• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2002.tde-20210729-132711
Document
Author
Full name
Nestor Walter Trepode
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2002
Supervisor
Title in Portuguese
Identificação de sistemas dinâmicos finitos e aplicações na modelagem de redes gênicas
Keywords in Portuguese
Inteligência Artificial
Abstract in Portuguese
O objetivo do presente trabalho é a identificação de sistemas dinâmicos finitos, nos quais o tempo é considerado discreto à escala de valores discreta e finita. Estes sistemas modelam adequadamente a evolução temporal dos graus de ativação dos genes numa rede de expressão gênica (REG). Os genes que integram uma rede deste tipo são segmentados de DNA que codificam proteínas específicas. A expressão gênica consiste de dois passos: i) transcrição da informação codificada no DNA em moléculas de RNA e ii) tradução da informação codificada no mRNA (um dos tipos de RNA sintetizados no passo anterior) em uma seqüência definida de aminoácios de uma proteína. As proteínas produzidas, como conseqüência da expressão gênica, formam complexos multiproteicos inter-atuantes os quais enviam sinais ao núcleo da célula para mudar os padrões da expressão gênica. Assim, os genes formam uma rede, que é chamada de expressão gênica, na qual o grau de ativação (ou nível de expressão) de cada gene depende dos níveis de expressão dele mesmo e de outros genes em instantes anteriores, e de estímulos externos. O estado de um sistema dinâmico finito num instante de tempo é definido pelo valor de um vetor de variáveis chamadas de variáveis de estado, no caso de uma REG, o nível de expressão de cada gene. O valor de uma variável de estado num instante de tempo depende dos estados anteriores e de estímulos externos em instantes anteriores. As transições de estado são definidas pela função de transição do sistema, que é na verdade um vetor de funções cujas componentes determinam as transições de cada variável de estado. Foram realizadas a modelagem e simulação do ciclo celular hipotético, a partir de fatos conhecidos e conjecturas sobre a dinâmica desse fenômeno. Para testar técnicas de identificação de sistemas, foi simulado também um sistema mais simples, sem vínculo co fenômenos biológicos. A partir de amostras incompletas das transições de ) estado destas simulações, foi realizada a identificação do sistema dinâmico por técnicas de aprendizado computacional. Tal identificação consiste em achar as componentes da função de transição. Também foi efetuada a identificação com a aplicação de restrição de envelope dinâmico (limite inferior e superior das dinâmicas). Finalmente, ambos os sistemas identificados (com e sem restrição de envelope) foram simulados e comparados com as respectivas simulações do sistema ideal, medindo-se os erros de estimação. Também foi desenvolvida uma técnica de geração automática de árvores de classificação por multirresolução, a qual poderá vir a ser aplicada no futuro à identificação de sistemas dinâmicos finitos
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.