• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2001.tde-20210729-123824
Documento
Autor
Nombre completo
Rogério Schmidt Feris
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2001
Director
Título en portugués
Rastreamento eficiente de faces em um subespaço wavelet
Palabras clave en portugués
Computação Gráfica
Processamento De Imagens
Reconhecimento De Padrões
Resumen en portugués
O reconhecimento computacional de faces humanas a partir de seqüências de vídeo emerge nos dias atuais como um instigante e desafiador campo de pesquisa. Os resultados dos estudos realizados neste tema encontram diversas aplicações em sistemas de segurança, autenticação de usuários, interação homem-máquina e outras. Em geral, três etapas são discriminadas em um sistema de reconhecimento de faces a partir de vídeo: (1) detecção e rastreamento da face do usuário, (2) segmentação e normalização da face em cada quadro da seqüência, e (3) extração de características e classificação. O objetivo do presente trabalho consiste no estudo e desenvolvimento de algoritmos de visão computacional relativos à primeira etapa, com ênfase no problema de rastreamento de faces. A detecção da presença da face do usuáqrio, em uma sequencia de imagens, foi realizada utilizando-se um procedimento baseado em um modelo estatístico de cor da pele. Em contrapartida, para efetuar o rastreamento da face, realizamos experimentos com a técnica mais sofisticada, recentemente proposta na literatura, denominada Gabor wavelet networks (GWNs). O problema de localização e rastreamento de características faciais também foi tratado, visto que o módulo de reconhecimento, atualmente sendo implementado por outro aluno de mestrado [Campos, 2001], utiliza essas características para efetuar a classificação da face. Como principal contribuição deste estudo, salientamos a proposição de um método eficiente de rastreamento de faces, realizado em um subespaço wavelet de baixa dimensionalidade. Mais especificamente, esse método constitui um aperfeiçoamento, em termos de eficiência, da técnica de rastreamento baseada em GWNs. A comparação de ambas abordagens, bem como a avaliação de pperformance da técnica introduzida, considerando aspectos como precisão, robutez e eficiência, serão discutidas ao longo deste trabalho
Título en inglés
not available
Resumen en inglés
Computational human face recognition from video sequences emerges nowadays as an instigating and challenging research field. The results obtained from the study conducted over this topic encompass several applications in security systems, user authentication, human-machine interaction and so forth. In general, three steps are distinguished in a face recognition system from video sequences: (1) user's face detection and tracking, (2) face segmentation and normalization in each frame, and (3) feature extraction and classification. The objective of the present work consists in studying and developing computer vision algorithms relative to the first step, with emphasis on the face tracking problem. The user's face detection in an image sequence was performed by using a method based on a statistical skin-color model. On the other hand, to accomplish face tracking, we have carried out experiments with a more sophisticated technique, proposed recently in the literature, which is called Gabor wavelet networks (GWNs). The problem of locating and tracking facial features was also considered, since the recognition module, which is being developed by another master's student [Campos, 2001], uses these features to perform face classification. As the main contribution of this thesis, we highlight the proposal of an efficient method for face tracking, carried out in a low-dimensional wavelet subspace. More specifically, this method poses a considerable enhancement over the tracking based on GWNs. The comparison between both approaches, as well as the performance assessment of the introduced technique, considering aspects such as precision, robustness and efficiency, are discussed along this work
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.