.309
20 0.6 0.4 0.181e3 0.848e1 0.991e3 0.104e3 0.9526 0.8693 -0.629e-1 0.158
20 0.6 0.6 0.1864e3 0.788e1 0.1081e4 0.988e2 0.9811 0.9482 0.492 -0.101e-1
20 0.6 0.8 0.1878e3 0.851e1 0.1106e4 0.107e3 0.9884 0.9702 NaN NaN
20 0.6 1 0.1885e3 0.833e1 0.1119e4 0.102e3 0.9921 0.9816 NaN NaN
20 0.8 0 0.157e3 0.772e1 0.6445e3 0.814e2 0.8263 0.5654 -0.278e-2 0.116
20 0.8 0.2 0.1744e3 0.87e1 0.8883e3 0.105e3 0.9179 0.7792 0. -0.765e-1
20 0.8 0.4 0.1848e3 0.777e1 0.1053e4 0.997e2 0.9726 0.9237 0.366 -0.101e-1
20 0.8 0.6 0.1871e3 0.679e1 0.1092e4 0.904e2 0.9847 0.9579 -0.205e-1 NaN
20 0.8 0.8 0.1885e3 0.804e1 0.1118e4 0.1e3 0.9921 0.9807 0.438 -0.144e-1
20 0.8 1 0.1889e3 0.644e1 0.1124e4 0.87e2 0.9942 0.986 NaN NaN
20 1 0 0.1664e3 0.63e1 0.7679e3 0.761e2 0.8758 0.6736 -0.157 0.112e-2
20 1 0.2 0.1799e3 0.719e1 0.9714e3 0.937e2 0.9468 0.8521 0.202 -0.177e-1
20 1 0.4 0.1855e3 0.686e1 0.1065e4 0.942e2 0.9763 0.9342 0.313 NaN
20 1 0.6 0.1878e3 0.75e1 0.1105e4 0.993e2 0.9884 0.9693 NaN 0.221
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Table A.1: (continuation)

n β1 β2 e se t st e/
(

n
2

)
t/
(

n
3

)
Corr e12, e13 Corr e12, e34

20 1 0.8 0.1885e3 0.786e1 0.1118e4 0.989e2 0.9921 0.9807 NaN NaN
20 1 1 0.1886e3 0.926e1 0.1121e4 0.11e3 0.9926 0.9833 NaN 0.571
25 0 0 0.1507e3 0.842e1 0.2904e3 0.503e2 0.5023 0.1263 0.705e-1 -0.14
25 0 0.2 0.1786e3 0.101e2 0.4959e3 0.808e2 0.5953 0.2156 -0.311e-1 -0.121e-1
25 0 0.4 0.2396e3 0.138e2 0.1192e4 0.17e3 0.7987 0.5183 -0.123 -0.554e-1
25 0 0.6 0.2828e3 0.159e2 0.1943e4 0.227e3 0.9427 0.8448 0.219 -0.292e-1
25 0 0.8 0.294e3 0.159e2 0.2181e4 0.229e3 0.98 0.9483 NaN NaN
25 0 1 0.2963e3 0.138e2 0.2229e4 0.214e3 0.9877 0.9691 NaN NaN
25 0.2 0 0.1775e3 0.101e2 0.4777e3 0.8e2 0.5917 0.2077 0.107 0.225
25 0.2 0.2 0.2192e3 0.12e2 0.9099e3 0.139e3 0.7307 0.3956 0.126 0.212
25 0.2 0.4 0.2652e3 0.148e2 0.1607e4 0.222e3 0.884 0.6987 0.711e-1 -0.109
25 0.2 0.6 0.2903e3 0.142e2 0.2097e4 0.218e3 0.9677 0.9117 NaN -0.177e-1
25 0.2 0.8 0.2948e3 0.15e2 0.2197e4 0.221e3 0.9827 0.9552 0.579 -0.328e-1
25 0.2 1 0.2969e3 0.14e2 0.2243e4 0.215e3 0.9897 0.9752 0.438 NaN
25 0.4 0 0.2051e3 0.953e1 0.7363e3 0.948e2 0.6837 0.3201 0.122 0.34e-1
25 0.4 0.2 0.2457e3 0.112e2 0.1275e4 0.149e3 0.819 0.5543 0.311 -0.663e-1
25 0.4 0.4 0.2783e3 0.122e2 0.1847e4 0.185e3 0.9277 0.803 0.113 0.565
25 0.4 0.6 0.2918e3 0.134e2 0.2129e4 0.207e3 0.9727 0.9257 NaN -0.328e-1
25 0.4 0.8 0.2962e3 0.137e2 0.2226e4 0.209e3 0.9873 0.9678 NaN 0.1e1
25 0.4 1 0.2978e3 0.12e2 0.226e4 0.189e3 0.9927 0.9826 NaN NaN
25 0.6 0 0.2293e3 0.981e1 0.103e4 0.117e3 0.7643 0.4478 0.4e-1 -0.176
25 0.6 0.2 0.2645e3 0.11e2 0.1583e4 0.163e3 0.8817 0.6883 -0.721e-1 -0.58e-1
25 0.6 0.4 0.2867e3 0.123e2 0.2018e4 0.191e3 0.9557 0.8774 0.144 -0.417e-1
25 0.6 0.6 0.2939e3 0.143e2 0.2176e4 0.219e3 0.9797 0.9461 -0.251e-1 0.49
25 0.6 0.8 0.2971e3 0.122e2 0.2245e4 0.195e3 0.9903 0.9761 NaN NaN
25 0.6 1 0.2978e3 0.112e2 0.2259e4 0.187e3 0.9927 0.9822 NaN NaN
25 0.8 0 0.2493e3 0.103e2 0.1324e4 0.146e3 0.831 0.5757 0.199 -0.299e-1
25 0.8 0.2 0.2763e3 0.114e2 0.1804e4 0.182e3 0.921 0.7843 -0.444e-1 0.328
25 0.8 0.4 0.2912e3 0.124e2 0.2114e4 0.196e3 0.9707 0.9191 0.163 -0.444e-1
25 0.8 0.6 0.2957e3 0.132e2 0.2215e4 0.208e3 0.9857 0.963 NaN NaN
25 0.8 0.8 0.2973e3 0.131e2 0.225e4 0.205e3 0.991 0.9783 NaN NaN
25 0.8 1 0.2981e3 0.116e2 0.2265e4 0.19e3 0.9937 0.9848 NaN NaN
25 1 0 0.264e3 0.97e1 0.1572e4 0.145e3 0.88 0.6835 0.209e-1 0.112e-2
25 1 0.2 0.2841e3 0.111e2 0.1961e4 0.178e3 0.947 0.8526 0.158 -0.1
25 1 0.4 0.2938e3 0.11e2 0.2168e4 0.179e3 0.9793 0.9426 -0.292e-1 0.421
25 1 0.6 0.2966e3 0.114e2 0.2232e4 0.186e3 0.9887 0.9704 NaN NaN
25 1 0.8 0.2977e3 0.112e2 0.2256e4 0.188e3 0.9923 0.9809 NaN NaN
25 1 1 0.298e3 0.127e2 0.2265e4 0.203e3 0.9933 0.9848 NaN NaN
30 0 0 0.2174e3 0.106e2 0.5087e3 0.737e2 0.4998 0.1253 0.101 -0.202e-1
30 0 0.2 0.2595e3 0.137e2 0.8801e3 0.132e3 0.5966 0.2168 -0.141 0.688e-1
30 0 0.4 0.354e3 0.191e2 0.2224e4 0.289e3 0.8138 0.5478 -0.103 -0.533e-1
30 0 0.6 0.41e3 0.236e2 0.3431e4 0.388e3 0.9425 0.8451 -0.526e-1 0.438
30 0 0.8 0.4263e3 0.193e2 0.3843e4 0.361e3 0.98 0.9466 -0.101e-1 -0.101e-1
30 0 1 0.4299e3 0.212e2 0.3943e4 0.395e3 0.9883 0.9712 NaN NaN
30 0.2 0 0.26e3 0.114e2 0.8672e3 0.113e3 0.5977 0.2136 0.402e-1 0.135
30 0.2 0.2 0.3158e3 0.136e2 0.157e4 0.192e3 0.726 0.3867 0.144e-1 0.523e-1
30 0.2 0.4 0.3888e3 0.184e2 0.2921e4 0.318e3 0.8938 0.7195 -0.58e-1 -0.887e-1
30 0.2 0.6 0.4198e3 0.217e2 0.3673e4 0.389e3 0.9651 0.9047 -0.144e-1 -0.204e-1
30 0.2 0.8 0.4282e3 0.224e2 0.3899e4 0.398e3 0.9844 0.9603 0.571 0.1e1
30 0.2 1 0.431e3 0.197e2 0.3971e4 0.369e3 0.9908 0.9781 NaN NaN
30 0.4 0 0.3009e3 0.105e2 0.1344e4 0.13e3 0.6917 0.331 -0.212 0.794e-1
30 0.4 0.2 0.3578e3 0.163e2 0.2275e4 0.26e3 0.8225 0.5603 0.249 -0.192
30 0.4 0.4 0.4073e3 0.176e2 0.3352e4 0.316e3 0.9363 0.8256 0.116e-1 -0.795e-1
30 0.4 0.6 0.4244e3 0.199e2 0.3792e4 0.37e3 0.9756 0.934 -0.204e-1 -0.204e-1
30 0.4 0.8 0.4296e3 0.184e2 0.393e4 0.357e3 0.9876 0.968 -0.292e-1 NaN
30 0.4 1 0.4312e3 0.198e2 0.3976e4 0.37e3 0.9913 0.9793 NaN 0.335
30 0.6 0 0.3332e3 0.131e2 0.1826e4 0.197e3 0.766 0.4498 0.236e-2 -0.441e-1
30 0.6 0.2 0.3848e3 0.151e2 0.2825e4 0.272e3 0.8846 0.6958 -0.127e-1 0.454e-2
30 0.6 0.4 0.4158e3 0.175e2 0.3563e4 0.332e3 0.9559 0.8776 NaN NaN
30 0.6 0.6 0.4277e3 0.197e2 0.388e4 0.368e3 0.9832 0.9557 NaN NaN
30 0.6 0.8 0.4306e3 0.189e2 0.3957e4 0.362e3 0.9899 0.9746 NaN NaN
30 0.6 1 0.4318e3 0.184e2 0.3989e4 0.355e3 0.9926 0.9825 NaN NaN
30 0.8 0 0.36e3 0.141e2 0.231e4 0.219e3 0.8276 0.569 -0.772e-1 -0.1
30 0.8 0.2 0.4003e3 0.161e2 0.3179e4 0.3e3 0.9202 0.783 0.116e-1 0.765e-1
30 0.8 0.4 0.4229e3 0.166e2 0.3746e4 0.322e3 0.9722 0.9227 -0.359e-1 NaN
30 0.8 0.6 0.4293e3 0.186e2 0.3923e4 0.358e3 0.9869 0.9663 -0.144e-1 -0.144e-1
30 0.8 0.8 0.4316e3 0.179e2 0.3983e4 0.344e3 0.9922 0.981 0.492 0.492
30 0.8 1 0.4322e3 0.167e2 0.3998e4 0.334e3 0.9936 0.9847 NaN NaN
30 1 0 0.3809e3 0.127e2 0.273e4 0.223e3 0.8756 0.6724 0.148 0.264
30 1 0.2 0.4122e3 0.161e2 0.3469e4 0.3e3 0.9476 0.8544 -0.101e-1 -0.276e-1
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Table A.1: (continuation)

n β1 β2 e se t st e/
(

n
2

)
t/
(

n
3

)
Corr e12, e13 Corr e12, e34

30 1 0.4 0.4263e3 0.147e2 0.3834e4 0.302e3 0.98 0.9443 -0.101e-1 NaN
30 1 0.6 0.4303e3 0.173e2 0.3948e4 0.336e3 0.9892 0.9724 0.521 0.394
30 1 0.8 0.432e3 0.164e2 0.3992e4 0.333e3 0.9931 0.9833 NaN NaN
30 1 1 0.4325e3 0.165e2 0.4005e4 0.328e3 0.9943 0.9865 NaN NaN

100 0 0 0.2463e4 0.501e2 0.1993e5 0.115e4 0.4976 0.1233 0.6e-1 0.796e-1
100 0 0.2 0.299e4 0.816e2 0.3587e5 0.249e4 0.604 0.2218 0.929e-1 0.114
100 0 0.4 0.4119e4 0.2e3 0.9396e5 0.976e4 0.8321 0.5811 0.625e-1 -0.145
100 0 0.6 0.4717e4 0.265e3 0.1411e6 0.157e5 0.9529 0.8726 -0.292e-1 0.492
100 0 0.8 0.4859e4 0.258e3 0.154e6 0.161e5 0.9816 0.9524 NaN -0.101e-1
100 0 1 0.4899e4 0.242e3 0.1577e6 0.155e5 0.9897 0.9753 NaN NaN
100 0.2 0 0.296e4 0.634e2 0.346e5 0.197e4 0.598 0.214 0.543e-1 -0.276
100 0.2 0.2 0.3639e4 0.122e3 0.6457e5 0.511e4 0.7352 0.3993 -0.134 -0.442e-1
100 0.2 0.4 0.4483e4 0.217e3 0.1209e6 0.123e5 0.9057 0.7477 -0.602e-1 -0.87e-1
100 0.2 0.6 0.48e4 0.239e3 0.1484e6 0.151e5 0.9697 0.9177 0.398 0.202
100 0.2 0.8 0.4884e4 0.228e3 0.1562e6 0.148e5 0.9867 0.966 NaN NaN
100 0.2 1 0.4906e4 0.229e3 0.1583e6 0.149e5 0.9911 0.979 0.438 0.1e1
100 0.4 0 0.3403e4 0.843e2 0.5261e5 0.323e4 0.6875 0.3254 -0.18e-1 0.989e-1
100 0.4 0.2 0.4102e4 0.153e3 0.9245e5 0.764e4 0.8287 0.5717 0.108 -0.292e-1
100 0.4 0.4 0.4657e4 0.218e3 0.1355e6 0.132e5 0.9408 0.838 -0.516e-1 -0.516e-1
100 0.4 0.6 0.4841e4 0.221e3 0.1521e6 0.144e5 0.978 0.9406 0.335 NaN
100 0.4 0.8 0.4896e4 0.217e3 0.1573e6 0.145e5 0.9891 0.9728 NaN -0.177e-1
100 0.4 1 0.4911e4 0.215e3 0.1587e6 0.143e5 0.9921 0.9814 -0.101e-1 0.1e1
100 0.6 0 0.3792e4 0.114e3 0.729e5 0.519e4 0.7661 0.4508 -0.783e-1 0.316e-1
100 0.6 0.2 0.4404e4 0.171e3 0.1144e6 0.973e4 0.8897 0.7075 -0.586e-1 -0.403e-1
100 0.6 0.4 0.4758e4 0.207e3 0.1444e6 0.132e5 0.9612 0.893 -0.328e-1 -0.292e-1
100 0.6 0.6 0.487e4 0.214e3 0.1547e6 0.142e5 0.9838 0.9567 NaN -0.144e-1
100 0.6 0.8 0.4905e4 0.207e3 0.158e6 0.14e5 0.9909 0.9771 NaN 0.704
100 0.6 1 0.4915e4 0.208e3 0.1591e6 0.141e5 0.9929 0.9839 NaN NaN
100 0.8 0 0.4104e4 0.138e3 0.9244e5 0.696e4 0.8291 0.5717 0.108 0.327e-1
100 0.8 0.2 0.4585e4 0.178e3 0.129e6 0.109e5 0.9263 0.7978 NaN -0.127
100 0.8 0.4 0.4816e4 0.201e3 0.1496e6 0.133e5 0.9729 0.9252 NaN NaN
100 0.8 0.6 0.4889e4 0.198e3 0.1564e6 0.136e5 0.9877 0.9672 NaN NaN
100 0.8 0.8 0.4911e4 0.204e3 0.1586e6 0.139e5 0.9921 0.9808 NaN NaN
100 0.8 1 0.4916e4 0.208e3 0.1592e6 0.141e5 0.9931 0.9845 NaN NaN
100 1 0 0.4338e4 0.144e3 0.1092e6 0.825e4 0.8764 0.6753 0.425e-2 -0.888e-1
100 1 0.2 0.47e4 0.189e3 0.139e6 0.12e5 0.9495 0.8596 -0.276e-1 NaN
100 1 0.4 0.485e4 0.201e3 0.1528e6 0.134e5 0.9798 0.945 -0.144e-1 -0.144e-1
100 1 0.6 0.4902e4 0.199e3 0.1577e6 0.135e5 0.9903 0.9753 NaN NaN
100 1 0.8 0.4915e4 0.198e3 0.1589e6 0.136e5 0.9929 0.9827 0.704 0.492
100 1 1 0.4919e4 0.199e3 0.1593e6 0.137e5 0.9937 0.9852 NaN NaN

Table A.2: Statistical summary of the brg G(n, u?) samples. The columns represent
the number of vertices n, the parameters β1 and β2 of the related edge-triangle
model (see equation (3.16)), the corresponding u? value (see equation (3.21) and
table A.3), and, for vertices v1, . . . , v4 uniformly and randomly chosen (and fixed for
each 100 samples), the correlation and covariance between the pairs of edges e12, e13

and e12, e34.

n β1 β2 e se t st e/
(

n
2

)
t/
(

n
3

)
Corr e12, e13 Corr e12, e34

20 0 0 0.9506e2 0.704e1 0.1431e3 0.325e2 0.5003 0.1255 0.9e-1 0.259e-1
20 0 0.2 0.1148e3 0.635e1 0.2525e3 0.42e2 0.6042 0.2215 -0.403e-1 -0.157
20 0 0.4 0.1612e3 0.519e1 0.6969e3 0.656e2 0.8484 0.6113 0.673e-1 0.123
20 0 0.6 0.1833e3 0.251e1 0.1023e4 0.423e2 0.9647 0.8974 -0.421e-1 -0.602e-1
20 0 0.8 0.1883e3 0.12e1 0.111e4 0.214e2 0.9911 0.9737 NaN -0.101e-1
20 0 1 0.1895e3 0.658 0.113e4 0.119e2 0.9974 0.9912 NaN -0.144e-1
20 0.2 0 0.1139e3 0.682e1 0.2456e3 0.446e2 0.5995 0.2154 -0.83e-1 0.785e-2
20 0.2 0.2 0.1415e3 0.581e1 0.4712e3 0.584e2 0.7447 0.4133 -0.882e-1 -0.229e-1
20 0.2 0.4 0.174e3 0.363e1 0.8759e3 0.552e2 0.9158 0.7683 -0.983e-1 -0.104
20 0.2 0.6 0.1859e3 0.208e1 0.1067e4 0.359e2 0.9784 0.936 -0.328e-1 -0.328e-1
20 0.2 0.8 0.1889e3 0.103e1 0.1121e4 0.182e2 0.9942 0.9833 NaN NaN
20 0.2 1 0.1898e3 0.495 0.1136e4 0.887e1 0.9989 0.9965 NaN NaN
20 0.4 0 0.1315e3 0.666e1 0.3789e3 0.579e2 0.6921 0.3324 -0.265e-1 -0.139
20 0.4 0.2 0.1593e3 0.48e1 0.6721e3 0.614e2 0.8384 0.5896 -0.169 -0.156
20 0.4 0.4 0.1812e3 0.31e1 0.989e3 0.51e2 0.9537 0.8675 0.295 -0.144e-1
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Table A.2: (continuation)

n β1 β2 e se t st e/
(

n
2

)
t/
(

n
3

)
Corr e12, e13 Corr e12, e34

20 0.4 0.6 0.1876e3 0.165e1 0.1097e4 0.291e2 0.9874 0.9623 -0.144e-1 NaN
20 0.4 0.8 0.1893e3 0.763 0.1127e4 0.137e2 0.9963 0.9886 NaN NaN
20 0.4 1 0.1898e3 0.426 0.1136e4 0.768e1 0.9989 0.9965 NaN NaN
20 0.6 0 0.1452e3 0.617e1 0.5106e3 0.653e2 0.7642 0.4479 0.263e-1 0.456e-1
20 0.6 0.2 0.1707e3 0.419e1 0.826e3 0.617e2 0.8984 0.7246 0.745e-1 0.576e-1
20 0.6 0.4 0.1844e3 0.233e1 0.1043e4 0.396e2 0.9705 0.9149 -0.251e-1 -0.177e-1
20 0.6 0.6 0.1885e3 0.107e1 0.1113e4 0.19e2 0.9921 0.9763 -0.101e-1 NaN
20 0.6 0.8 0.1895e3 0.672 0.1132e4 0.12e2 0.9974 0.993 NaN NaN
20 0.6 1 0.1898e3 0.44 0.1136e4 0.792e1 0.9989 0.9965 NaN NaN
20 0.8 0 0.1576e3 0.624e1 0.6508e3 0.788e2 0.8295 0.5709 0.297e-1 -0.356e-1
20 0.8 0.2 0.1772e3 0.385e1 0.9244e3 0.594e2 0.9326 0.8109 -0.361e-1 -0.58e-1
20 0.8 0.4 0.1863e3 0.197e1 0.1076e4 0.339e2 0.9805 0.9439 NaN -0.309e-1
20 0.8 0.6 0.1886e3 0.121e1 0.1114e4 0.214e2 0.9926 0.9772 -0.204e-1 NaN
20 0.8 0.8 0.1897e3 0.51 0.1135e4 0.911e1 0.9984 0.9956 NaN NaN
20 0.8 1 0.1897e3 0.485 0.1135e4 0.872e1 0.9984 0.9956 NaN NaN
20 1 0 0.1676e3 0.382e1 0.7817e3 0.536e2 0.8821 0.6857 -0.205e-1 -0.101
20 1 0.2 0.1815e3 0.302e1 0.9931e3 0.492e2 0.9553 0.8711 -0.328e-1 -0.468e-1
20 1 0.4 0.1875e3 0.159e1 0.1097e4 0.277e2 0.9868 0.9623 -0.292e-1 -0.292e-1
20 1 0.6 0.1892e3 0.844 0.1126e4 0.151e2 0.9958 0.9877 NaN NaN
20 1 0.8 0.1899e3 0.349 0.1137e4 0.628e1 0.9995 0.9974 NaN NaN
20 1 1 0.1898e3 0.426 0.1136e4 0.768e1 0.9989 0.9965 NaN NaN

25 0 0 0.1481e3 0.852e1 0.2761e3 0.465e2 0.4937 0.12 -0.147 0.618e-1
25 0 0.2 0.1825e3 0.772e1 0.5189e3 0.664e2 0.6083 0.2256 -0.103 -0.413e-1
25 0 0.4 0.2538e3 0.605e1 0.1393e4 0.995e2 0.846 0.6057 0.141e-1 -0.147
25 0 0.6 0.2898e3 0.334e1 0.2073e4 0.718e2 0.966 0.9013 -0.417e-1 -0.292e-1
25 0 0.8 0.2974e3 0.16e1 0.2241e4 0.361e2 0.9913 0.9743 -0.101e-1 -0.101e-1
25 0 1 0.2993e3 0.856 0.2284e4 0.197e2 0.9977 0.993 NaN NaN
25 0.2 0 0.1801e3 0.821e1 0.4968e3 0.691e2 0.6003 0.216 -0.299e-1 -0.16
25 0.2 0.2 0.2228e3 0.791e1 0.9429e3 0.986e2 0.7427 0.41 -0.231 -0.737e-1
25 0.2 0.4 0.2756e3 0.46e1 0.1783e4 0.902e2 0.9187 0.7752 0.313 -0.482e-1
25 0.2 0.6 0.2934e3 0.248e1 0.2151e4 0.549e2 0.978 0.9352 -0.144e-1 -0.101e-1
25 0.2 0.8 0.2985e3 0.132e1 0.2265e4 0.3e2 0.995 0.9848 NaN NaN
25 0.2 1 0.2995e3 0.703 0.2288e4 0.161e2 0.9983 0.9948 NaN NaN
25 0.4 0 0.2065e3 0.827e1 0.7509e3 0.904e2 0.6883 0.3265 -0.112 0.334e-1
25 0.4 0.2 0.2507e3 0.602e1 0.1343e4 0.976e2 0.8357 0.5839 0.694e-1 -0.512e-1
25 0.4 0.4 0.2859e3 0.32e1 0.199e4 0.674e2 0.953 0.8652 -0.602e-1 0.219
25 0.4 0.6 0.2958e3 0.199e1 0.2205e4 0.442e2 0.986 0.9587 -0.144e-1 -0.204e-1
25 0.4 0.8 0.2988e3 0.11e1 0.2272e4 0.25e2 0.996 0.9878 NaN NaN
25 0.4 1 0.2996e3 0.565 0.2291e4 0.13e2 0.9987 0.9961 NaN NaN
25 0.6 0 0.231e3 0.652e1 0.105e4 0.899e2 0.77 0.4565 0.541e-1 0.117e-1
25 0.6 0.2 0.2697e3 0.534e1 0.1671e4 0.995e2 0.899 0.7265 -0.863e-1 0.188
25 0.6 0.4 0.2909e3 0.34e1 0.2097e4 0.727e2 0.9697 0.9117 NaN NaN
25 0.6 0.6 0.2977e3 0.155e1 0.2247e4 0.351e2 0.9923 0.977 NaN NaN
25 0.6 0.8 0.2993e3 0.902 0.2284e4 0.207e2 0.9977 0.993 NaN NaN
25 0.6 1 0.2997e3 0.482 0.2293e4 0.111e2 0.999 0.997 NaN NaN
25 0.8 0 0.2506e3 0.573e1 0.134e4 0.935e2 0.8353 0.5826 0.78e-2 -0.266e-1
25 0.8 0.2 0.2795e3 0.353e1 0.186e4 0.697e2 0.9317 0.8087 -0.753e-1 0.193e-1
25 0.8 0.4 0.2942e3 0.232e1 0.217e4 0.511e2 0.9807 0.9435 -0.144e-1 -0.177e-1
25 0.8 0.6 0.2987e3 0.103e1 0.227e4 0.233e2 0.9957 0.987 NaN NaN
25 0.8 0.8 0.2994e3 0.761 0.2286e4 0.174e2 0.998 0.9939 NaN NaN
25 0.8 1 0.2997e3 0.541 0.2293e4 0.124e2 0.999 0.997 NaN NaN
25 1 0 0.2649e3 0.622e1 0.1584e4 0.112e3 0.883 0.6887 0.119 0.458e-1
25 1 0.2 0.2869e3 0.394e1 0.2012e4 0.826e2 0.9563 0.8748 0.163 0.163
25 1 0.4 0.296e3 0.179e1 0.221e4 0.4e2 0.9867 0.9609 -0.177e-1 -0.251e-1
25 1 0.6 0.2989e3 0.986 0.2275e4 0.225e2 0.9963 0.9891 NaN NaN
25 1 0.8 0.2996e3 0.618 0.2291e4 0.142e2 0.9987 0.9961 NaN NaN
25 1 1 0.2996e3 0.586 0.2291e4 0.135e2 0.9987 0.9961 NaN NaN

30 0 0 0.2178e3 0.101e2 0.5118e3 0.734e2 0.5007 0.1261 -0.821e-1 0.14
30 0 0.2 0.2644e3 0.11e2 0.9119e3 0.116e3 0.6078 0.2246 0.115 0.114
30 0 0.4 0.3704e3 0.709e1 0.2507e4 0.146e3 0.8515 0.6175 -0.169 0.425e-2
30 0 0.6 0.4205e3 0.361e1 0.3667e4 0.949e2 0.9667 0.9032 0.117 -0.56e-1
30 0 0.8 0.431e3 0.201e1 0.395e4 0.555e2 0.9908 0.9729 -0.144e-1 -0.144e-1
30 0 1 0.4338e3 0.114e1 0.4027e4 0.316e2 0.9972 0.9919 NaN NaN
30 0.2 0 0.2602e3 0.12e2 0.8713e3 0.125e3 0.5982 0.2146 -0.264e-1 0.729e-1
30 0.2 0.2 0.322e3 0.989e1 0.1647e4 0.152e3 0.7402 0.4057 0.252e-1 -0.279e-1
30 0.2 0.4 0.4e3 0.58e1 0.3156e4 0.137e3 0.9195 0.7773 0. -0.107e-1
30 0.2 0.6 0.4256e3 0.292e1 0.3802e4 0.783e2 0.9784 0.9365 -0.309e-1 -0.177e-1
30 0.2 0.8 0.4324e3 0.154e1 0.3988e4 0.426e2 0.994 0.9823 NaN NaN
30 0.2 1 0.4342e3 0.907 0.4037e4 0.254e2 0.9982 0.9943 NaN NaN
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Table A.2: (continuation)

n β1 β2 e se t st e/
(

n
2

)
t/
(

n
3

)
Corr e12, e13 Corr e12, e34

30 0.4 0 0.3023e3 0.103e2 0.1363e4 0.144e3 0.6949 0.3357 0.369e-1 -0.4e-1
30 0.4 0.2 0.3653e3 0.716e1 0.2405e4 0.142e3 0.8398 0.5924 0.639e-1 0.106
30 0.4 0.4 0.4131e3 0.424e1 0.3478e4 0.108e3 0.9497 0.8567 -0.745e-1 -0.602e-1
30 0.4 0.6 0.4293e3 0.228e1 0.3901e4 0.622e2 0.9869 0.9608 NaN NaN
30 0.4 0.8 0.4333e3 0.132e1 0.4014e4 0.368e2 0.9961 0.9887 -0.101e-1 NaN
30 0.4 1 0.4346e3 0.589 0.4048e4 0.165e2 0.9991 0.997 NaN NaN
30 0.6 0 0.3343e3 0.828e1 0.1841e4 0.14e3 0.7685 0.4534 -0.367e-1 -0.15
30 0.6 0.2 0.3905e3 0.715e1 0.2939e4 0.162e3 0.8977 0.7239 -0.765e-1 -0.677e-1
30 0.6 0.4 0.4215e3 0.387e1 0.3693e4 0.101e3 0.969 0.9096 -0.468e-1 -0.468e-1
30 0.6 0.6 0.4314e3 0.197e1 0.3959e4 0.542e2 0.9917 0.9751 NaN NaN
30 0.6 0.8 0.4339e3 0.971 0.403e4 0.27e2 0.9975 0.9926 NaN NaN
30 0.6 1 0.4346e3 0.624 0.4048e4 0.174e2 0.9991 0.997 NaN NaN
30 0.8 0 0.3614e3 0.848e1 0.2327e4 0.166e3 0.8308 0.5732 0.385e-1 -0.115
30 0.8 0.2 0.4051e3 0.497e1 0.3279e4 0.121e3 0.9313 0.8076 -0.516e-1 -0.56e-1
30 0.8 0.4 0.4268e3 0.275e1 0.3833e4 0.745e2 0.9811 0.9441 NaN NaN
30 0.8 0.6 0.4327e3 0.14e1 0.3997e4 0.388e2 0.9947 0.9845 NaN NaN
30 0.8 0.8 0.4342e3 0.899 0.4038e4 0.25e2 0.9982 0.9946 NaN NaN
30 0.8 1 0.4345e3 0.797 0.4045e4 0.22e2 0.9989 0.9963 NaN NaN
30 1 0 0.3828e3 0.824e1 0.2767e4 0.18e3 0.88 0.6815 -0.136 -0.512e-1
30 1 0.2 0.4167e3 0.427e1 0.3568e4 0.11e3 0.9579 0.8788 0.164 -0.745e-1
30 1 0.4 0.4289e3 0.258e1 0.3892e4 0.7e2 0.986 0.9586 NaN -0.177e-1
30 1 0.6 0.4332e3 0.144e1 0.4009e4 0.4e2 0.9959 0.9874 NaN NaN
30 1 0.8 0.4345e3 0.674 0.4046e4 0.188e2 0.9989 0.9966 NaN NaN
30 1 1 0.4346e3 0.584 0.4049e4 0.163e2 0.9991 0.9973 NaN NaN

100 0 0 0.2474e4 0.415e2 0.2019e5 0.104e4 0.4998 0.1249 0.771e-1 -0.355e-1
100 0 0.2 0.302e4 0.3e2 0.3672e5 0.113e4 0.6101 0.2271 0.137 -0.456e-1
100 0 0.4 0.4206e4 0.237e2 0.9918e5 0.168e4 0.8497 0.6134 -0.791e-1 0.625e-1
100 0 0.6 0.4786e4 0.116e2 0.1462e6 0.106e4 0.9669 0.9041 -0.177e-1 -0.309e-1
100 0 0.8 0.4906e4 0.638e1 0.1574e6 0.615e3 0.9911 0.9734 NaN NaN
100 0 1 0.4937e4 0.351e1 0.1604e6 0.342e3 0.9974 0.992 NaN NaN
100 0.2 0 0.2965e4 0.32e2 0.3476e5 0.113e4 0.599 0.215 0.434e-1 0.138
100 0.2 0.2 0.3678e4 0.245e2 0.6633e5 0.134e4 0.743 0.4102 -0.915e-1 0.102
100 0.2 0.4 0.4551e4 0.197e2 0.1257e6 0.163e4 0.9194 0.7774 -0.983e-1 0.361e-1
100 0.2 0.6 0.4846e4 0.109e2 0.1517e6 0.103e4 0.979 0.9382 -0.309e-1 -0.251e-1
100 0.2 0.8 0.4921e4 0.507e1 0.1589e6 0.491e3 0.9941 0.9827 NaN NaN
100 0.2 1 0.4941e4 0.303e1 0.1609e6 0.295e3 0.9982 0.9951 NaN NaN
100 0.4 0 0.3412e4 0.342e2 0.5297e5 0.161e4 0.6893 0.3276 -0.23 -0.591e-1
100 0.4 0.2 0.4146e4 0.258e2 0.95e5 0.178e4 0.8376 0.5875 -0.143 -0.163e-1
100 0.4 0.4 0.4707e4 0.152e2 0.139e6 0.135e4 0.9509 0.8596 -0.204e-1 -0.421e-1
100 0.4 0.6 0.4885e4 0.835e1 0.1554e6 0.797e3 0.9869 0.961 NaN NaN
100 0.4 0.8 0.4931e4 0.467e1 0.1598e6 0.454e3 0.9962 0.9882 NaN NaN
100 0.4 1 0.4944e4 0.252e1 0.1611e6 0.247e3 0.9988 0.9963 NaN NaN
100 0.6 0 0.3807e4 0.271e2 0.7354e5 0.158e4 0.7691 0.4548 -0.367e-1 0.195
100 0.6 0.2 0.4442e4 0.203e2 0.1169e6 0.161e4 0.8974 0.7229 -0.343e-1 -0.721e-1
100 0.6 0.4 0.4797e4 0.124e2 0.1472e6 0.114e4 0.9691 0.9103 -0.144e-1 -0.144e-1
100 0.6 0.6 0.4907e4 0.615e1 0.1575e6 0.592e3 0.9913 0.974 -0.144e-1 -0.144e-1
100 0.6 0.8 0.4938e4 0.351e1 0.1605e6 0.342e3 0.9976 0.9926 NaN NaN
100 0.6 1 0.4945e4 0.194e1 0.1612e6 0.19e3 0.999 0.9969 NaN NaN
100 0.8 0 0.4119e4 0.239e2 0.9317e5 0.163e4 0.8321 0.5762 0.316e-1 0.15
100 0.8 0.2 0.4624e4 0.174e2 0.1318e6 0.149e4 0.9341 0.8151 0.144 -0.56e-1
100 0.8 0.4 0.4852e4 0.102e2 0.1523e6 0.961e3 0.9802 0.9419 NaN NaN
100 0.8 0.6 0.4921e4 0.498e1 0.1589e6 0.482e3 0.9941 0.9827 NaN NaN
100 0.8 0.8 0.4941e4 0.316e1 0.1609e6 0.308e3 0.9982 0.9951 NaN NaN
100 0.8 1 0.4945e4 0.225e1 0.1612e6 0.22e3 0.999 0.9969 NaN NaN
100 1 0 0.4359e4 0.239e2 0.1104e6 0.181e4 0.8806 0.6827 -0.964e-1 0.476
100 1 0.2 0.4736e4 0.148e2 0.1416e6 0.132e4 0.9568 0.8757 -0.204e-1 -0.204e-1
100 1 0.4 0.4887e4 0.818e1 0.1556e6 0.781e3 0.9873 0.9623 NaN NaN
100 1 0.6 0.4932e4 0.398e1 0.1599e6 0.387e3 0.9964 0.9889 NaN NaN
100 1 0.8 0.4945e4 0.251e1 0.1612e6 0.246e3 0.999 0.9969 NaN NaN
100 1 1 0.4945e4 0.226e1 0.1612e6 0.221e3 0.999 0.9969 NaN NaN
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Table A.3: Some numerical values for the relation between u? and the parameters β1
and β2 in equation (3.21). Recall that u? is the expected edge density of G(n, u?),
and (u?)3 is its expected density of triangles. See figure 6.1 for a plot of u? = u(β1, β2).

β1 β2 u? (u?)3

0.0 0.0 0.5 0.125
0.0 0.2 0.610 0.2267
0.0 0.4 0.850 0.6138
0.0 0.6 0.967 0.903
0.0 0.8 0.991 0.9736
0.0 1.0 0.997 0.9923

0.2 0.0 0.599 0.2146
0.2 0.2 0.743 0.4106
0.2 0.4 0.919 0.7756
0.2 0.6 0.979 0.9389
0.2 0.8 0.994 0.9827
0.2 1.0 0.998 0.9949

0.4 0.0 0.690 0.3285
0.4 0.2 0.838 0.5882
0.4 0.4 0.951 0.8609
0.4 0.6 0.987 0.9606
0.4 0.8 0.996 0.9886
0.4 1.0 0.999 0.9966

0.6 0.0 0.768 0.4539
0.6 0.2 0.897 0.722
0.6 0.4 0.969 0.911
0.6 0.6 0.991 0.9741
0.6 0.8 0.997 0.9924
0.6 1.0 0.999 0.9968

0.8 0.0 0.832 0.576
0.8 0.2 0.934 0.8142
0.8 0.4 0.980 0.942
0.8 0.6 0.994 0.9829
0.8 0.8 0.998 0.9949
0.8 1.0 0.999 0.9968

1.0 0.0 0.881 0.6833
1.0 0.2 0.957 0.8761
1.0 0.4 0.987 0.9618
1.0 0.6 0.996 0.9887
1.0 0.8 0.999 0.9967
1.0 1.0 0.999 0.9968
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Proofs

Claim 2.3. Let Gn be the set of all n-vertex graphs. We have

1
|Gn|

∑
G∈Gn

clus(G) = 1
2 .

Proof. Without loss of generality, we consider the graphs Gn have the same set of
vertices [n] .= {1, 2, . . . , n}. Note that |Gn| = 2(n

2).
For each v ∈ [n], each subset A ⊆ V \ {v} and each B ⊆

(A
2
)
, we define the

family F(v,A,B) of graphs G(V,E) such that the neighbors of v in G are exactly
the vertices in A, and the edges between vertices of A are exactly those in B.

Note that for every graph G ∈ F(v,A,B), we have

clus(v) = |B|
(
|A|
2

)−1

.

Therefore, we can make explicit the contribution of each vertex in the average

∑
G∈Gn

clus(G) =
∑
G∈Gn

∑
v∈[n]

ev

(
d(v)

2

)−1

=
∑
v∈[n]

∑
G∈Gn

ev

(
d(v)

2

)−1

=
∑
v∈[n]

∑
A⊆[n]\{v}

∑
G∈Gn
N(v)=A

ev

(
|A|
2

)−1

=
∑
v∈[n]

∑
A⊆[n]\{v}

∑
B⊆(A

2)

∑
G=(V,E)∈Gn

N(v)=A
E∩(A

2)=B

|B|
(
|A|
2

)−1

=
∑
v∈[n]

∑
A⊆[n]\{v}

∑
B⊆(A

2)
|B|
(
|A|
2

)−1∣∣F(v,A,B)
∣∣

Furthermore, we observe that
∣∣F(v,A,B)

∣∣ =
∣∣F(v,A,C)

∣∣, for all C ⊆
(A

2
)
. In

41
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particular, we can take C =
(A

2
)
\B. If we fix v and A as in the sum above,

∑
v,A

B⊆(A
2)

|B|(|A|
2
) ∣∣F(v,A,B)

∣∣

= 1
2 · 2

∑
v,A

B⊆(A
2)

|B|(|A|
2
) ∣∣F(v,A,B)

∣∣

= 1
2
∑
v,A

B⊆(A
2)

(
|B|(|A|

2
) ∣∣F(v,A,B)

∣∣+ (|A|
2
)
− |B|(|A|
2
) ∣∣F(v,A,

(
A

2

)
\B)

∣∣)

= 1
2
∑
v,A

B⊆(A
2)

(
|B|(|A|

2
) ∣∣F(v,A,B)

∣∣+ (|A|
2
)
− |B|(|A|
2
) ∣∣F(v,A,B)

∣∣)

= 1
2
∑
v,A

B⊆(A
2)

∣∣F(v,A,B)
∣∣

To proceed, we use two auxiliar results.

Claim B.1 Let v ∈ [n], and let A,A′ ⊆ [n] \ {v}, and B,B′ ⊂
(A

2
)
. If C =

F(v,A,B) ∩ F(v,A′, B′), then either C = F(v,A,B) or C = ∅.

(Proof of Claim B.1.) Observe that for every graph G ∈ Gn, and v ∈ [n], there is
a unique choice of C ⊆ [n] \ {v} and of D ⊆

(C
2
)
such that G ∈ F(v, C,D). Hence,

if G is a graph in both sets, then A = A′ and B = B′, that is, the sets are identical.�

Claim B.2 Let v ∈ [n]. We have

⋃
A⊆[n]\{v}
B⊆(A

2)

F(v,A,B) = Gn e ainda
∑

A⊆[n]\{v}
B⊆(A

2)

∣∣F(v,A,B)
∣∣ = |Gn|.

(Proof of Claim B.2). Every graph in the union is an element of Gn, as all of them
have n vertices. Also, every graph G = (V,E) ∈ Gn is in F(v,A,B) of the union,
taking A = N(v) and B = E ∩

(A
2
)
. Therefore, both sets are the same. The equality

of the sums is a corolary of the Claim B.1, since F(v,A,B) define a partition of Gn.�
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Fixing v, we have

∑
A⊆[n]\{v}
B⊆(A

2)

∣∣F(v,A,B)
∣∣ =

∣∣∣∣ ⋃
A⊆[n]\{v}
B⊆(A

2)

F(v,A,B)
∣∣∣∣ = |Gn| = 2(n

2).

And we conclude that

|Gn|−1 ∑
G∈Gn

clus(G) = 2−(n
2)
∑
G∈Gn

clus(G) =

= 1
n2(n

2)
∑
v∈[n]

∑
A⊆[n]\{v}

∑
B⊆(A

2)
|B|
(
|A|
2

)−1∣∣F(v,A,B)
∣∣

= 1
2 ·

1
n2(n

2)
∑
v∈[n]

∑
A⊆[n]\{v}

∑
B⊆(A

2)

∣∣F(v,A,B)
∣∣

= 1
2 ·

1
n2(n

2)
∑
v∈[n]

2(n
2)

= 1
2 ·

1
n2(n

2)
· n2(n

2)

= 1
2

Lemma 3.5. Let G = (V,E) be a graph with at least one edge and with no isolated
vertices. If every pair of edges e, f ∈ E of G has a common vertex (i.e.: e ∩ f 6= ∅),
then G is a triangle or a star.

Proof. Since G have no isolated vertex, if |E| ≤ 2 then by inspection G is a star. We
suppose in the rest of the proof that G has at least three distinct edges.

Note that if G has a triangle with vertices {a, b, c} ∈ V , then G is a triangle.
This because every edge {d, e} ∈ E is adjacent (i.e., has a common extreme) to each
of the other edges of the triangle, and this is only possible if |{d, e} ∩ {a, b, c}| > 1;
hence {d, e} is one of the edges {a, b}, {a, c}, or {b, c}.

On the other hand, if there is no triangle in G, then the intersection between
any three distinct edges cotains exactly one vertex: this since an edge {a, b} cannot
intercept two others {c, d}, {d, e} at different vertices without generating a triangle,
and thus {a, b}∩{c, d} = {a, b}∩{d, e} = d. Now, this implies that the vertex v ∈ V
at the intersection between distinct edges is unique, for if (e1, e2, e3) and (e2, e3, e4)
are triples of distinct edges (ei ∈ E, e ∈ {1, 2, 3, 4}), then

v = e1 ∩ e2 ∩ e3 = e2 ∩ e3 = e2 ∩ e3 ∩ e4.

And, as v is in every edge, G is a star.

Claim 3.2. Let G ∼ G(n, p). We have E
(
clus(G)

)
= p.

Proof. By linearity of expectation, we have

E
(
clus(G)

)
= n−1 ∑

v∈[n]
E
(
clus(v)

)
.
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Let E = E(G) be the set of edges of G, and Ev = E ∩
(N(v)

2
)
be the set of edges

between neighbors of v ∈ V , with ev
.= |Ev|. Writing a .= |A|, b .= |B|, and q = 1− p,

we have, for all v ∈ [n],

E
(
clus(v)

)
=

∑
A⊆[n]−v

∑
B⊆(A

2)

b(a
2
) · P (N(v) = A ∧ Ev = B)

=
∑

A⊆[n]−v

(a
2)∑
b=0

((a
2
)
b

)
b(a
2
) · P (N(v) = A ∧ ev = b)

=
∑

A⊆[n]−v

(a
2)∑
b=0

((a
2
)
b

)
b(a
2
) · paqn−1−apbq(

a
2)−b

Fixing v ∈ [n], the number of graphs G = (V,E) such that |N(v)| = a and
∣∣E ∩(N(v)

2
)∣∣ = b is

(n−1
a

)((a
2)
b

)
. Therefore,

E
(
clus(v)

)
=

∑
A⊆[n]−v

∑
B⊆(A

2)

b(a
2
) · P (N(v) = A ∧ Ev = B)

=
n−1∑
a=0

(a
2)∑
b=0

(
n− 1
a

)((a
2
)
b

)
b(a
2
) · P (N(v) = A ∧ Ev = B)

=
n−1∑
a=0

(a
2)∑
b=0

(
n− 1
a

)((a
2
)
b

)
b(a
2
)paqn−1−apbq(

a
2)−b

=
n−1∑
a=0

(
n− 1
a

)(
a

2

)−1

paqn−1−a
(
a

2

)
p(p+ q)(

a
2)−1

= p(p+ q)n−1

= p

Where we use the fact that
∑n
k=0

(n
k

)
kxkyn−k = nx(x+ y)n−1.

Proof. We simply calculate the derivative (in x) of both sides of Newton’s binomial
equation.

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k ⇐⇒

n(x+ y)n−1 =
n∑
k=0

(
n

k

)
kxk−1yn−k ⇐⇒

nx(x+ y)n−1 =
n∑
k=0

(
n

k

)
kxkyn−k
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